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Abstract
Background  Despite improved glycemic treatment, the impact of glycation on pathological consequences may persist 
and contribute to adverse clinical outcomes in diabetes. In the present study we investigated the association between 
serum protein glycation products and progression of kidney disease as well as incident major adverse cardiovascular 
events (MACE) in type 1 diabetes.

Methods  Fructosamine, advanced glycation end products (AGEs), and methylglyoxal-modified hydro-imidazolone 
(MG-H1) were measured from baseline serum samples in the FinnDiane study (n = 575). Kidney disease progression 
was defined as steep eGFR decline (> 3 mL/min/1.73 m2/year) or progression of albuminuria (from lower to higher 
stage of albuminuria). MACE was defined as acute myocardial infarction, coronary revascularization, cerebrovascular 
event (stroke), and cardiovascular death.

Results  Fructosamine was independently associated with steep eGFR decline (OR 2.15 [95% CI 1.16–4.01], p = 0.016) 
in the fully adjusted model (age, sex, baseline eGFR). AGEs were associated with steep eGFR decline (OR 1.58 per 1 
unit of SD [95% CI 1.07–2.32], p = 0.02), progression to end-stage kidney disease (ESKD) (HR 2.09 per 1 unit of SD [95% 
CI 1.43–3.05], p < 0.001), and pooled progression (to any stage of albuminuria) (HR 2.72 per 1 unit of SD [95% CI 2.04–
3.62], p < 0.001). AGEs (HR 1.57 per 1 unit of SD [95% CI 1.23–2.00], p < 0.001) and MG-H1 (HR 4.99 [95% CI 0.98–25.55], 
p = 0.054) were associated with incident MACE. MG-H1 was also associated with pooled progression (HR 4.19 [95% CI 
1.11–15.89], p = 0.035). Most AGEs and MG-H1 associations were no more significant after adjusting for baseline eGFR.

Conclusions  Overall, these findings suggest that protein glycation products are an important risk factor for target 
organ damage in type 1 diabetes. The data provide further support to investigate a potential causal role of serum protein 
glycation in the progression of diabetes complications.
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Introduction
Diabetic kidney disease (DKD) is the most common 
cause of chronic kidney disease (CKD) affecting 40% of 
individuals with diabetes and is associated with high risk 
of cardiovascular mortality [1, 2]. Chronic hyperglyce-
mia is associated with the risk of DKD, characterized by 
progressive albuminuria and declining rate of estimated 
glomerular filtration rate (eGFR). Despite improved gly-
cemic treatment, there is still a substantial residual risk 
of DKD in individuals with type 1 diabetes [3]. There may 
be additional factors, which have not improved upon 
intensive treatments and may therefore contribute to 
long-lasting pathological damage in diabetes.

Glycation products are heterogeneous molecules 
formed through non-enzymatic reactions between 
reducing sugars and proteins, lipids, or nucleic acids. 
Non-enzymatic glycation is a multi-step reaction where 
an early glycation product, fructosamine, reflects total 
glycated blood proteins as well as medium-term gly-
cemia, and contributes to the formation of irreversible 
advanced glycation end products (AGEs). These unstable 
heterogeneous AGEs can accumulate or crosslink with 
proteins and thus harm cellular functional activities such 
as the redox balance, apoptosis, or vascular stiffening [4]. 
Methylglyoxal is a highly reactive dicarbonyl metabolite, 
mainly formed inside the cell and acts as a potent pre-
cursor of the AGEs. Partial leakage of methylglyoxal from 
a cell can impair the activity of matrix protein collagen 
IV and induce endothelial cell detachment [5]. Protein 
glycation products are divergent in their structures, and 
dependent on the kidneys for their excretion and reab-
sorption. Kidney dysfunction and declining eGFR over 
time increase the accumulation of AGEs in plasma [6, 
7, 9], which may reflect progressive kidney damage in 
diabetes.

Protein glycation products have long been considered 
predictors of risk of micro- and macrovascular complica-
tions in diabetes. Previous studies have shown increased 
plasma concentrations of AGEs in individuals on hemo-
dialysis [6], as well as in individuals with type 1 diabetes 
with reduced eGFR [8]. Accumulation of methylglyoxal-
modified hydro-imidazolone (MG-H1) was increased by 
ninefold in individuals on peritoneal dialysis compared 
to healthy controls [9]. AGE-modified LDL-cholesterol 
[10] and skin autofluorescence of AGEs were associated 
with atherosclerosis in the elderly [11] and in a diabetes 
population [12], and progression of kidney disease in 
type 1 diabetes [13]. Though these observations reflect 
the strong association of glycation products with the 
development of kidney disease, there are several aspects 
that remain unclear, e.g., (1) does accumulated glycation 
products directly contribute to kidney disease or are they 
just a mere marker of metabolic disturbances; (2) are cur-
rently available data enough to support the clinical utility 

