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Abstract
Background Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic 
individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving 
myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as 
scRNA-seq and scATAC-seq, provide deeper insights into DCM’s unique cell states and molecular landscape for 
targeted therapeutic interventions.

Methods Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. 
Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible 
chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility 
networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. 
Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was 
performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-
embedded tissues to verify the findings.

Results This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, 
elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust 
and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased 
endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, 
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Introduction
Diabetic cardiomyopathy (DCM) stands as a critical 
health concern with increasing global prevalence [1]. 
Despite lacking overt cardiovascular issues, individuals 
with diabetes face a heightened risk of developing heart 
failure due to DCM. In 2021, an alarming 536  million 
people worldwide aged 20 to 79 were affected by diabe-
tes, comprising 10.5% of this age group [2]. The incidence 
of heart failure in diabetic patients, ranging from 13 to 
30% [3, 4], emphasizes the urgent need to comprehend 
and address the clinical implications of DCM. Unravel-
ing the complexities of DCM is imperative for developing 

targeted interventions that could mitigate the progres-
sion of heart failure in diabetic individuals.

Understanding the intricate cellular mechanisms 
behind DCM involves a focus on fibroblasts and endothe-
lial cells, two key players in cardiac function and pathol-
ogy. Myocardial fibrosis, a hallmark of DCM, is driven by 
the transformation of cardiac fibroblasts into active myo-
fibroblasts. These cells contribute to the excessive depo-
sition of extracellular matrix (ECM) proteins, disrupting 
normal cardiac function and leading to cardiac remodel-
ing and even heart failure [5, 6]. Additionally, endothe-
lial cells undergo endothelial-mesenchymal transition 
(EndMT) during diabetes, further contributing to fibrosis 

indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in 
cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct 
changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac 
contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating 
VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and 
growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting 
their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, 
confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and 
endothelial cells with compromised proliferation.

Conclusion Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations 
in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer 
valuable insights. The study sheds light on potential therapeutic targets for DCM.
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[7–9]. Investigating the interactions between fibroblasts, 
endothelial cells, and other cardiac cell types is crucial 
to deciphering the molecular intricacies of DCM [10]. 
Insights gained from these cellular interactions could 
open avenues for targeted therapeutic strategies aimed at 
preventing or reversing myocardial fibrosis.

Advancements in technology have revolutionized our 
ability to unravel the molecular underpinnings of DCM. 
Single-cell RNA sequencing (scRNA-seq) and single-cell 
Assay for Transposase-Accessible Chromatin sequencing 
(scATAC-seq) have emerged as key technologies. scRNA-
seq provides a detailed look at gene expression at the 
individual cell level, offering insights into the dynamic 
changes within various cell populations in response 
to diabetes-induced cardiac pathology. This technique 
has been particularly illuminating in understanding the 
transcriptomic alterations in fibroblasts, endothelial 
cells, myocardial cells, and macrophages in a diabetic 
cardiomyopathy mouse model [11]. On the other hand, 
scATAC-seq complements scRNA-seq by providing 
information on chromatin accessibility, shedding light on 
the regulatory elements controlling gene expression [12]. 
Together, these technologies could offer a comprehen-
sive view of the molecular landscape of DCM, facilitat-
ing the identification of potential therapeutic targets and 
pathways for intervention. Harnessing the power of these 
advanced techniques is integral to mining the intricate 
details of disease development in DCM and holds prom-
ise for developing more effective treatment strategies.

Method
Animals
Because db/db mice (C57BLKS/J background) are close 
to the disease mechanism and pathological phenotype 
of human type 2 diabetes, it is widely used in the scien-
tific research of diabetes cardiomyopathy. 22 12-week-
aged db/db male mice were used as DCM group, and 16 
12-week-aged db/m male mice were used as wide type 
(WT) group. After the model were built, 10 mice cardiac 
tissues was harvested from each group and underwent 
careful processing to isolate individual cells for single-cell 
transcriptome and chromatin accessibility sequencing, 
the other mice cardiac tissues were used for immuno-
fluorescence assay. Animal experiments were approved 
by the Animal Ethics Committee of Guilin Medical Uni-
versity (No. GLMC201905012) and followed the National 
Institutes of Health Guidelines on the Care and Use of 
Animals.

10x Multiome (RNA + ATAC) library preparation and data 
processing
Raw single-cell sequencing data were analyzed using the 
Cell Ranger ARC v2.0.1 pipeline (10X Genomics). Reads 
were aligned to the mouse genome reference (mm10).

