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Abstract
Objective  To adapt risk prediction equations for myocardial infarction (MI), stroke, and heart failure (HF) among 
patients with type 2 diabetes in real-world settings using cross-institutional electronic health records (EHRs) in Taiwan.

Methods  The EHRs from two medical centers, National Cheng Kung University Hospital (NCKUH; 11,740 patients) and 
National Taiwan University Hospital (NTUH; 20,313 patients), were analyzed using the common data model approach. 
Risk equations for MI, stroke, and HF from UKPDS-OM2, RECODe, and CHIME models were adapted for external 
validation and recalibration. External validation was assessed by (1) discrimination, evaluated by the area under the 
receiver operating characteristic curve (AUROC) and (2) calibration, evaluated by calibration slopes and intercepts 
and the Greenwood–Nam–D’Agostino (GND) test. Recalibration was conducted for unsatisfactory calibration 
(p-value of GND test < 0.05) by adjusting the baseline hazards of original equations to address variations in patients’ 
cardiovascular risks across institutions.

Results  The CHIME risk equations had acceptable discrimination (AUROC: 0.71–0.79) and better calibration 
than that for UKPDS-OM2 and RECODe, although the calibration remained unsatisfactory. After recalibration, the 
calibration slopes/intercepts of the CHIME-MI, CHIME-stroke, and CHIME-HF risk equations were 0.9848/− 0.0008, 
1.1003/− 0.0046, and 0.9436/0.0063 in the NCKUH population and 1.1060/− 0.0011, 0.8714/0.0030, and 
1.0476/− 0.0016 in the NTUH population, respectively. All the recalibrated risk equations showed satisfactory 
calibration (p-values of GND tests ≥ 0.05).

Conclusions  We provide valid risk prediction equations for MI, stroke, and HF outcomes in Taiwanese type 2 diabetes 
populations. A framework for adapting risk equations across institutions is also proposed.
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Background
The prevention and management of cardiovascular com-
plications are the primary treatment goals for patients 
with type 2 diabetes given the substantial health and 
economic burdens caused by cardiovascular disease 
(CVD)-related disability and mortality at both patient 
and population levels [1–3]. Identifying effective strate-
gies for averting CVD among patients with type 2 diabe-
tes is a critical focus in diabetes care. Risk equations for 
predicting CVD have emerged as efficient tools to inform 
clinical decision-making regarding type 2 diabetes [4–
10], including the personalized estimation of CVD risks 
based on individual patient attributes, characterization 
of subpopulations at a high risk of developing CVD, and 
long-term health and economic outcome assessments of 
anti-diabetic interventions [11].

However, whether existing CVD risk prediction equa-
tions can precisely capture the cardiovascular risk pro-
files of real-world populations with type 2 diabetes is of 
concern. Specifically, the majority of risk equations were 
developed using relatively dated data (e.g., data collected 
before 2010) [4–10], while the clinical management 
for type 2 diabetes has advanced substantially in recent 
decades with the launch of novel glucose-lowering agents 
and the evolution of clinical guidelines on the manage-
ment of patients’ CVD risks. Moreover, the existing risk 
equations were primarily established using data from 
very selective and homogeneous patient populations 
enrolled in clinical trials [4–9] or intervention programs 
[10, 12], and therefore the generalizability of these risk 
equations to diverse real-world patient populations is 
limited. Hence, an adaptation process, including external 
validation and recalibration, is warranted to ensure the 
validity of applying existing risk equations to real-world 
type 2 diabetes patients.

Compared with claims database, where clinical bio-
markers are typically unavailable and disease-specific 
registries are not commonly established for diseases with 
sizeable populations (e.g., type 2 diabetes), electronic 
health records (EHRs), which contain detailed and struc-
tured patient information, are a more valuable real-world 
data source for the adaption of risk equations for type 2 
diabetes. Furthermore, multiple-site or cross-institu-
tional collaborations using EHRs could be considered to 
enhance the generalizability of adapted risk equations to 
diverse real-world patient populations.

Against this background, we adapted existing CVD 
risk prediction equations for real-world type 2 diabetes 
cohorts by utilizing the EHRs from two medical cen-
ters in Taiwan to provide valid tools that can be used to 
assess the risk of developing CVD and support clinical 

decision-making for type 2 diabetes patients. Given the 
restrictions imposed by data usage policies, imperative 
of safeguarding the privacy of personal records at each 
institution, and inconsistent data formats across institu-
tions, this cross-institutional study applied the common 
data model (CDM) approach [13, 14] to ensure the pri-
vacy of patients’ data, consistency in data analysis, and 
transparency across study sites.