of glycation products as a marker of early changes related 
to diabetes complications in clinical practice; (3) do gly-
cation products increase long-term risk of adverse clini-
cal outcomes. Additionally, pre-clinical and clinical trials 
have generated mixed results about the effect of glycation 
products on related pathologies [10, 13, 14], and lon-
gitudinal studies with longer follow-up are required to 
expand the understanding of glycation-mediated kidney 
damage.

In the present study, we assessed the associations of 
different serum protein glycation products such as the 
early glycation product fructosamine, AGEs represent-
ing later stage end-products, and dicarbonyl (methylg-
lyoxal) modified glycation products (MG-H1), with the 
progression of DKD defined either as steep eGFR decline 
or progression of albuminuria in individuals with type 1 
diabetes. Furthermore, we aimed to evaluate the associa-
tions of these different glycation products with the risk of 
incident major adverse cardiovascular events (MACE) in 
type 1 diabetes.

Research design and methods
Study participants
This study included 575 adult participants from the 
Finnish Diabetic Nephropathy (FinnDiane) Study, a 
nationwide longitudinal multicenter study. At baseline, 
participants were grouped into (1) non-diabetic (n = 128); 
(2) type 1 diabetes (n = 329) without DKD; (3) type 1 
diabetes with DKD (n = 80); or (4) type 1 diabetes with 
end stage kidney disease (ESKD, n = 38). All individuals 
with ESKD had undergone dialysis, and 16 of them had 
received a subsequent kidney transplant.

Clinical information
Type 1 diabetes was defined as age at diabetes onset < 40 
years and permanent insulin treatment started within 
1 year after the diagnosis. The study protocol is in accor-
dance with the Declaration of Helsinki and approved by 
the Ethics Committee of the Helsinki and Uusimaa Hos-
pital District (HUS) (491/E5/2006, 238/13/03/00/2015, 
and HUS-3313-2018, July 3rd 2019). All participants gave 
their informed written consent.

Data on albuminuria status
Urinary albumin excretion rate (AER) was deter-
mined at the FinnDiane baseline and follow-up visits 
from at least two timed overnight or 24-h urine collec-
tions. Normal AER was defined as AER < 20  µg/min or 
< 30  mg/24  h, moderate albuminuria as AER ≥ 20 and 
< 200 µg/min or ≥ 30 and < 300 mg/24 h, severe albumin-
uria as AER ≥ 200 µg/min or ≥ 300 mg/24 h, and ESKD as 
being on dialysis or having received a kidney transplant. 
DKD was defined as the presence of moderate or severe 
albuminuria.
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The data on albuminuria progression were collected 
from all available medical records and health care regis-
tries until the end of year 2019. Progression of albumin-
uria was defined as progression from a lower stage to 
any higher stage of albuminuria [normal AER to moder-
ate albuminuria; moderate to severe albuminuria; severe 
albuminuria to ESKD]. From baseline to the end of the 
follow-up time (median of 11 years), nine individuals 
progressed form normal AER to moderate albuminuria, 
five individuals progressed from moderate albuminuria 
to severe albuminuria, and 17 individuals progressed 
from severe albuminuria to ESKD. Early DKD progres-
sion comprised those, who progressed from normal AER 
to moderate albuminuria, or from moderate to severe 
albuminuria (n = 14); and pooled progression comprised 
progression to any stage of albuminuria (normal AER to 
moderate albuminuria, moderate to severe albuminuria, 
severe albuminuria to ESKD; n = 31). Individuals with 
baseline ESKD were excluded from the analysis when 
assessing the association of glycation products with albu-
minuria progression. Albuminuria progression refers to 
worsening of albuminuria over time and risk of ESKD, 
whereas progression to ESKD reflects severely impaired 
kidney function.

Data on estimated glomerular filtration rate (eGFR)
eGFR was calculated using the Chronic Kidney Disease 
Epidemiology Collaboration equation [15]  based on 
serum creatinine measurements at the study baseline and 
follow-up visits. The decline of eGFR was calculated by 
subtracting the last eGFR measurement from the base-
line measurement and dividing it by the time between the 
measurements. A steep decline was defined by an aver-
age loss of eGFR more than 3 mL/min/1.73 m2/year, and 
45 individuals experienced steep eGFR decline over the 
median follow-up of 11 years.