Quantification, quality control, and cluster analysis of 
single-cell RNA and ATAC data
For gene expression data, the cells that expressed less 
than 200 or more than 6000 unique genes, or more than 
10% of reads mapping to mitochondria, or more than 
0.5% of reads mapping to hemoglobin were filtered out 
by the Seurat R package (version 4.2.0) [13]. For ATAC 
data, the cells that detected less than 1000 or more than 
100,000 ATAC reads were filtered out by the Signac R 
package (version 1.8.0) [14]. Then, we only reserved the 
cells with lower nucleosome signal (< 1) and higher TSS 
enrichment (> 1). Cells presumed as doublets by Doublet-
Finder [15] R package (version 2.0.3) were filtered out. 
Then, we merged all samples and performed peak calling 
using MACS2 (2.2.7.1 version) [16] with default parame-
ters. We processed the data for two modalities separately. 
For gene expression data, the global scaling method was 
used for normalizing, and the function ScaleData was 
used for removing unwanted sources of variation. In 
addition, principal component analysis (PCA) was used 
for calculating the most significant 20 principal compo-
nents (PCs) of the gene expression.

For ATAC data, we only reserved peaks that were 
detected in more than ten cells. Term frequency-inverse 
document frequency (TF-IDF) was used for normaliz-
ing and singular value decomposition (SVD) was used 
for dimensional reduction. Then, we integrated all sam-
ples with anchors. Specifically, we found a set of anchors 
between two datasets using the function FindIntegra-
tionAnchors and integrated them using the Integrate-
Data. To integrate information from multiple modalities, 
a weighted nearest neighbor (WNN) graph [17] was con-
structed according to the integrated dimensional reduc-
tions from two modalities. Next, the function RunUMAP 
was used for Uniform Manifold Approximation and Pro-
jection (UMAP) dimensional reduction, and the function 
FindClusters was used to cluster cells. The expression of 
known marker genes was used to annotate each cluster.

For gene expression data, the list of differential genes 
between cell types was calculated with function Find-
Markers in Seurat and filtered by following settings 
(min.pct = 0.2, logfc.threshold = 0.2, only.pos = TRUE). 
Adjusted p-value (Wilcoxon test) was used to determine 
significance at an FDR < 0.05.

For ATAC data, the list of differential accessible chro-
matin regions (DAR) between cell types was calculated 
with the FindMarkers function in Signac and filtered by 
following settings (min.pct = 0.2, logfc.threshold = 0.2, 
only.pos = TRUE). Adjusted p-value calculated by logistic 
regression framework (LR) was used to determine signifi-
cance at a FDR < 0.05.
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Transcription factor activity estimation
Transcription factor activity was estimated using the 
ATAC profile with chromVAR (version 1.16.0) [18]. 
JASPAR2018 database provided the positional weight 
matrix during the calculation. By taking advantage of the 
function RunChromVAR wrapper in Signac, Cell-type-
specific chromVAR activities were calculated. The list 
of differential activity between cell types was calculated 
with the FindMarkers function in Signac and filtered by 
adjusted p-value (FDR < 0.05). The function FindMotif 
was also used for motif enrichment analysis on differen-
tially accessible regions.

Cis-coaccessibility networks calculation with Cicero
Cis-coaccessibility networks were calculated using the 
ATAC profile with Cicero (version 1.12.0) [19]. The data 
for each cell type was converted to cell dataset (CDS) 
objects by function make_atac_cds separately. After pro-
cessing by function detect_genes and estimate_size_fac-
tors, dimensionality reduction analysis was performed on 
each CDS object and all CDS objects were converted to 
Cicero CDS object. The function run_cicero calculated 
the cell-type-specific Cicero connections.

Comparison of Cicero coaccessibility connections to 
GeneHancer database
The list of differentially accessible chromatin regions 
(DAR) of different cell types was filtered by follow-
ing settings (min.pct = 0.2, logfc.threshold = 0.2, only.
pos = TRUE, adjusted p-value < 0.05). All the Cell-type-
specific DAR were extended up and down 50 kb and the 
top 1000 DAR by log fold change were used to create bed 
files. Files were transferred to GeneHancer [20] interac-
tion tracks on the UCSC table browser. The mean pro-
portion of overlap between GeneHancer interactions and 
cell-type-specific Cicero connections was compared with 
the Cicero co-access threshold.

Gene ontology enrichment analysis
The FindAllMarkers function was used to calculate the 
differential genes of each cell subset by comparing the 
cell subset with other cells. To do the further analysis, 
the list of differential genes filtered by following settings 
(only.pos = TRUE, min.pct = 0.2, logfc.threshold = 0.2) 
and the list of differential genes at an adjusted p-value 
(Wilcoxon test) < 0.05 were retained. We selected the 
top 100 genes in fold change to perform Gene Ontology 
(GO) enrichment analysis using clusterProfiler R package 
[21]. The results of the enrichment analysis were selected 
based on the statistical threshold (qvalueCutoff = 0.05) 
and the results belonging to Biological Process (BP) were 
reserved.

The list of differential genes of each cell subset by com-
paring the cell subset with other cells was calculated by 

function FindAllMarkers and was filtered by following 
settings (only.pos = TRUE, min.pct = 0.2, logfc.thresh-
old = 0.2). Adjusted p-value (Wilcoxon test) was used 
to determine significance at an FDR < 0.05. The top 100 
genes in fold change were selected to perform Gene 
Ontology (GO) enrichment analysis with clusterProfiler 
R package (version 4.2.2). We concentrated on enrich-
ment analysis results belonging to Biological Process (BP) 
and they were selected based on the statistical threshold 
(qvalueCutoff = 0.05).