Method
Data sources
The EHRs from the National Cheng Kung University 
Hospital (NCKUH) 2014–2019 and National Taiwan 
University Hospital (NTUH) 2012–2017 in Taiwan were 
utilized in this study. The time periods used to identify 
the study populations, risk predictors, and cardiovascular 
outcomes from the NCKUH and NTUH EHRs are shown 
in Supplementary Fig. 1. The CDM approach was applied 
to facilitate cross-database analyses [13, 14]. Briefly, the 
NCKUH and NTUH databases were first transformed 
into a study-specific CDM with six dimensions of data 
elements: Demographic, Diagnosis, Prescriptions, 
Laboratory Result, Vital Signs, and Smoking Behavior 
[15]. All study analyses (i.e., Steps 2–5 in Supplemen-
tary Fig. 2) were then performed using the CDM datas-
ets for NCKUH and NTUH separately using common 
analytic protocols and computer programming codes 
to assure the consistency of analysis algorithms across 
study sites. Respecting the privacy of patient-level data in 
each hospital, only aggregated estimates generated from 
individual hospital sites were available to the research 
coordinators (C.T.Y. and K.S.C.) for the integration of 
study results. The CDM procedures for NCKUH and 
NTUH are detailed elsewhere [15, 16]. This study was 
approved by the Research Ethics Committees of NCKUH 
(A-ER-108,097) and NTUH (201808029RSA).

Identification of appropriate CVD risk equations for 
adaptation
As shown in Supplementary Fig.  2, this study began 
with a search of the literature that reported concurrent 
risk prediction equations for three major CVDs, namely 
myocardial infarction (MI), stroke, and heart failure 
(HF), as the primary focus in clinical management for 
patients with type 2 diabetes. Next, only the risk equa-
tions that explicitly documented the following items 
were considered for adaptation: (1) statistical models of 
the risk equations (e.g., Cox proportional hazard models, 
Weibull models), (2) intercepts of the risk equations, (3) 
coefficients for the explanatory variables/risk predictors, 
and (4) operational definitions of the explanatory and 
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predicted outcome variables. Then, the United Kingdom 
Prospective Diabetes Study Outcomes Model 2 (UKPDS-
OM2) [4], Risk Equations for Complications Of type 2 
Diabetes (RECODe) [5], and Chinese Hong Kong Inte-
grated Modeling and Evaluation (CHIME) [17] models 
were selected. The details of the risk predictors and risk 
equations are available in Supplementary Tables 1 and 2, 
respectively.

Identification of patients with type 2 diabetes for CVD risk 
equation adaptation
Patients who had at least two diagnosis records of type 
2 diabetes (Supplementary Table 3) within one year 
were identified. The date of the first type 2 diabetes diag-
nosis was defined as the index date. We only included 
patients with at least one HbA1c record before the 
index date since HbA1c is a major treatment indicator 
of glucose control for patients with type 2 diabetes and 
is typically included as an essential risk predictor in risk 
prediction equations of diabetes-related complications. 
Patients without continuous follow-up visits in the hos-
pital system were excluded to minimize the impact of 
data discontinuity, a common issue caused by the loss of 
follow-up in study patients among EHR-based research. 
Continuous follow-up was defined as the existence of at 
least one record of outpatient department visits, hospi-
talizations, emergency room visits, physical examina-
tions, laboratory tests, or drug refills annually after the 
index date.

Study subjects were randomly split into training and 
testing datasets with a 1:1 ratio. The randomization pro-
cess was iterated until no differences were found in the 
baseline patient characteristics and CVD event rates 
between these two datasets, as examined using the stan-
dardized mean difference (SMD) and Poisson distribu-
tion, respectively.

Measurements of risk predictors and cardiovascular 
outcomes
The risk predictors included demographic character-
istics, physical examinations, laboratory data, medical 
histories, and medication use (detailed in Supplemen-
tary Table 1). The demographic characteristics of study 
patients were measured at the index date and other risk 
predictors were measured at the 1-year baseline period of 
or at the index date. Patients’ medical histories and medi-
cation use were identified using the International Classi-
fication of Diseases (ICD) diagnosis codes and the World 
Health Organization Anatomical Therapeutic Chemical 
(WHO ATC) classification system, respectively. The fully 
conditional specification method, a widely used tech-
nique of multiple imputation [18], was applied to handle 
the missing values of continuous variables, including 
physical examinations and laboratory data.

When the data of risk predictors were unavailable in 
the EHRs, some assumptions were made. First, since 
patients’ diabetes onsets could not be ascertained in 
EHRs (e.g., patients might have been diagnosed with type 
2 diabetes before they came to the two medical centers 
in this study), we assumed a 5-year diabetes duration 
for study patients based on the literature, which shows 
an average diabetes duration of 5 to 8 years among the 
Taiwanese type 2 diabetes populations treated with 
glucose-lowering agents [19, 20]. Additionally, due to 
the lack of smoking history and hemoglobin data in the 
NTUH’s EHRs, the NTUH population was assumed to be 
non-smokers and have a hemoglobin level of 12.5 g/dL, 
which is aligned with the average hemoglobin level of the 
NCKUH population.

The three CVD outcomes of interest, namely MI, 
stroke, and HF, were defined using ICD disease codes 
from hospitalization or emergency room visit records. 
The operational definitions of risk predictors and cardio-
vascular outcomes are detailed in Supplementary Table 3.

