CORRECTION

Correction: Therapeutic strategies targeting mechanisms of macrophages in diabetic heart disease

Chaoyue Zhang¹, Yunke Shi¹, Changzhi Liu², Shivon Mirza Sudesh^{3,4}, Zhao Hu⁵, Pengyang Li⁶, Qi Liu⁷, Yiming Ma¹, Ao Shi^{3,4*} and Hongyan Cai^{1*}

Correction: Cardiovascular Diabetology (2024) 23:169

https://doi.org/10.1186/s12933-024-02273-4

Following publication of the original article [1], the author reported the errors in Tables 3 and 7. The entire content of the tables have been incorrectly published. The corrected Tables 3 and 7 are given below:

The original article can be found online at https://doi.org/10.1186/ s12933-024-02273-4.

*Correspondence: Ao Shi m1701040@sgul.ac.uk Hongyan Cai

hyflykm@sina.com

¹Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China

²Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China

³Faculty of Medicine, St. George University of London, London, UK ⁴University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus

⁵Department of Geriatric Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China

⁶Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA

⁷Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX, USA

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicate of the original autory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Deciration waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Table 3 Clinical studies of GLP1RAs for the treatment of DM or DM-related diseases

Medicine	Generic Name	First Author	Year	Disease	Model	Findings	Ref.
GLP1RAs	Dulaglutide	Gerstein, H.C.	2020	T2DM	Human	Long-term dulaglutide use might reduce clinically relevant ischemic stroke in people with T2DM	[127]
		Tuttolo- mondo, A.	2021	T2DM	Human	Positive effects on arterial stiffness and endothelial function indica- tors in patients with T2DM receiving conventional therapy with daily subcutaneous injections of 1.5 mg dulaglutide	[128]
	Liraglutide	Marso, S.P.	2016	T2DM	Human	The composite endpoint of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke was significantly lower in T2DM patients at high cardiovascular risk	[129]
	Semaglutide	Husain, M.	2019	T2DM	Human	The cardiovascular risk profile of patients with T2DM taking oral sema- glutide was not worse than those taking placebo	[130]
		Strain, W.D.	2022	T2DM	Human	Semaglutide treatment reduced stroke risk in patients with T2DM and higher cardiovascular risk compared with placebo treatment	[131]
	Efpeglenatide	Gerstein, H.C.	2021	T2DM	Human	Patients with T2DM who received weekly subcutaneous doses of 4 or 6 mg of efpeglenatide had a lower risk of cardiovascular events than those on placebo	[132]
	Albiglutide	Hernandez, A.F.	2018	T2DM	Human	In patients with T2DM and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events	[133]

 Table 7
 Clinical studies of RAASis for the treatment of DM or DM-related diseases

Medicine	Generic Name	First Author	Year	Disease	Model	Findings	Ref.
RAASis	Aliskiren, Losartan	Solomon, S.D.	2009	Hypertension	Human	Aliskiren and losartan attenuated myocardial end-organ dam- age effectively	[158]
	Aliskiren	Shah, A.M.	2012	DM/MI	Human	Aliskiren improved left ventricular hypertrophy and end-systol- ic volume in patients with DM	[159]
	Captopril	Hansson, L.	1999	Hypertension/DM	Human	Captopril reduced the propensity to develop T2DM by 11% in hypertensive patients	[164]
	Ramipril	Yusuf, S.	2000	Hypertension/DM	Human	Ramipril reduced the propensity to develop T2DM by 34% in hypertensive patients	[165]
	ARBs	Lambers Heerspink, H.J.	2012	T2DM	Human	Moderation of dietary sodium potentiated the renal and cardiovascular protective effects of ARBs	[166]

The original article has been corrected.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published online: 29 June 2024

Reference

1. Zhang C, Shi Y, Liu C, et al. Therapeutic strategies targeting mechanisms of macrophages in diabetic heart disease. Cardiovasc Diabetol. 2024;23:169.