Scoring of biological processes
The scores of individual cells were generated according 
to the gene signatures representing biological functions, 
and they were defined as the average normalized expres-
sion of corresponding genes. Functional signatures were 
collected from the Gene Ontology database [22], and 
they are all differential genes at an adjusted p-value cut-
off of 0.05 using the Wilcoxon test.

The scores of individual cells were determined using 
the average normalized expression of the gene in ques-
tion. These genes, or gene signatures, represent corre-
sponding biological functions, which makes the score a 
measure of the biological processes of each cell. These 
functional signatures are both differential genes (adjusted 
p-value < 0.05) and at the same time genes in the Gene 
Ontology database.

Cell-cell communications analysis
The top 10,000 variables were selected, and the genes 
expressed in less than ten cells were filtered out. Mouse 
genes were converted to human paralogues with the 
GRCm38/GRCh38 genome reference. Cell-cell commu-
nications analysis was performed using CellphoneDB 
(version 3.1.0) [23] based on the expression matrix. In the 
results of CellPhoneDB, the ligand-receptor pairs with no 
valid values were filtered out.

Gene-motif correlation analysis
The mean value of cell-specific motif activity was first 
calculated by chromVAR, and we correlated this activity 
with the corresponding gene expression using log(fold 
change).

Immunofluorescent staining
Sections of paraffin-embedded tissues were deparaf-
finized and underwent antigen retrieval. Sections were 
blocked with 1% bovine serum albumin, permeabilized 
with 0.1% Triton-X100 in PBS and incubated overnight 
with primary antibodies for cTnT (abcam), Pdk4 (pro-
teintech), Vimentin (Cell Signaling Technology), Tpm1 
(Invitrogen), CD31 (abcam), or Pparg (proteintech). 
These sections were subsequently stained with second-
ary antibodies, Alexa Fluor 488 goat anti-rabbit antibody 
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(abcam), Cy3 goat anti-rabbit antibody (abcam); After 
sections were stained with DAPI (4’, 6’-diamidino-2-phe-
nylindole), images were obtained by confocal microscope.

Statistic Analysis
The statistical analysis of all data in this study was con-
ducted using the respective R software packages, and a 
significance level of P < 0.05 was considered statistically 
significant.

Results
Cell type change during the DCM progression
In this study, we integrated and dimensionality-reduced 
the single-cell RNA sequencing (scRNA-seq) and sin-
gle-cell ATAC sequencing (scATAC-seq) data from WT 
(wild type) and DCM (diabetic cardiomyopathy) mouse 
models. Subsequently, we performed clustering analysis 
on the integrated data, annotated the cell populations 
using classical markers, and identified distinct cell clus-
ters, including endothelial cells and fibroblasts (Fig. 1A). 
To validate the accuracy and reliability of our clustering, 
we employed bubble plots to illustrate the expression 
profiles of different cell markers within the defined cell 
types for both scRNA-seq and scATAC-seq data (Fig. 1B 
and C). The results indicate that our clustering approach 
is robust and accurate. Furthermore, by comparing the 
proportions of cell types between WT and DCM mouse 
models, we observed a decrease in the proportion of 
endothelial cells and macrophages, while fibroblasts and 
myocardial cells exhibited an increase in abundance in 
the DCM mouse group (Fig. 1D) when compared to the 
WT group, indicating increased fibrosis and endothelial 
damage during the DCM progression, consistent with 
previous reports [24, 25].

Cell type-specific chromatin accessible regions and cell 
cycle change during DCM
The chromatin-accessible regions obtained from 
scATAC-seq can be categorized into the promoter, 1st 
exon, and its downstream regions. By comparing the 
proportions of different types of chromatin-accessible 
regions across various cell types, we observed that most 
cell types exhibit accessible regions in the promoter 
region. Notably, Schwann cells primarily harbor acces-
sible regions in distal intergenic regions (Fig.  2A). Con-
ducting differential analysis on the accessible regions 
revealed that myocardial cells possess the highest num-
ber of accessible regions, followed by B cells (Fig.  2B). 
This suggests heightened transcriptional regulatory activ-
ity in these two cell types. Further analysis of the cell 
cycle reveals that, compared to the WT group, the pro-
portion of cells in the G1 phase is increased in all cells 
of the DCM group except for mesothelial and Schwann 
cells. This suggests a general decrease in proliferative 

capacity of parenchymal cells during DCM. Interestingly, 
in DCM, there is a significant increase in the proportion 
of mesothelial and Schwann cells in the S phase, while 
the proportion of cells entering the G2/M phase does not 
increase, indicating a potential cell cycle arrest (Fig.  2C 
and D).