External validation and recalibration of existing CVD risk 
equations
The external validation (discrimination and calibration) 
of existing CVD risk equations for our study cohorts 
were performed using the training dataset. The dis-
crimination was determined using the area under the 
receiver operating characteristic curve (AUROC), where 
a value of AUROC ≥ 0.7 indicated acceptable discrimina-
tion [21]. The calibration was evaluated using the slope 
and intercept of the regression line that displays the rela-
tionship between predicted risks (x axis in calibration 
plots) and observed risks (y axis in calibration plots) of 
each CVD outcome by decile of predicted risks. A slope 
of 1 and an intercept of 0 indicated ideal calibration. The 
Greenwood–Nam–D’Agostino (GND) test was applied 
to examine the concordance between predicted and 
observed CVD risks, where a p-value of the test of less 
than 0.05 indicated a significant difference between the 
predicted and observed values, thereby indicating unsat-
isfactory calibration [5, 22].

For each CVD outcome, if none of the risk equations 
performed ideally for the study cohorts, defined as 
acceptable discrimination (AUROC ≥ 0.7) and satisfac-
tory calibration (p-value of GND test ≥ 0.05), recalibra-
tions of the risk equations were performed. Specifically, 
based on the recalibration method proposed by Shao 
et al. [23], we recalibrated the risk equations by adjust-
ing the baseline hazards of the original risk equations 
through the addition of multipliers that addressed the 
variations in patients’ risks of developing CVDs across 
different medical institutions (hereinafter referred to as 
institutional multipliers). Then, if the performance was 
still unsatisfactory, further recalibrations were conducted 
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within each stratum of the predicted risks of developing 
CVDs that accounted for the heterogeneity of patients’ 
risk profiles (Supplementary Table 4, Eq. [4]). The recali-
bration process is detailed in Supplementary Table 4.

Internal validation of recalibrated CVD risk equations using 
testing dataset
Following the recalibration procedures, the performance 
of the recalibrated risk equations was examined using 
the testing dataset through (1) a calibration plot to assess 
whether the calibration slope and intercept of the reca-
librated risk equations improved (i.e., closer to 1 and 0, 
respectively) over the original risk equations, and (2) a 
GND test to determine whether a desirable calibration 
outcome was achieved (i.e., p-value of test ≥ 0.05, indicat-
ing concordance between predicted and observed risks) 
[5, 22].

All statistical analyses were performed using SAS 9.4, 
except for the calculation of predicted risks from the 
CHIME model (statistical codes released by Quan et 
al. in the GitHub repository https://github.com/quan-
group/CHIME), which was performed using R 4.1.3.

Results
A total of 11,740 and 20,313 patients with type 2 diabetes 
were identified from NCKUH (mean age: 63.3 years) and 
NTUH (64.8 years), respectively (Supplementary Fig. 3). 
More than 80% of the study patients used non-insulin 
glucose-lowering agents and approximately 15% used 
insulin. The prevalence of established CVDs in the study 
patients ranged from 2.4% (MI) to 24.1% (ischemic heart 
disease). Details of the baseline patient characteristics are 
given in Supplementary Tables 5 and 6.

As shown in Supplementary Tables 7, 2.38%, 6.80%, 
and 8.65% of the NCKUH population developed MI, 
stroke, and HF, respectively, over a mean follow-up of 
4.5 years. Among the NTUH population, 1.52%, 4.18%, 
and 3.54% of the patients developed MI, stroke, and HF, 
respectively, over a mean follow-up of 4.3 years.

Table  1 presents the discrimination and calibration 
results for three existing CVD risk equations for our 
study cohorts. The AUROC values for the UKPDS-
OM2, RECODe, and CHIME models are in the ranges 
of 0.5726–0.6498, 0.6579–0.8084, and 0.7078–0.7907, 
respectively, among our study cohorts. Overall, all the 
CVD risk equations from UKPDS-OM2 and the stroke 
risk equation from RECODe demonstrated unsatisfactory 

Table 1  Performance of CVD risk equations from UKPDS-OM2, RECODe, and CHIME models among type 2 diabetes populations of 
NCKUH and NTUH

NCKUH NTUH
UKPDS-OM2 RECODe CHIME model UKPDS-OM2 RECODe CHIME model

Myocardial infarction
 Discrimination
  AUROC 0.6213 0.7722* 0.7659* 0.6194 0.7681* 0.7751*
 Calibration
  Slope 0.0039 0.2326 0.4747† 0.0225 0.1785 0.3774†

  Intercept 0.0037 − 0.0009 − 0.0013 0.0054 − 0.0012 − 0.0037
  p-value of GND test < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Stroke
 Discrimination
  AUROC 0.6498 0.6579 0.7078* 0.6496 0.7001* 0.7705*
 Calibration
  Slope 0.2633 0.6401 0.7382† 0.2484 0.5582 0.7982†

  Intercept 0.0062 0.0495 − 0.0160 0.0075 0.0280 − 0.0363
  p-value of GND test < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Heart failure
 Discrimination
  AUROC 0.6390 0.8084* 0.7907* 0.5726 0.8050* 0.7770*
  Calibration
  Slope 0.4767 0.5931 0.7804† 0.1597 0.3147 0.3666†