Data on major adverse cardiovascular events (MACE)
Data on cardiovascular status were registered by a stan-
dardized questionnaire, which was completed by the 
individual’s attending physician and verified from the 
medical files until the year 2017. MACE was defined as 
acute myocardial infraction, coronary revascularization, 
cerebrovascular event (stroke), and cardiovascular death. 
A total of 20 individuals had developed incident MACE 
over the median follow-up of 11 years, where four had 
suffered a stroke, eight a coronary event, one had both a 
stroke and a coronary event, and seven individuals had 
died. The cause of death was unknown in three individu-
als, which were however included as MACE cases.

Analysis of different glycation products
We have measured three different serum glycation prod-
ucts from serum collected at the study baseline visit and 

stored in − 80 °C. Serum fructosamine was measured by a 
colorimetric technique [16] and the absorbance was mea-
sured at 540  nm. Fructosamine content was calculated 
using standard 1-deoxy-1 morpholino-d-fructose (0–3.2 
mM/L). Serum AGEs were determined with an in-house 
fluorometric assay as described earlier [17], which mea-
sures different AGE modifications (e.g., crossline, fluo-
rolink, pyrropyridine and vesperlysine). The measured 
fluorescence was not an AGE itself, but it rather indi-
rectly indicates the amount of AGEs modification present 
in the sample. Fluorescence intensity was measured at 
emission wavelength 460 nm upon excitation wavelength 
360  nm using a multi-mode microplate reader (Synergy 
2, BioTek, Potton, United Kingdom) at room tempera-
ture. The mean of duplicated readings was calculated and 
presented in arbitrary units (AU). Serum MG-H1 protein 
adducts were measured by competitive ELISA (STA-811-
5, Cell Biolabs, San Diego, USA) according to the manu-
facturers’ instructions. Absorbance was taken at 450 nm, 
and the quantity of MG-H1 was determined by compar-
ing with a known MG-BSA standard.

Statistical analysis
Descriptive clinical characteristics are presented as percent-
ages for categorical variables, median (interquartile range) 
for non-normally distributed continuous variables and 
mean ± SD for continuous variables with normal distribu-
tion. Differences in protein glycation products between the 
groups were assessed by Mann–Whitney U test or Krus-
kal–Wallis test. AGEs were standardized by subtracting 
with population mean and dividing by the population stan-
dard deviation (SD). Log-transformation was used to obtain 
normal distribution for MG-H1. Subsequently, univariable, 
and binary logistic regression was performed to assess the 
influence of circulatory protein glycation products on prob-
abilities for steep eGFR decline. Cox regression analysis 
was performed to assess the association of protein glyca-
tion products with the risk of progression of complications 
in type 1 diabetes. Cox regression models were adjusted for 
age, sex, LDL-cholesterol, and baseline eGFR, when applica-
ble. Furthermore, to study the effect of HbA1c on observed 
associations between protein glycation products and clini-
cal outcomes, Cox regression was performed by additionally 
adjusting for HbA1c. The cumulative survival is illustrated 
using Kaplan–Meier curves and probabilities compared 
with the log-rank test. Apart from the diabetes vs. non-dia-
betes group comparisons shown in Table 1 and Supplemen-
tary Fig. 1, all subsequent analyses on progression of kidney 
disease or incident MACE were performed uniquely in indi-
viduals with type 1 diabetes. All analyses were performed 
using IBM SPSS Statistics 26.0 (IBM Corporation, Somers, 
NY, USA). Univariable logistic regression curves were made 
with the SAS version 9.2 software (SAS Institute Inc., Cary, 
NC).
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Data and resource availability
Individual-level data of the study participants are not 
publicly available because of the restrictions due to the 
study consent provided by the participant at the time of 
data collection.

Results
Clinical characteristics of the study subjects
The individuals with type 1 diabetes were stratified based 
on their albuminuria status into non-DKD, DKD, and 
ESKD groups. Individuals in the non-DKD type 1 diabe-
tes group were younger with lower blood pressure (BP), 
increased HbA1c, and higher eGFR compared to the 
non-diabetic controls. The individuals with DKD and 
ESKD were older and had longer diabetes duration than 
the non-DKD group. BP was increased in the DKD and 
ESKD groups, and HbA1c was higher in DKD compared 
to both the non-diabetic controls and the non-DKD 
group. Total and LDL-cholesterol were lower in all three 
type 1 diabetes groups compared to the non-diabetic 
controls. The eGFR decreased with worsening DKD sta-
tus and being the lowest in the ESKD group (Table 1).