Subpopulation change of cardiomyocytes and fibroblasts 
during DCM
Based on the previous analysis, we observed that myo-
cardial cells and fibroblasts exhibit the most significant 
changes between the WT and DCM groups. We first 
focused on myocardial cells and performed additional 
dimensionality reduction and clustering, resulting in four 
subgroups: cardiomyocyte-0/1/2/3 (Fig.  3A and Figure 
S1A). Cell proportion comparison between the WT and 
DCM groups for each subgroup (Fig.  3B) revealed that 
cardiomyocyte-0 and cardiomyocyte-2 exhibited the 
most prominent changes. Specifically, cardiomyocyte-0 
was predominantly distributed in the DCM group, while 
cardiomyocyte-2 showed an opposite distribution, being 
mostly present in the WT group. To further characterize 
these subgroups, we extracted specific marker genes for 
cardiomyocyte-0 and cardiomyocyte-2 and performed 
pathway enrichment analysis (Fig.  3C and D). The spe-
cific gene marker set for cardiomyocyte-0 was enriched 
in pathways related to fatty acid metabolism, fatty acid 
oxidation, and lipid oxidation, whereas the gene set for 
cardiomyocyte-2 was enriched in pathways related to 
myocardial action potentials, membrane potential regu-
lation, and cardiac contraction, suggesting the damaged 
heart function during DCM.

Further dimensionality reduction and clustering of 
fibroblasts led to the identification of three subgroups: 
fibroblast-0/1/2 (Fig. 3E and Figure S1B). Cell proportion 
comparison between the WT and DCM groups for each 
fibroblast subgroup (Fig.  3F) indicated that fibroblast-0 
and fibroblast-2 subgroups exhibited the most signifi-
cant differences between these two groups. Specifically, 
fibroblast-0 showed a decrease in proportion in the DCM 
group, while the proportion of fibroblast-2 was markedly 
increased. Given the notable increase in the proportion 
of fibroblasts in the DCM group, we first performed dif-
ferential analysis on all fibroblasts between the WT and 
DCM groups. The resulting set of differentially expressed 
genes was functionally enriched, revealing an enrichment 
in contraction-related pathways (Fig.  3G). Furthermore, 
we extracted the specific gene set for the fibroblast-2 
subgroup, which exhibited a significantly increased pro-
portion in the DCM group, and performed pathway 
enrichment analysis. The specific gene marker set for 
fibroblast-2 was found to be primarily enriched in energy 
metabolism and contraction pathways (Fig. 3H).
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Subpopulation analysis of endothelial cell
In response to the decreased proportion of endothelial 
cells in the DCM group, we similarly extracted and per-
formed dimensionality reduction and clustering to obtain 

four subgroups: endothelial cell-0/1/2/3 (Fig.  4A). Fur-
ther cell proportion comparison between the WT and 
DCM groups for each endothelial cell subgroup (Fig. 4B) 
highlighted endothelial cell-0 and endothelial cell-1 as 

Fig. 1 Cell types in DCM and WT hearts. A. UMAP plot of multi-omics dataset. Cell types are annotated by marker genes. B. Bubble plot of cell-type-
specific marker genes in RNA profile. The diameter of the dot represents the proportion of cells that express the corresponding gene and the density of 
the dot represents the average gene expression level among all cell types. C. Bubble plot of Cell-type-specific marker gene activity inferred from scATAC 
data. The diameter of the dot represents the proportion of cells that express the corresponding gene and the density of the dot represents the average 
gene expression level among all cell types. D. Comparison of relative proportions of cell types between WT and DCM groups
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Fig. 2 Distribution of cell type-specific chromatin accessible regions and cell cycle analysis. A. Bar plot of annotated DAR location annotation for each 
cell type. B. Heatmap of accessible level of differentially accessible region (DAR) for each cell type. The color scale represents the accessible level, which 
means the number of Tn5 sites within each DAR scaled by row. C. UMAP plot of multi-omics dataset and all cells are colored by the predicted classification 
(G2M, S, and G1 phase). D. Bar plot of cell phase for each cell type across all samples
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Fig. 3 Subpopulation analysis of cardiomyocytes and fibroblasts. A. UMAP plot of cardiomyocytes re-clustering into four subpopulations. B. Bar plot of 
annotated subpopulations of cardiomyocytes for each sample. C. Bar plot of GO enrichment terms of differentially expressed genes in cardiomyocytes 
cluster 0. D. Bar plot of GO enrichment terms of differentially expressed genes in cluster 2 of cardiomyocytes. E. UMAP plot of fibroblast re-clustering into 
three subpopulations. F. Bar plot of annotated subpopulations of fibroblast for each sample. G. Bar plot of GO enrichment terms of upregulated genes in 
fibroblast of DCM versus WT groups. H. Bar plot of GO enrichment terms of differentially expressed genes in cluster 2 of fibroblast
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Fig. 4 Subpopulation analysis of endothelial cells. A. UMAP plot of endothelial cells re-clustering into four subpopulations. B. Bar plot of annotated 
subpopulations of endothelial cells for each sample. C. Volcano plot of the fold-change in differential gene expression in WT and DCM groups. Wilcoxon 
rank-sum test was used to calculate P-values and the Bonferroni analysis was used to calculate adjusted P values. D. Violin plot of biological processes 
scores defined as average z-scores of process-related genes (right) for selected subpopulations. Significance was determined by the Wilcoxon test and 
divided into three levels (NS, not significant (P > 0.05); *** P < 0.001; **** P < 0.0001). E. Bar plot of GO enrichment terms of differentially expressed genes in 
cluster 0 of endothelial cells. F. Bar plot of GO enrichment terms of differentially expressed genes in cluster 1 of endothelial cells. G. Overview of ligand-
receptor interactions between fibroblast and other cell types; circle size represents P-values, scale on the right. The color scale represents the means of 
the average expression level of ligands and receptors in the corresponding cluster. H. Overview of ligand-receptor interactions between endothelial cells 
and other cell types; circle size represents P-values, scale on the right. The color scale represents the means of the average expression level of ligands and 
receptors in the corresponding cluster
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exhibiting the most notable changes between these two 
groups. Specifically, endothelial cell-0 was predominantly 
distributed in the DCM group, while endothelial cell-1 
was mainly present in the WT group. Differential analy-
sis between endothelial cells in the two groups revealed 
genes such as Fabp4, Zbtb16, and Cd36 being upregu-
lated in the DCM group, while Robo2, Plxnd1, and Dlg2 
were highly expressed in the WT group (Fig. 4C). Corre-
sponding to the decrease in endothelial cells in the DCM 
group, genes specifically expressed in endothelial cell-0 
were associated with inhibiting endothelial cell prolif-
eration, while those in endothelial cell-1 were associated 
with promoting endothelial cell proliferation (Fig.  4D). 
Pathway enrichment analysis of the gene sets specifi-
cally expressed in endothelial cell-0 and endothelial cell-1 
subgroups (Fig.  4E and F) indicated that genes specifi-
cally expressed in endothelial cell-0 significantly enriched 
in contraction-related pathways, including heart con-
traction. Interestingly, this result is consistent with the 
pathway enrichment observed in the differential gene 
analysis of fibroblasts. On the other hand, genes specifi-
cally expressed in endothelial cell-1 significantly enriched 
in growth-related pathways, such as the VEGF signaling 
pathway.