  Intercept 0.0126 0.0214 0.0039 0.0068 0.0039 − 0.0007
  p-value of GND test < 0.001 < 0.001 0.05 < 0.001 < 0.001 < 0.001
CVD cardiovascular disease, UKPDS-OM2 UK Prospective Diabetes Study Outcomes Model 2, RECODe Risk Equations for Complications Of type 2 Diabetes, CHIME 
Chinese Hong Kong Integrated Modeling and Evaluation, NCKUH National Cheng Kung University, NTUH National Taiwan University, AUROC area under the receiver 
operating characteristics curve, GND Greenwood–Nam–D’Agostino
*Acceptable discriminations are defined as AUROC values higher than or equal to 0.7
†A calibration slope of 1 and an intercept of 0 indicated ideal calibration. The risk equations from the CHIME model had slopes closer to 1 compared with those from 
UKPDS-OM2 and RECODe

https://github.com/quan-group/CHIME
https://github.com/quan-group/CHIME
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discrimination (AUROC < 0.7) for Taiwanese type 2 dia-
betes populations, and all the CVD risk equations from 
the CHIME model yielded acceptable discrimination 
(AUROC ≥ 0.7). Additionally, the calibration slopes of all 
CVD risk equations from the CHIME model were closer 
to 1 compared with those obtained from UKPDS-OM2 
and RECODe (Supplementary Figs. 4–6). The CVD risk 
equations from the CHIME model were therefore chosen 
for further recalibration.

After recalibration (Figs.  1, 2 and 3), the calibra-
tion slopes/intercepts of the CHIME-MI, CHIME-
stroke, and CHIME-HF risk equations improved from 
0.4747/−  0.0013, 0.7382/−  0.0160, and 0.7804/0.0039 to 
0.9848/−  0.0008, 1.1003/−  0.0046, and 0.9346/0.0063, 
respectively, among the NCKUH population. The cali-
bration slopes/intercepts of the CHIME-MI, CHIME-
stroke, and CHIME-HF risk equations improved from 
0.3774/−  0.0037, 0.7982/−  0.0363, and 0.3666/−  0.0007 
to 1.1060/−  0.0011, 0.8714/0.0030, and 1.0476/−  0.0016, 
respectively, among the NTUH population. All the 
recalibrated risk equations showed insignificant GND 
test results (p-values ≥ 0.05), suggesting satisfactory 
calibration.

Discussion
This study provided valid risk equations for predicting 
the risks of MI, stroke, and HF in Taiwanese type 2 dia-
betes populations. Although the risk equations from the 
CHIME model were developed from real-world Asian 
type 2 diabetes populations, the calibration of these risk 
equations was unsatisfactory for Taiwanese type 2 diabe-
tes populations. The substantially improved calibration 
of CVD risk equations from the CHIME model through 
our recalibration procedures suggest that the adaptation 
of risk prediction equations for a study-specific popu-
lation is crucial to ensure the validity of predicted risk 
estimates. Additionally, the methodological efforts in 
this study provide a framework for adapting risk equa-
tions across different healthcare systems or databases for 
future local/regional and global collaborations.

Differences in external validation of CVD risk equations 
from UKPDS-OM2, RECODe, and CHIME models among 
real-world type 2 diabetes populations in Taiwan
Among the original CVD risk equations from the 
UKPDS-OM2, RECODe, and CHIME models, those 
from UKPDS-OM2 had the poorest performance for 
Taiwanese type 2 diabetes populations in terms of unsat-
isfactory discrimination and calibration. The poor per-
formance of the UKPDS-OM2 risk equations may be 
explained as follows. UKPDS-OM2 was developed using 
data from a clinical trial patient cohort with type 2 diabe-
tes recruited between 1977 and 1991, where the disease 
management strategies for type 2 diabetes significantly 

differed from the contemporary clinical practice. For 
instance, in addition to newer glucose-lowering agents 
for glycemic control, the use of other pharmacologi-
cal agents (e.g., statin, angiotensin-converting enzyme 
inhibitor/angiotensin receptor blocker) to prevent vas-
cular complications is currently a crucial treatment strat-
egy for type 2 diabetes populations; these agents were 
less emphasized when the UKPDS trial was conducted. 
As provided in Supplementary Table 8, the UKPDS trial 
participants had lower utilization rates of anti-hyperlip-
idemia and anti-hypertensive drugs compared with the 
patient cohorts that were used to develop the RECODe 
and CHIME models and our study populations of 
NCKUH and NTUH. Moreover, the prevalence of smok-
ing behavior was considerably high among the UKPDS 
trial participants, of whom 31% and 35% were current 
or past smokers, respectively. Because of the evolution 
of clinical practice guidelines for type 2 diabetes, the risk 
equations established from outdated patient cohorts may 
not be applicable to real-world populations in modern 
clinical practice, which affects the accuracy of predicted 
risk estimates. Previous studies have reported a substan-
tial overestimation of cardiovascular risks when applying 
the UKPDS-OM2 risk equations to contemporary study 
cohorts, for both Caucasian [24] and Asian populations 
[17].