Levels of protein glycation products as per albuminuria 
and eGFR
In cross-sectional analysis, fructosamine was elevated in the 
non-DKD, DKD, and ESKD groups compared to the non-
diabetic controls (p < 0.001), however, no difference was 
observed between the non-DKD and DKD groups. AGEs 
were moderately reduced (p < 0.01) in non-DKD compared 

to non-diabetic controls, whereas further elevated in the 
DKD (p < 0.001) and ESKD groups (p < 0.001) compared to 
both non-diabetic controls and non-DKD group. MG-H1 
was higher in the ESKD group compared to both non-dia-
betic controls and the non-DKD group (p < 0.001), however, 
no difference was observed between the non-DKD and 
the DKD group (Table  1 and Supplementary Fig.  1A–C). 
MG-H1 (p < 0.001) was lower in those with a kidney trans-
plant compared to those on dialysis, while no difference was 
observed in fructosamine and AGEs between the dialysis 
and kidney transplant groups (Supplementary Fig.  1D–F). 
When participants were stratified based on eGFR as per 
KDIGO classifications [18], the AGEs increased with lower 
eGFR across the groups (p < 0.001). MG-H1 also varied 
across the groups (p < 0.001) being the highest in those with 
eGFR < 15 ml/min/1.73m2 (Supplementary Fig. 1G–I).

Protein glycation products and progression of kidney 
disease
In longitudinal analysis, the univariable analysis showed 
increased probability for steep eGFR decline by increas-
ing levels of fructosamine and AGEs (Supplementary 
Fig.  2A, B). This was further confirmed in binary logis-
tic regression analysis where each 1 unit increase in 
fructosamine independently increased the odds of 
steep eGFR decline (model 3, adjusted for age, sex, and 
baseline eGFR: OR 2.15 [95% CI 1.16–4.01], p = 0.016; 
Table  2). As an additional sensitivity analysis, this asso-
ciation remained significant (OR 2.02 [95% CI 1.07–3.79], 
p = 0.03) even after additionally adjusting for HbA1c, 

Table 1  Baseline characteristics of participants according to the status of diabetic kidney disease
Phenotype ND (n = 128) T1D non-DKD (n = 329) T1D DKD (n = 80) T1D ESKD (n = 38)
Men, n (%) 89 (70) 127 (39) 43 (54) 27 (71)
Age, years 42.7 ± 12.7 33.6 ± 10.3a1 44.2 ± 12.5b1 43.8 ± 8.9 b1

Diabetes duration, years – 16.8 ± 11.5 30.9 ± 11.5b1 33.2 ± 9.1 b1

Systolic blood pressure, mmHg 130.9 ± 15.2 127.6 ± 14.6a3 143.2 ± 20.8a1, b1 151.7 ± 22.9a1, b1

Diastolic blood pressure, mmHg 78.9 ± 10.3 75.9 ± 8.7a2 79.0 ± 11.2b3 83.8 ± 14.8a3, b1

HbA1c, % 5.3 ± 0.28 7.8 ± 1.23a1 8.4 ± 1.25a1, b1 8.1 ± 1.46a1

HbA1c, mmol/mol 33.9 ± 3.0 62.2 ± 13.5a1 68.6 ± 13.8a1, b1 64.5 ± 16.0a1

Total cholesterol, mmol/L 4.9 ± 0.97 4.6 ± 0.81a1 4.6 ± 1.13a2 4.2 ± 1.07a1, b2

HDL-cholesterol, mmol/L 1.3 ± 0.39 1.5 ± 0.39a1 1.5 ± 0.48a2 1.4 ± 0.53b3

LDL-cholesterol, mmol/L 3.4 ± 0.98 2.7 ± 0.72a1 2.8 ± 1.00a1 2.4 ± 0.89a1, b3

Triglycerides, mmol/L 1.2 ± 0.73 1.1 ± 0.78 1.3 ± 0.67b2 1.7 ± 0.78a1, b1

eGFR, mL/min/1.73 m2 96.3 (84.5–109.7) 109.6 (99.7-118.5)a1 85.3 (35.6-105.1)a1, b1 11.7 (8.8–53.8)a1, b1

eGFR < 60 mL/min/1.73 m², n (%) NA 2 (0.6) 24 (30) 30 (79)
Fructosamine, mM/L 1.47 ± 0.37 1.87 ± 0.47a1 1.90 ± 0.52a1 1.76 ± 0.21a1

AGEs, AU 11,397 (10,001–12,971) 10,670 (9159–12,310)a2 17,575 (11,171–21,647)a1, b1 35,201 (21,905–41,524)a1, b1