Analysis of cell communication centered on fibroblasts and 
endothelial cells
To explore the interaction of fibroblasts and endothelial 
cells with other cells, we conducted cell-cell communica-
tion analysis between cell subgroups, focusing on ligand 
expression by fibroblasts (Fig.  4G) and endothelial cell 
(Fig.  4H) subgroups regulating other cells. We identi-
fied interactions between fibroblast-1 and fibroblast-2 
subgroups with endothelial cells involving receptors 
such as VEGFA-FLT1 and VEGFA-KDR, which include 
VEGF receptors. Previous research has suggested their 
relevance to heart diseases [26]. For example, VEGF-A 
is key in triggering cardiac angiogenic responses after 
acute myocardial infarction via regulating its interactors 
or downstream factors [27, 28]. The results indicated 
that both endothelial cell-0 and endothelial cell-1 exhib-
ited interactions with myocardial cells and fibroblasts 
involving receptors such as PDGFB_LRP1, PROS1_AXL, 
PDGFB_PDGFRA, PDGFB_PDGFRB, and PDGFB_
PDGFR (Fig. 4H).

Candidate regulators in fibroblast activation and 
endothelial proliferation
To explore key regulators in different cell types, we con-
ducted a correlation analysis between the mean motif 
activity calculated through chromVAR and the mean 
gene expression levels of transcription factors from the 
JASPAR database in each cell type (Fig. 5A). The results 
indicated a significant positive correlation between motif 

activity and the expression of transcription factor-encod-
ing genes in endothelial cells, fibroblasts, macrophages, 
myocardial cells, and peripheral cells. Subsequently, we 
identified 23 transcription factors positively correlated 
with motif activity, including Creb5, Esrrg, Sox17, Esrra, 
Tcf21, Ddit3, Nr1h3, and others. Additionally, we identi-
fied 13 transcription factors negatively correlated with 
motif activity, such as Ahr, Rxra, Arnt, Stat5a, and Stat5b.

Through exploration of the transcription factors, we 
identified Tcf21, Arnt, Stat5a, and Stat5b as potentially 
key players in the development of diabetic cardiomy-
opathy, particularly in regulating endothelial cells and 
myocardial cells. Acharya et al. previously proposed that 
the loss of Tcf21 prevents the formation of cardiac fibro-
blasts, indicating the importance of this transcription 
factor in determining fibroblast fate [29]. Correspond-
ingly, our results also revealed an upregulation of Tcf21 
in the DCM group (Fig.  5B). Existing research suggests 
that a decrease in Arnt can lead to vascular dysfunction 
in diabetic patients [30], while Stat5 positively regu-
lates vascular angiogenesis [31]. This suggests that Arnt, 
Stat5a, and Stat5b may positively regulate endothelial cell 
proliferation. This is consistent with the reduced expres-
sion of Arnt, Stat5a, and Stat5b observed in the DCM 
group in our study.