The better performance of the CHIME model, com-
pared with that of UKPDS-OM2 and RECODe, for 
Taiwanese populations is expected to be due to the simi-
larity in the race/ethnicity and study settings between 
the patient cohort for the CHIME model development 
and our study patients. Specifically, the CHIME model 
was established using Chinese and East Asian popula-
tions, giving it better predictive performance for Tai-
wanese populations. Moreover, unlike the UKPDS-OM2 
and RECODe models, which were derived from clinical 
trial populations, the CHIME model was developed using 
data from daily practice settings, which better reflected 
the patient characteristics and the patterns of clinical 
outcomes among real-world populations. Even so, fur-
ther recalibration efforts may be needed to enhance the 
performance of the risk equations for study-specific 
populations.

Application of adapted CVD risk equations to Taiwanese 
type 2 diabetes populations
Although risk equations for predicting CVDs among 
Taiwanese patients with type 2 diabetes have been previ-
ously developed, their applicability to current real-world 
practice is of concern. For example, Li et al. established 
a stroke risk scoring system using patients who were 
diagnosed with type 2 diabetes during 2001–2004 and 
enrolled in the National Diabetes Care Management 
Program in Taiwan. However, data of the patients in this 
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Fig. 1  Recalibrated MI risk equations for type 2 diabetes populations of (a) NCKUH and (b) NTUH. MI myocardial infarction, NCKUH National Cheng Kung 
University Hospital, NTUH National Taiwan University Hospital, GND Greenwood–Nam–D’Agostino. The recalibrated risk equations of MI for (a) NCKUH and 
(b) NTUH populations are presented below, where Riskrecalibrated is the recalibrated risk estimate and RiskCHIME is the risk estimate predicted using the origi-
nal CHIME-MI risk equation: (a) Riskrecalibrated = exp [ln (RiskCHIME)– 0.7961947]. (b) Riskrecalibrated = exp [ln (RiskCHIME)– 1.55474 (if RiskCHIME ≤ 2.5%)– 1.29655 
(if 2.5% < RiskCHIME < 10%)– 0.96124 (if RiskCHIME ≥ 10%)]
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program provided information from a relatively dated 
and highly selective study cohort, which may thereby 
limit the generalizability of the risk scoring system 
[10]. Another study conducted by Lin et al. developed a 

disease model that predicted the occurrence of diabetes-
related complications through a data-driven approach, 
but the practical implementation of this model (e.g., the 
statistical formula and model) was not explicitly provided 

Fig. 2  Recalibrated stroke risk equations for type 2 diabetes populations of (a) NCKUH and (b) NTUH. NCKUH, National Cheng Kung University Hospital; 
NTUH, National Taiwan University Hospital; GND, Greenwood-Nam-D’Agostino. The recalibrated risk equations of stroke for (a) NCKUH and (b) NTUH 
populations are presented below, where Riskrecalibrated is the recalibrated risk estimate and RiskCHIME is the risk estimate predicted using the original CHIME-
stroke risk equation: (a) Riskrecalibrated= exp [ln (RiskCHIME)– 0.540353318 (if RiskCHIME ≤ 8%)–0.726038047 (if 8% < RiskCHIME < 11%)– 0.46372315 (if RiskCHIME≥ 
11%)] (b) Riskrecalibrated= exp [ln (RiskCHIME)– 1.37453272 (if RiskCHIME ≤ 8.5%)– 1.00104983 (if 8.5% < RiskCHIME < 17%)– 0.25721347 (if RiskCHIME≥ 17%)]
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in detail, which has hindered its wide application [12]. 
Moreover, the generalizability of Lin et al.’s findings is of 
concern because the study was conducted using patients 
enrolled in a diabetes pay-for-performance program that 

provides an enhanced quality of diabetes care and has 
been demonstrated to lower the risks of diabetes-related 
complications compared with those of type 2 diabetes 
patients under routine care settings [25–27].

Fig. 3  Recalibrated HF risk equations for type 2 diabetes populations of (a) NCKUH and (b) NTUH. HF, heart failure; NCKUH, National Cheng Kung Univer-
sity Hospital; NTUH, National Taiwan University Hospital; GND, Greenwood-Nam-D’Agostino. The recalibrated risk equations of HF for (a) NCKUH and (b) 
NTUH populations are presented below, where Riskrecalibrated is the recalibrated risk estimate and RiskCHIME is the risk estimate predicted using the original 
CHIME-HF risk equation: (a) Riskrecalibrated= exp [ln (RiskCHIME)– 0.201793786] (b) Riskrecalibrated= exp [ln (RiskCHIME)– 1.022724239]
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Compared with previous studies [10, 12], the present 
study utilized a contemporary cohort to better capture 
risk profiles of real-world type 2 diabetes populations 
in modern clinical practice. Additionally, the statistical 
models, coefficients of risk predictors, and intercepts of 
regression models of the adapted/recalibrated risk equa-
tions are explicitly reported to ensure transparency and 
facilitate further applications of our work (Figs. 1, 2 and 
3, Supplementary Table 2). Further applications may 
include the estimation of patient-level CVD risks to for-
mulate individualized treatment plans, identification of 
high-risk populations for whom an aggressive prevention 
strategy can be considered, and prioritization of health 
and economic benefits of anti-diabetic interventions to 
inform healthcare resource allocation. However, it should 
be acknowledged that the predicted CVD risks from this 
study might be generalizable only to those who share 
similar risk profiles, in terms of baseline patient charac-
teristics and outcome risks, with our study populations 
even though our study cohorts represented real-world 
patient populations with diverse clinical characteristics. 
Therefore, future investigations on the generalizability 
and flexibility of our risk equations with healthcare sys-
tems with broader coverage regarding geographic area, 
institutional characteristics (e.g., accreditation levels), 
and patient attributes are encouraged.