MG-H1, µg/ml 2.10 (1.65–2.47) 2.29 (1.60–3.08) 1.79 (1.53–2.65) 3.29 (2.06–7.11)a1, b1

Data are shown as percentages for categorical variables, median (interquartile range) for nonnormally distributed continuous variables, and mean ± SD for 
continuous variables with normal distribution. Between-group comparisons were done by Mann–Whitney U test. The T1D non-DKD group includes individuals with 
normal AER. T1D DKD group includes individuals with moderate and severe albuminuria
acompared with non-diabetic group, b: compared with non-DKD T1D group. a1, b1, = ***(p < 0.001); a2, b2 = **(p < 0.01); a3, b3 = *(p < 0.05)

HbA1c, glycated hemoglobin A1c; HDL-cholesterol, high-density lipoprotein cholesterol; LDL-cholesterol, low-density lipoprotein cholesterol; eGFR, estimated 
glomerular filtration rate; AGEs, advanced glycation end products; MG-H1, methylglyoxal-modified hydro-imidazolone; AER, albumin excretion rate; NA, not 
applicable
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suggesting that fructosamine is not merely a marker of 
hyperglycemia. Additionally, 1 SD increase in standard-
ized AGEs increased the odds of steep eGFR decline 
(OR 1.58 per 1 unit of SD [95% CI 1.07–2.32], p = 0.02) 
when adjusted for age and sex but not after adjustment 
for baseline eGFR. MG-H1 did not show any association 
with steep eGFR decline (Table 2).

In Cox regression, AGEs were associated with pro-
gression from severe albuminuria to ESKD (HR 2.09 
per 1 unit of SD [95% CI 1.43–3.05], p < 0.001) and with 
pooled progression (HR 2.72 per 1 unit of SD [95% CI 
2.04–3.62], p < 0.001) when adjusted for age and sex, but 
not after adjustment for baseline eGFR (Table 3). AGEs 
were also associated with early progression to DKD in 
the unadjusted model (HR 3.62 per 1 unit of SD [95% 
CI 1.12–11.71], p = 0.03). Additionally, log-transformed 
MG-H1 was associated with pooled progression (HR 4.19 

[95% CI 1.11–15.89], p = 0.035) when adjusted for age and 
sex but not after adjustment for baseline eGFR. Fructos-
amine did not show any significant association with pro-
gression of albuminuria (Table 3).

Protein glycation products and incident MACE
AGEs (HR 1.57 per 1 unit of SD [95% CI 1.23–2.00], 
p < 0.001) and log-transformed MG-H1 (HR 4.99 [95% 
CI 0.98–25.55], p = 0.054) were associated with incident 
MACE when adjusted for age, sex, and LDL-cholesterol 
but not after adjustment for baseline eGFR. Fructos-
amine did not show any significant associations with 
incident MACE (Table 3).

As shown in the survival curves in Fig. 1 both for kid-
ney disease progression and incident MACE, the risk of 
an event differed when compared across the AGE quar-
tiles (p < 0.001, Fig. 1A, B), being particularly pronounced 

Table 2  Binary logistic regression of protein glycation products with steep eGFR decline
OR1 (95% CI) P-value OR2 (95% CI) P-value OR3 (95% CI) P-value

Fructosamine 1.87 (1.03, 3.40) 0.041 2.23 (1.19, 4.13) 0.011 2.15 (1.16, 4.01) 0.016
AGEs 1.88 (1.31, 2.69) < 0.001 1.58 (1.07, 2.32) 0.020 1.53 (0.82, 2.85) 0.180
MG-H1 0.63 (0.17, 2.31) 0.490 0.57 (0.15, 2.13) 0.403 0.43 (0.11, 1.74) 0.237
Bold numbers: represent significant p-values

A total of 306 patients had available follow-up data and in general 45 individuals had developed steep eGFR decline (FA analysis: 45 steep decline vs. 261 controls; 
AGEs analysis: 43 steep decline vs. 257 controls; and MG-H1 analysis: 45 steep decline vs. 261 controls)

To obtain normal distribution MG-H1 was log-transformed

OR1, unadjusted; OR2, adjusted for age and sex; OR3, adjusted for age, sex, and baseline eGFR

AGEs, advanced glycation end products; MG-H1, methylglyoxal-modified hydro-imidazolone

Table 3  Cox regression analysis of association of protein glycation products with progression of albuminuria and incident major 
adverse cardiovascular events

Phenotype N cases/controls Model 1 Model 2 Model 3
HR1 (95% CI) P-value HR2 (95% CI) P-value HR3 (95% CI) P-value