Markers for cell subpopulations during DCM
To validate the marker genes inferred by scRNA-seq 
data in cardiomyocytes, fibroblast and endothelial cells, 
we performed fluorescence staining for the Pdk4 protein 
in cardiomyocytes (inferred marker for cardiomyocyte 
cluster 0), Tpm1 protein in fibroblasts (inferred marker 
for fibroblast cluster 2) and the PPARγ protein (inferred 
marker for endothelial cell cluster 0) in endothelial cells 
(Fig.  6A-C). The expression of the Pdk4 protein was 
higher in cardiomyocytes of the DCM group compared to 
the WT group. And the expression of the Tpm1 protein 
was higher in fibroblasts of the DCM group compared to 
the WT group. Moreover, the expression of the PPARγ 
protein was higher in endothelial cells of the DCM group 
compared to the WT group. These results consistently 
confirmed that Pdk4, PPARγ, and Tpm1 as markers of 
cardiomyocytes with altered metabolic patterns, endo-
thelial cells with compromised proliferation, and acti-
vated fibroblasts, respectively. Furthermore, the mining 
of public datasets GSE131779 indicated the presence of 
the binding sites of transcription factor TCF21 on TPM1 
and PPARγ gene [32], further suggesting the key roles of 
the Tcf21 regulatory network in DCM development.

Discussion
Heart failure and cardiovascular disease are the lead-
ing causes of death in diabetic patients. The pathogen-
esis of Diabetic Cardiomyopathy (DCM) involves various 
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cellular pathophysiological processes of cardiomyocytes, 
fibroblasts, endothelial cells, etc. Understanding the 
molecular mechanisms of diabetic cardiomyopathy and 
heart failure, and finding new therapeutic strategies, are 
some of the major challenges in cardiovascular endocri-
nology [33, 34]. In this study, we investigated the cellular 
changes, chromatin accessibility, and characteristics of 
relevant cell subpopulations during the development of 
diabetic cardiomyopathy (DCM) by integrating single-
cell RNA sequencing (scRNA-seq) and single-cell trans-
posase-accessible chromatin sequencing (scATAC-seq) 
data. Our clustering analysis of the integrated data was 
robust and accurate, revealing significant alterations in 
cell proportions and functional states. Specifically, in a 
DCM mouse model, we observed a decrease in the pro-
portion of endothelial cells and macrophages, accompa-
nied by an increase in fibroblasts and cardiomyocytes, 
implying exacerbation of cardiac fibrosis and endothelial 
damage. Additionally, enhanced transcriptional regula-
tory activity was observed in cardiomyocytes, while the 
proliferative capacity of substantial cells was universally 
reduced. Furthermore, heterogeneity within cardiomyo-
cytes, fibroblasts, and endothelial cells was identified, 

with each subpopulation displaying distinct functional 
characteristics. Analysis of intercellular communication 
revealed interactions between fibroblasts, endothelial 
cells, and other cardiac cell types. Additionally, poten-
tial regulatory factors such as Tcf21, Arnt, Stat5a, and 
Stat5b, were identified, suggesting their pivotal roles in 
the pathogenesis of DCM. Immunofluorescence stain-
ing validated the accuracy of marker genes for metabolic 
reprogramming in cardiomyocytes, activated fibroblasts, 
and proliferative-impaired endothelial cells. In summary, 
our study provides a detailed description of the complex 
cellular states and molecular changes in DCM, offering 
valuable insights into potential therapeutic targets.

DCM is characterized by adverse structural remod-
eling, including cardiac hypertrophy and fibrosis, as 
well as early diastolic and late systolic dysfunction [35]. 
Identifying subclinical left ventricular diastolic dysfunc-
tion (LVDD) holds significant clinical importance for 
its prevention. Novel methods such as the myocardial 
performance index (MPI) and Presystolic wave (PSW) 
measurement improve the assessment of subclinical 
LVDD [36]. Dysregulation of cardiomyocytes, fibroblasts, 
endothelial cells, and immune cells in DCM promotes 

Fig. 5 Analysis of potential transcription factors. A. The mean values of motif activity calculated by chromVAR in each cell type were correlated with the 
mean values of gene expression levels of transcription factors from the JASPAR database. B. Expression of the transcription factors Arnt, Stat5a, and Stat5b 
in Fibroblasts and Endothelial Cells between DCM and WT Groups. The diameter of the dot represents the proportion of cells that express the correspond-
ing gene and the density of the dot represents the average gene expression level among all cell types

 