Proposed framework for adaption of risk prediction 
equations across healthcare systems
The present study proposed a framework for risk pre-
diction equation adaptation that is straightforward to 
implement for multi-database collaborations, regardless 
of database type (e.g., EHRs, registry, claims data). This 
framework does not necessitate the pooling of patient-
level data, thereby minimizing the concern of data pri-
vacy during cross-database collaborations. In addition, 
the incorporation of the CDM approach reduces the 
inconsistency in analytic procedures between different 
study sites and further enhances the precision of analy-
sis results. Moreover, this framework allows the periodic 
refinement of the risk prediction equations through the 
updating of model institutional multipliers based on new 
data from other institutions, thereby ensuring the sus-
tainability of the adapted risk prediction equations.

The recalibration method used in this study assumed 
that the strength of associations between risk predic-
tors and predicted CVD outcomes (i.e., the coefficients 
of the risk predictors) are compatible across different 
study populations. This was done because in our case, 
the major risk factors for diabetes-related cardiovascular 
complications and the strength of associations between 
them, such as (1) the crucial demographic and clinical 
characteristics that are associated with the development 
of CVDs among patients with type 2 diabetes and (2) the 

magnitude of potential protective or harmful effects of 
risk predictors on CVDs, have been extensively explored 
and well recognized [28]. However, caution should be 
taken when applying this recalibration method to other 
disease areas where the epidemiological evidence is still 
controversial or lacking.

Some limitations should be acknowledged. First, due to 
the lack of hemoglobin and smoking data in the EHRs of 
NTUH, all of the NTUH patients were assumed to have 
a normal hemoglobin level of 12.5  g/dL and to be non-
smokers, leading to a possible underestimation of CVD 
risks. However, this concern might be minimized because 
consistent calibration results of the original CVD risk 
equations were found when the assumption was modified 
(i.e., assuming that all of the NTUH patients are smok-
ers). Second, similar to other EHRs or claims database 
research, diabetes duration is usually difficult to deter-
mine due to the lack of definite information about diabe-
tes onset. We thus assumed that all study patients had a 
diabetes duration of 5 years, which might weaken the dis-
crimination of risk equations and accuracy of predicted 
risk estimates. However, other risk predictors in the risk 
equations, such as the history of diabetes-related com-
plications and use of glucose-lowering agents, that are 
related to diabetes duration for patients with type 2 dia-
betes are based on empiric data from study populations, 
which may have partially accounted for the effect of dia-
betes duration on the predicted risk estimates. Third, the 
information bias due to loss of follow-up, another com-
mon limitation inherent to studies using EHRs, may not 
have been fully eliminated in this study. Hence, several 
efforts were made to minimize this concern, including 
the exclusion of patients without continuous follow-up 
visits in the study hospitals and those without any HbA1c 
records at baseline. Fourth, there were several variables 
with a high rate of missing data (over 50%), including 
blood pressure levels (due to not being well-structured 
in the EMRs of study hospitals during study periods) and 
white blood cell counts (because of not being routinely 
collected in clinical practice). With this regard, the mul-
tiple imputation on these variables was made and study 
results were consistent before and after the data imputa-
tion. Future research with the complete data is warranted 
to corroborate our findings. Lastly, further research is 
warranted to determine the generalizability of our estab-
lished risk equations to patient cohorts from different 
health care systems, with different demographic and clin-
ical characteristics, and in longer follow-up periods (i.e., 
more than 5 years).

Conclusions
This study provided valid risk equations for predicting 
the risks of MI, stroke, and HF among Taiwanese patients 
with type 2 diabetes in real-world settings. The adapted 
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risk prediction equations can facilitate future health 
economics and outcomes research. Future research and 
collaborations with a broader coverage of healthcare sys-
tems across regions are encouraged to enhance the appli-
cability of our proposed framework.

Abbreviations
MI	� Myocardial infarction
NCKUH	� National Cheng Kung University Hospital
NTUH	� National Taiwan University Hospital
GND	� Greenwood–Nam–D’Agostino

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12933-024-02320-0.

Supplementary Material 1

Author contributions
Yang CT, Chong KS had full access to all the data in the study and take 
responsibility for the integrity of the data and the accuracy of the data 
analysis.Concept and design: all authors.Acquisition, analysis, or interpretation 
of data: all authors. Drafting of the manuscript: Yang CT. Critical revision of the 
manuscript for important intellectual content: all authors. Statistical analysis: 
Yang CT, Chong KS.Administrative, technical, or material support: Ou HT, Wang 
CC.Supervision: Ou HT, Kuo S.