Fructosamine DKD (pooled early progression) 14/253 0.47 (0.07, 2.95) 0.417 0.60 (0.09, 3.81) 0.592 0.62 (0.11, 3.53) 0.588
Severe AER to ESKD 17/19 0.85 (0.26, 2.74) 0.786 0.82 (0.23, 2.95) 0.759 1.08 (0.15, 8.05) 0.941
Pooled progression 31/278 0.59 (0.20, 1.71) 0.327 0.92 (0.32, 2.60) 0.873 0.76 (0.23, 2.51) 0.652

AGEs DKD (pooled early progression) 14/ 253 3.62 (1.12, 11.71) 0.032 2.95 (0.86, 10.11) 0.086 2.29 (0.59, 8.98) 0.232
Severe AER to ESKD 17/19 2.08 (1.44, 3.00) < 0.001 2.09 (1.43, 3.05) < 0.001 1.00 (0.55, 1.82) 0.999
Pooled progression 31/278 3.20 (2.48, 4.12) < 0.001 2.72 (2.04, 3.62) < 0.001 1.12 (0.71, 1.79) 0.622

MG-H1 DKD (pooled early progression) 14/253 2.50 (0.32, 19.41) 0.381 2.29 (0.30, 17.42) 0.421 2.39 (0.29, 19.83) 0.420
Severe AER to ESKD 17/19 3.37 (0.73, 15.53) 0.119 3.49 (0.50, 24.14) 0.206 0.18 (0.01, 3.04) 0.233
Pooled progression 31/278 4.15 (1.14, 15.11) 0.031 4.19 (1.11, 15.89) 0.035 1.26 (0.26, 6.07) 0.771

Fructosamine Incident MACE† 20/304 0.68 (0.19, 2.42) 0.555 1.56 (0.51, 4.78) 0.437 1.30 (0.39, 4.39) 0.668
AGEs Incident MACE† 20/304 1.83 (1.48, 2.25) < 0.001 1.57 (1.23, 2.00) < 0.001 1.02 (0.67, 1.58) 0.913
MG-H1 Incident MACE† 20/304 4.47 (1.00, 19.94) 0.049 4.99 (0.98, 25.55) 0.054 2.79 (0.43, 18.14) 0.282
Bold numbers: represent significant p-values

DKD (pooled early progression) comprises those who progressed from normal AER to moderate albuminuria, n = 9; or from moderate to severe albuminuria, n = 5)

17 individuals progressed from severe albuminuria to ESKD

Pooled progression comprised 31 individuals who progressed to any stage of albuminuria (normal AER to moderate albuminuria, n = 9; moderate to severe 
albuminuria, n = 5; severe albuminuria to ESKD, n = 17)

Model 1: unadjusted

Model 2: adjusted for age and sex; †adjusted for age, sex and LDL-cholesterol

Model 3: adjusted for age, sex and baseline eGFR; †adjusted for age, sex, LDL-cholesterol, and baseline eGFR

To obtain normal distribution MG-H1 was log-transformed

MACE, major adverse cardiovascular events; AGEs, advanced glycation end products; MG-H1, methylglyoxal-modified hydro-imidazolone
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for individuals in the highest quartile (Q4) for AGEs: 
at 10-year follow-up, individuals in the top quartile of 
AGEs had 65% survival without albuminuria progres-
sion, compared to those in the third quartile with 95% 
survival without albuminuria progression. Similarly, for 
the 10-year cumulative risk of incident MACE, individu-
als in the top quartile of AGEs had 77% survival without 
MACE when compared to those in the third quartile 
with 97% survival without MACE. Of note, there were no 
incident MACE events observed in the individuals in the 
lowest quartile of AGEs (Q1).

Discussion
In this work we have conducted a comprehensive study 
of three different protein glycation products, represent-
ing different stages of non-enzymatic glycation processes, 
and their potential role for DKD and incident MACE in 
individuals with type 1 diabetes, both cross-sectionally 
and prospectively with a median follow-up of 11 years. 
Fructosamine did not differ between the DKD groups in 
the cross-sectional analysis but served as an independent 
risk factor of rapid eGFR decline even after adjustment 
for well-known risk factors, such as eGFR and HbA1c. 
AGEs were elevated in the DKD and ESKD groups, 
and prospectively associated with rapid eGFR decline, 
progression of albuminuria, and incident MACE. The 
increased risk was observed among those individuals in 
the top quartile of AGEs. Dicarbonyl-derived MG-H1 
was also significantly associated with the progression of 
albuminuria and moderately associated with incident 
MACE. However, the AGEs and MG-H1 associations did 
not remain significant after adjusting for baseline eGFR.