Page 12 of 16Su et al. Cardiovascular Diabetology          (2024) 23:139 

Fig. 6 Comparison of marker protein in fibroblasts between DCM and WT groups. A. Expression of Pdk4 protein in fibroblasts from DCM and WT groups is 
shown by immunofluorescence staining, where blue is the DAPI dye, green is the cTnT protein, and red is the Pdk4 protein. B. Expression of Tpm1 protein 
in fibroblasts from DCM and WT groups is shown by immunofluorescence staining, where blue is the DAPI dye, green is the Tpm1 protein, and red is the 
Vimentin protein. C. Expression of PPARγ protein in fibroblasts from DCM and WT groups is shown by immunofluorescence staining, where blue is the 
DAPI dye, green is the PPARγ protein, and red is the CD31 protein
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pathological cardiac remodeling, ultimately leading to 
heart failure in diabetic patients. Consistent with previ-
ous studies [24, 25], we observed an increase in the pro-
portion of cardiomyocytes and fibroblasts, along with a 
decrease in endothelial cells and immune cells in DCM, 
indicating exacerbation of fibrosis and endothelial injury 
during disease progression. Subsequent subpopulation 
analysis revealed metabolic alterations and impaired con-
tractile function-related subpopulations within cardio-
myocytes, reflecting the detrimental effects of DCM on 
the myocardium. Abnormal glucose metabolism in early 
diabetes leads to increased fatty acid β-oxidation to com-
pensate for insufficient energy in the diabetic heart [37]. 
Numerous studies using transgenic animal models have 
shown that upregulation of myocardial fatty acid trans-
port proteins leads to increased myocardial fatty acid 
uptake and lipotoxicity, exacerbating DCM development 
[35, 38]. Dysregulated glucose and lipid metabolism lead 
to abnormal regulation of cell signaling pathways related 
to inflammation and oxidative stress, contributing to the 
development of cardiac hypertrophy, fibrosis, and heart 
failure in diabetes [24, 39, 40]. Although first-line drugs 
targeting glucose/lipid metabolism such as metformin, 
thiazolidinediones, and sodium-glucose cotransporter-2 
inhibitors alleviate hyperglycemia, their exact effects on 
DCM need further exploration in diabetic animal mod-
els and patients. A recent clinical study showed that met-
formin treatment reduces the risk of death in critically ill 
patients with type 2 diabetes mellitus and chronic heart 
failure [41].

Similarly, subpopulations of activated fibroblasts in 
DCM displayed differences in energy metabolism and 
pathways related to contraction, suggesting their cru-
cial role in the development of DCM. These differences 
may reflect functional and epigenetic changes in fibro-
blasts during cardiac remodeling and fibrosis. Previous 
studies have indicated that myocardial fibrosis is a sig-
nificant pathological process in DCM, closely associated 
with impaired cardiac function [42]. Autopsy of dia-
betic patients shows collagen accumulation in the heart, 
manifested as perivascular, interstitial, or replacement 
fibrosis, indicating that cardiac fibrosis is a major cause 
of heart failure in DCM [43, 44]. The transition of car-
diac fibroblasts (CFs) to myofibroblasts is a core cellular 
event in cardiac fibrosis in DCM, involving multiple cell 
types, including cardiomyocytes, endothelial cells, and 
immune cells, responding to oxidative stress, endoplas-
mic reticulum stress, and inflammation, attributable to 
sustained metabolic disturbances in DCM [45]. Myofi-
broblasts are contractile and secreting cell types involved 
in cardiac fibrosis remodeling by producing extracel-
lular matrix (ECM) proteins [46]. The fibroblast cluster 
2 that we identified is enriched in pathways related to 
contractile function. Previous studies have found that 

Fibroblasts isolated from the hearts of diabetic patients 
show enhanced proliferation activity and high collagen 
expression [47]. Additionally, in vitro experiments have 
shown that high glucose (HG) treatment promotes pro-
liferation and collagen formation in CFs [48, 49]. Fur-
thermore, consistent with our findings, in DCM, insulin 
resistance leads to a shift in myocardial cells towards 
lipid metabolism, which increased metabolic pressure 
and oxidative stress lead to myocardial cell damage [50], 
releasing DAMP proteins that activate CFs to promote 
myocardial fibrosis. Moreover, Immune cells, mono-
cytes/macrophages (Mo/Mf), not only indirectly affect 
cardiac fibrosis through pro-inflammatory cytokines but 
also directly differentiate into myofibroblasts under the 
action of various cytokines [51]. Endothelial cells can 
also undergo endothelial-to-mesenchymal transition 
(EndMT) and further differentiate into myofibroblasts 
[7–9]. Moreover, fibrotic mediators produced by endo-
thelial cells also participate in the proliferation and differ-
entiation of cardiac myofibroblasts [52, 53]. In our study, 
we observed an increase in the proportion of fibroblasts 
and a decrease in the proportions of monocytes and 
endothelial cells in DCM. Further intercellular commu-
nication analysis revealed cross-talk between prolifera-
tively impaired endothelial cells and activated fibroblasts 
involving factors such as PDGFB/PDGFR and VEGFA/
FLT1. PDGF [54] and VEGF are well-known mediators 
of fibrosis and angiogenesis, and inhibiting PDGF, VEGF, 
and FGF signaling pathways can attenuate fibrosis [55]. 
These findings suggest that fibroblasts and endothelial 
cells play crucial roles in the development and progres-
sion of DCM.