Funding
This research was supported by funding from the Taiwan Ministry of Science 
and Technology (grant MOST 112-2628-B-006-008-MY3, recipient: Huang-Tz 
Ou; grant MOST 111-2636-B-002-019, recipient: Chi-Chuan Wang).

Data availability
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of 
Medicine, National Cheng Kung University, Tainan, Taiwan
2Division of Pharmacoepidemiology and Pharmacoeconomics, 
Department of Medicine, Brigham and Women’s Hospital, Harvard 
Medical School, Boston, MA, USA
3School of Pharmacy, College of Medicine, National Taiwan University, 
Taipei, Taiwan
4Graduate Institute of Clinical Pharmacy, College of Medicine, National 
Taiwan University, Taipei, Taiwan
5Department of Pharmacy, National Taiwan University Hospital, Taipei, 
Taiwan
6Department of Pharmacy, College of Medicine, National Cheng Kung 
University, Tainan, Taiwan
7Division of Metabolism, Endocrinology and Diabetes, Department of 
Internal Medicine, University of Michigan Medical School, Ann Arbor, 
Michigan, USA

Received: 1 March 2024 / Accepted: 16 June 2024

References
1.	 International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels, 

Belgium: International Diabetes Federation; 2021.

2.	 American Diabetes Association. Economic costs of diabetes in the U.S. in 
2017. Diabetes Care. 2018;41(5):917–28.

3.	 Chen HY, Kuo S, Su PF, Wu JS, Ou HT. Health Care costs Associated with 
Macrovascular, Microvascular, and metabolic complications of type 2 
diabetes across time: estimates from a Population-based cohort of more 
than 0.8 million individuals with up to 15 years of follow-up. Diabetes Care. 
2020;43(8):1732–40.

4.	 Hayes AJ, Leal J, Gray AM, Holman RR, Clarke PM. UKPDS outcomes model 2: 
a new version of a model to simulate lifetime health outcomes of patients 
with type 2 diabetes mellitus using data from the 30 year United Kingdom 
prospective diabetes study: UKPDS 82. Diabetologia. 2013;56(9):1925–33.

5.	 Basu S, Sussman JB, Berkowitz SA, Hayward RA, Yudkin JS. Development and 
validation of risk equations for complications of type 2 diabetes (RECODe) 
using individual participant data from randomised trials. Lancet Diabetes 
Endocrinol. 2017;5(10):788–98.

6.	 Shao H, Fonseca V, Stoecker C, Liu S, Shi L. Novel risk engine for diabetes 
progression and mortality in USA: building, relating, assessing, and validating 
outcomes (BRAVO). PharmacoEconomics. 2018;36(9):1125–34.

7.	 McEwan P, Foos V, Palmer JL, Lamotte M, Lloyd A, Grant D. Validation of the 
IMS CORE Diabetes Model. Value Health. 2014;17(6):714–24.

8.	 McEwan P, Peters JR, Bergenheim K, Currie CJ. Evaluation of the costs and 
outcomes from changes in risk factors in type 2 diabetes using the Cardiff 
stochastic simulation cost-utility model (DiabForecaster). Curr Med Res Opin. 
2006;22(1):121–9.

9.	 Zhou H, Isaman DJ, Messinger S, Brown MB, Klein R, Brandle M, Herman WH. 
A computer simulation model of diabetes progression, quality of life, and 
cost. Diabetes Care. 2005;28(12):2856–63.

10.	 Li TC, Wang HC, Li CI, Liu CS, Lin WY, Lin CH, Yang SY, Lin CC. Establishment 
and validation of a prediction model for ischemic stroke risks in patients with 
type 2 diabetes. Diabetes Res Clin Pract. 2018;138:220–8.

11.	 American Diabetes Association Concensus Panel. Guidelines for com-
puter modeling of diabetes and its complications. Diabetes Care. 
2004;27(9):2262–5.

12.	 Lin YM, Liu JS, Huang TY, Wu PH, Chiu YW, Kang Y, Hsu CC, Huang SJ, Luh H. 
Data analysis of the risks of type 2 diabetes Mellitus complications before 
Death using a Data-Driven Modelling Approach: methodologies and chal-
lenges in prolonged diseases. Information. 2021;12(8):326.

13.	 Gini R, Sturkenboom MCJ, Sultana J, Cave A, Landi A, Pacurariu A, Roberto 
G, Schink T, Candore G, Slattery J, Trifirò G. Different strategies to execute 
multi-database studies for medicines surveillance in real-world setting: a 
reflection on the European Model. Clin Pharmacol Ther. 2020;108(2):228–35. 
Working Group 3 of ENCePP (Inventory of EU data sources and methodologi-
cal approaches for multisource studies).

14.	 Food and Drug Administration Sentinel Initiative. Sentinel Common Data 
Model. https://www.sentinelinitiative.org/methods-data-tools/sentinel-
common-data-model Accessed 8 Dec 2023.