Glycation products can be formed through different 
pathways and through different precursors, and their 
circulatory levels are therefore affected by various fac-
tors including clinical and demographic characteristics. 

Glycation of proteins is a natural process continuously 
occurring in the circulatory systems and remains high 
in manifest diabetes [9]. Fructosamine reflects medium-
term glycemic control, and elevated levels have been 
shown to associate with micro- or macrovascular com-
plications and mortality in individuals with diabetes [19] 
and in non-diabetic subjects [20] in cross-sectional anal-
yses. Fructosamine was also associated with increased 
risk of all-cause mortality and first sepsis hospitalization 
in 100 individuals with diabetes on hemodialysis dur-
ing a prospective 3-year follow-up [21]. Mild elevation 
of serum fructosamine was associated with decreased 
eGFR in non-diabetic individuals without CKD over a 
median follow-up of 3.5 years [22]. Unlike the late glyca-
tion products, fructosamine may capture recent glycemic 
excursions more closely which makes it more capable of 
identifying acute changes associated with kidney disease. 
Our study extends these findings and investigated the 
longitudinal associations in type 1 diabetes, where fruc-
tosamine was associated with a 2.15-fold increased risk 
of steep eGFR decline. However, our study demonstrated 
no association of fructosamine with the progression of 
albuminuria. Of note, fructosamine concentration not 
only depends on glucose levels but is largely affected by 
the serum protein concentration, metabolism, and pro-
tein turnover as it constitutes to a large extent of glycated 
albumin (80%), glycated lipoproteins, and globulins. It is 
possible that the individuals with kidney disease in the 
present study might have low in situ rate of glycation 
of serum proteins due to less availability of albumin, or 
these individuals might excrete more serum proteins in 
the urine due to their kidney dysfunction. If true, this 
might explain why we observed no association between 
fructosamine and progression of albuminuria. Neverthe-
less, the robust association between fructosamine and 
steep eGFR decline suggests that fructosamine could 

Fig. 1  Kaplan–Meier plot for progression of diabetes kidney disease (A), and incident major adverse cardiovascular event (MACE; B). Individuals were 
stratified by quartiles of advanced glycation end products (AGEs) at baseline
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serve as a potential early diagnostic marker to predict 
change in kidney function. Additionally, fructosamine’s 
ability to reflect short-term glycemic changes makes 
it a more sensitive marker to capture recent glycemic 
excursions and its effect on kidney function or CKD 
progression.

Serum AGEs have widespread effects on protein dam-
age in multiple systems by altering structural quality of 
blood vessels, bones, and other tissues through protein 
cross-linking [9]. AGEs are mainly excreted via the kid-
neys and their circulatory levels are, therefore, highly 
dependent on kidney function. Impaired glomerular 
function or reduced eGFR have been linked to increased 
accumulation of glycated products in the circulation. 
Accumulated glycated products can cause glomerular 
basement membrane thickening, mesangial expansion, 
podocyte injury, compromising the filtration barrier and 
reducing glomerular filtration rate. Declining of kidney 
function and reduced eGFR reflects impaired clearance 
of AGEs from the circulation. A previous study showed 
serum accumulation of AGEs in children with chronic 
kidney failure and type 1 diabetes [23]. In line, the pres-
ent study reports elevated serum AGEs with worsening 
kidney status in type 1 diabetes. However, elevated serum 
AGEs are also known to have various detrimental effects 
on kidney health. AGEs work synergistically with other 
pathways including oxidative stress, hypertension, or the 
renin angiotensin-aldosterone system, and promotes pro-
gressive kidney injury likely via fibrogenesis, phenotypic 
differentiation or cell death. Furthermore, AGEs form 
molecular cross-links with extracellular matrix (ECM) 
proteins, increase expansion of the ECM area, and affects 
tissue remodeling, which is an important signature of 
progression of CKD [9, 24]. The present study supports 
such findings and reports an association of AGEs with 
measures of worsening kidney function (steep eGFR 
decline and progression to albuminuria) in type 1 diabe-
tes in a prospective setting.

In addition, circulating AGEs have been associated 
with vascular stiffening in individuals with type 2 diabe-
tes [25], the degree of coronary arteriosclerosis in non-
diabetic subjects [26], impaired ventricular function in 
individuals with type 1 diabetes [27], and AGE-receptor 
mediated endothelial dysfunction in individuals with 
CKD partly explaining cardiovascular mortality [28]. 
A recent study by Koska et al. [29] reported an associa-
tion between elevated AGEs and incident CVD in type 
2 diabetes. The present study extends these findings to 
individuals with type 1 diabetes and demonstrates an 
association of AGEs with incident MACE.