In this study, we investigated the chromatin acces-
sibility in DCM to explore the activity status of specific 
genomic regions and revealed its close correlation with 
gene transcriptome expression. It is also important to 
note the role of epigenetics, which refers to the phe-
nomenon of regulating gene expression through DNA 
methylation, histone modifications, and other mecha-
nisms without involving changes in DNA sequence 
in the genome. Previous research has shown associa-
tion between epigenetic changes and the development 
of DCM, particularly involving processes mediated by 
histone deacetylases (HDACs), HDACs could regulate 
cardiovascular and metabolic diseases in cellular pro-
cesses including cardiac fibrosis, hypertrophy, oxidative 
stress and inflammation [56]. SIRT1, a Class III HDAC, 
may exert a protective effect on DCM through histone 
deacetylation [57]. Based on scRNA-seq and scATAC-seq 
data, we also explored key regulatory factors in different 
cell types, identifying Tcf21, Arnt, Stat5a, and Stat5b as 
potentially playing crucial roles in the occurrence and 
development of DCM, particularly in regulating fibro-
blasts and endothelial cells. Previous studies have shown 
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that the loss of Tcf21 can prevent CF formation, high-
lighting its importance in determining fibroblast fate 
[29]. We observed upregulation of Tcf21 in DCM, sug-
gesting its potential as a key regulatory factor in cardiac 
fibrosis in DCM. Furthermore, decreased expression of 
Arnt has been associated with vascular dysfunction in 
diabetic patients [30], while Stat5 has been found to posi-
tively regulate angiogenesis [31]. We observed decreased 
expression of Arnt, Stat5a, and Stat5b in the DCM group, 
further supporting their potential roles in regulating 
endothelial cell proliferation. While the pathogenesis 
of diabetic cardiomyopathy remains unclear, potential 
mechanisms include insulin resistance, alterations in sub-
strate metabolism, mitochondrial dysfunction, increased 
oxidative stress, secretion of adipokines, disrupted sig-
naling pathways, and impaired calcium homeostasis [58]. 
Our findings provide important clues for further under-
standing the pathogenesis of diabetic cardiomyopathy. 
In addition to Tcf21, Arnt, Stat5a, and Stat5b, previous 
studies have explored and demonstrated the significant 
roles of other transcription factors in DCM. For instance, 
ATF4 [59] in DCM promotes cardiac fibrosis and oxida-
tive stress, while downregulation of Bmal1 [60] induces 
mitochondrial dysfunction by promoting Bcl2/IP3R-
mediated mitochondrial Ca2+ overload, leading to dia-
betic cardiomyopathy. A recent study has also revealed 
that ketone bodies can rescue mitochondrial dysfunction 
through epigenetic remodeling [61]. The role of calcium 
homeostasis in DCM is multifaceted, as evidenced by a 
study investigating the involvement of Ca2+ in adipokine 
resistin-induced activation. Adipokine resistin, believed 
to be associated with obesity, insulin resistance, and dia-
betes, is highly expressed in DCM [58].

Finally, we identified Pdk4, Tpm1, and PPARγ as mark-
ers for metabolic reprogramming in cardiomyocytes, 
activated fibroblasts, and proliferative impaired endothe-
lial cell subpopulations identified by scRNA-seq in DCM 
mice, and further confirmed these findings through fluo-
rescence staining. Interestingly, in previous study, TCF21 
binding sites was observed on TPM1 and PPARγ genes 
[32], further emphasizing the potential key role of the 
TCF21 regulatory network in DCM. Moreover, a recent 
study has demonstrated that USP28 can directly inter-
act with PPARα (Lys152) and exert a protective effect in 
DCM by regulating mitochondrial homeostasis through 
the PPARα-Mfn2 axis.

In conclusion, we have revealed subpopulations of 
metabolic reprogramming cardiomyocytes, activated 
fibroblasts with contractile functions, and proliferative 
impaired endothelial cells in DCM, discussed the func-
tional roles of these three cell subpopulations in the 
occurrence and development of DCM, explored their 
potential interactions, and discussed potential key regu-
latory factors. We have validated their existence in DCM, 

providing potential candidate drugs and targets for the 
diagnosis and treatment of diabetic cardiomyopathy, 
opening up new avenues and directions for the develop-
ment of novel drugs and intervention strategies. While 
integrating the chromatin accessibility information pro-
vided by ATAC-seq with the transcriptome information 
provided by scRNA-seq allows us to gain a more compre-
hensive understanding of the functional state and charac-
teristics of cells in DCM, to more accurately identify and 
characterize cell types, to dissect the roles of different 
cell subpopulations in DCM development, and to reveal 
the dynamic changes in gene expression and chromatin 
accessibility of cells in DCM, providing new perspectives 
and methods for understanding the development process 
of DCM. However, there are also some limitations. The 
data analysis and integration of ATAC-seq and scRNA-
seq results may be influenced by the analysis methods. 
Additionally, despite our good sequencing quality assess-
ment, there may still be some biases in the experimen-
tal process, such as PCR amplification bias and uneven 
sequencing depth, which could affect the accuracy and 
reliability of the data. Furthermore, our study only used 
one type of diabetic mouse model, which may not fully 
capture the complexity and heterogeneity of human dia-
betic cardiomyopathy. Future studies may consider using 
different diabetic mouse models or human samples to 
validate and extend the results, enhancing the robustness 
and applicability of the findings. Although we identified 
some potential regulatory networks, their specific mech-
anisms need further validation and exploration.
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