15.	 Lin FJ, Wang CC, Hsu CN, Yang CY, Wang CY, Ou HT. Renoprotective effect 
of SGLT-2 inhibitors among type 2 diabetes patients with different baseline 
kidney function: a multi-center study. Cardiovasc Diabetol. 2021;20(1):203.

16.	 Hsu CN, Huang K, Lin FJ, Ou HT, Huang LY, Kuo HC, Wang CC, Toh S. Continu-
ity and Completeness of Electronic Health Record Data for patients treated 
with oral hypoglycemic agents: findings from Healthcare Delivery systems in 
Taiwan. Front Pharmacol. 2022;13:845949.

17.	 Quan J, Ng CS, Kwok HHY, Zhang A, Yuen YH, Choi CH, Siu SC, Tang SY, Wat 
NM, Woo J, Eggleston K, Leung GM. Development and validation of the 
CHIME simulation model to assess lifetime health outcomes of prediabetes 
and type 2 diabetes in Chinese populations: a modeling study. PLoS Med. 
2021;18(6):e1003692.

18.	 Lee KJ, Carlin JB. Multiple imputation for missing data: fully conditional 
specification versus multivariate normal imputation. Am J Epidemiol. 
2010;171(5):624–32.

19.	 Yang CY, Lin WA, Su PF, Li LJ, Yang CT, Ou HT, Kuo S. Heterogeneous treatment 
effects on Cardiovascular diseases with Dipeptidyl Peptidase-4 inhibi-
tors Versus sulfonylureas in type 2 diabetes patients. Clin Pharmacol Ther. 
2021;109(3):772–81.

20.	 Peng ZY, Yang CT, Kuo S, Wu CH, Lin WH, Ou HT. Restricted Mean Sur-
vival Time Analysis to Estimate SGLT2i-Associated Heterogeneous 
Treatment effects on primary and Secondary Prevention of Cardiorenal 
Outcomes in patients with type 2 diabetes in Taiwan. JAMA Netw Open. 
2022;5(12):e2246928.

21.	 Mandrekar JN. Receiver operating characteristic curve in diagnostic test 
assessment. J Thorac Oncol. 2010;5(9):1315–6.

https://doi.org/10.1186/s12933-024-02320-0
https://doi.org/10.1186/s12933-024-02320-0
https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model
https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model


Page 11 of 11Yang et al. Cardiovascular Diabetology          (2024) 23:244 

22.	 Demler OV, Paynter NP, Cook NR. Tests of calibration and goodness-of-fit in 
the survival setting. Stat Med. 2015;34(10):1659–80.

23.	 Shao H, Yang S, Stoecker C, Fonseca V, Hong D, Shi L. Addressing Regional 
differences in diabetes progression: global calibration for Diabetes Simulation 
Model. Value Health. 2019;22(12):1402–9.

24.	 Keng MJ, Leal J, Mafham M, Bowman L, Armitage J, Mihaylova B. Performance 
of the UK prospective diabetes study outcomes model 2 in a Contemporary 
UK Type 2 diabetes trial cohort. Value Health. 2022;25(3):435–42.

25.	 Chiou SJ, Liao K, Huang YT, Lin W, Hsieh CJ. Synergy between the pay-for-
performance scheme and better physician-patient relationship might reduce 
the risk of retinopathy in patients with type 2 diabetes. J Diabetes Investig. 
2021;12(5):819–27.

26.	 Hsieh HM, He JS, Shin SJ, Chiu HC, Lee CTC. A diabetes pay-for-performance 
program and risks of Cancer incidence and death in patients with type 2 
diabetes in Taiwan. Prev Chronic Dis. 2017;14:170012.

27.	 Chen YC, Lee CT, Lin BJ, Chang YY, Shi HY. Impact of pay-for-performance 
on mortality in diabetes patients in Taiwan: a population-based study. Med 
(Baltim). 2016;95(27):e4197.

28.	 Mt Hood Diabetes Challenge Network. Diabetes simulation modeling data-
base. https://www.mthooddiabeteschallenge.com/registry Accessed 8 Dec 
2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://www.mthooddiabeteschallenge.com/registry

	﻿Adaptation of risk prediction equations for cardiovascular outcomes among patients with type 2 diabetes in real-world settings: a cross-institutional study using common data model approach
	﻿Abstract
	﻿Background
	﻿Method
	﻿Data sources
	﻿Identification of appropriate CVD risk equations for adaptation
	﻿Identification of patients with type 2 diabetes for CVD risk equation adaptation
	﻿Measurements of risk predictors and cardiovascular outcomes
	﻿External validation and recalibration of existing CVD risk equations
	﻿Internal validation of recalibrated CVD risk equations using testing dataset

	﻿Results
	﻿Discussion
	﻿Differences in external validation of CVD risk equations from UKPDS-OM2, RECODe, and CHIME models among real-world type 2 diabetes populations in Taiwan
	﻿Application of adapted CVD risk equations to Taiwanese type 2 diabetes populations
	﻿Proposed framework for adaption of risk prediction equations across healthcare systems

	﻿Conclusions
	﻿References