Methylglyoxal is a highly reactive dicarbonyl com-
pound produced through metabolic flux at intracellular 
concentrations of 1–4 µM and a half-life of 2–4 h. Meth-
ylglyoxal interacts with arginine residues of proteins 

to form MG-H1, a dominant hydroimidazolone glyca-
tion product found in both serum and tissues. Methyl-
glyoxal was shown to impair the ability of the kidney to 
remove damaged proteins through covalent modification 
of the proteasome, and elevated expression of mRNA of 
pro-inflammatory and oxidative stress pathways in the 
kidney transcriptome [30]. Both methylglyoxal and meth-
ylglyoxal-modified proteins have been associated with the 
pathology of multiple diseases including diabetes, cancer, 
liver, and kidney diseases. The experimental glyoxalase 
1 knockout mice showed elevated MG-H1 adducts in 
glomeruli and tubules with the development of albumin-
uria and mesangial expansion in a non-diabetic condition 
[31]. The present study extends these findings and reports 
an association of MG-H1 with increased risk of progres-
sion of albuminuria. Previous studies showed an associa-
tion of plasma free methylglyoxal with incident CVD in 
both type 1 and type 2 diabetes [32, 33]. Subsequently, 
accumulation of methylglyoxal on vascular endothelial 
cells increases redox imbalance, vascular resistance, insu-
lin resistance, salt sensitivity and retention of body fluid 
volume [34, 35]. Methylglyoxal has been shown to be a 
predictor of intima-media thickening, vascular stiffening, 
and hypertension over 5-years of follow-up in individu-
als with type 2 diabetes [36]. Interestingly, postprandial 
hyperglycemia induced increased intracellular concentra-
tion of methylglyoxal, which has been linked to the devel-
opment of macroangiopathy in individuals with type 2 
diabetes [37]. A recently published study by Nakamura 
et al. [38] showed lower risk of combined cardiovascular 
events in people with type 2 diabetes with continuous low 
levels of MG-H1. The present study extended these find-
ings to individuals with type 1 diabetes and demonstrates 
the moderate association of protein bound MG-H1 with 
incident MACE in type 1 diabetes. Interestingly, MG-H1 
was elevated only in those with ESKD, and no difference 
was observed in DKD and non-DKD groups compared 
to non-diabetic controls. Similarly, Perkins et al.  [39] 
showed that the plasma protein bound MG-H1 content 
did not differ between those with stable eGFR and those 
with early eGFR decline in individuals with type 1 diabe-
tes and moderate albuminuria. However, the fractional 
urinary excretion of MG-H1 free adducts was increased 
100% in those with early eGFR decline. The reduced 
MG-H1 levels in those after kidney transplantation also 
suggest the possibility of a kidney dependent alteration in 
MG-H1 levels in the present study. These findings war-
rant analysis of fractional excretion of this analyte in indi-
viduals with kidney disease.

The main limitation of this study is the relatively small 
sample size, although this is among the largest prospec-
tive studies. Furthermore, we measured only circulatory 
protein bound glycation products but not free glycated 
adduct residues or tissue AGEs. We did not have data 
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available on dietary AGEs. All serum AGEs do not 
exhibit fluorescence, therefore, some non-fluorescent 
AGEs might not have been detected with the quantita-
tive detection method of AGEs. However, we believe 
that these limitations do not reduce the importance of 
the reported associations as if anything they would have 
diluted our findings. The study also has some strengths 
including well-characterized Finnish participants with 
type 1 diabetes, prospective study design with follow-
up visits, data on CVD events, kidney disease as well as 
high quality and completeness of national registry data. 
In addition, we had access to registry data including all 
individuals with type 1 diabetes, who had received a kid-
ney transplant from the beginning of transplant activities 
in Finland. We also have access to death certificates and 
only 8% had an undetermined cause of death which pro-
vides a comprehensive picture of the comorbidities that 
affect the patient survival.

In conclusion, fructosamine is an independent predic-
tor of steep eGFR decline, whereas AGEs showed asso-
ciation with progression of kidney disease (steep decline 
of eGFR and progression of albuminuria) and incident 
MACE. Additionally, MG-H1 was associated with the 
progression of albuminuria and moderately associated 
with incident MACE. Overall, these findings suggest that 
protein glycation products are important risk factors for 
target organ damage in type 1 diabetes. These data also 
provide further support to investigate the causal role of 
serum protein glycation in the progression of diabetes 
complications.
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