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Abstract
Background  Use of sodium-glucose-cotransporter-2 (SGLT2) inhibitors often causes an initial decline in glomerular 
filtration rate (GFR). This study addresses the question whether the initial decline of renal function with SGLT2 inhibitor 
treatment is related to vascular changes in the systemic circulation.

Methods  We measured GFR (mGFR) and estimated GFR (eGFR) in 65 patients with type 2 diabetes (T2D) at baseline 
and after 12 weeks of treatment randomized either to a combination of empagliflozin and linagliptin (SGLT2 inhibitor 
based treatment group) (n = 34) or metformin and insulin (non-SGLT2 inhibitor based treatment group) (n = 31). 
mGFR was measured using the gold standard clearance technique by constant infusion of inulin. In addition to blood 
pressure (BP), we measured pulse wave velocity (PWV) under standardized conditions reflecting vascular compliance 
of large arteries, as PWV is considered to be one of the most reliable vascular parameter of cardiovascular (CV) 
prognosis.

Results  Both mGFR and eGFR decreased significantly after initiating treatment, but no correlation was found 
between change in mGFR and change in eGFR in either treatment group (SGLT2 inhibitor based treatment group: 
r=-0.148, p = 0.404; non-SGLT2 inhibitor based treatment group: r = 0.138, p = 0.460). Noticeably, change in mGFR 
correlated with change in PWV (r = 0.476, p = 0.005) in the SGLT2 inhibitor based treatment group only and remained 
significant after adjustment for the change in systolic BP and the change in heart rate (r = 0.422, p = 0.018). No such 
correlation was observed between the change in eGFR and the change in PWV in either treatment group.

Conclusions  Our main finding is that after initiating a SGLT2 inhibitor based therapy an exaggerated decline in 
mGFR was related with improved vascular compliance of large arteries reflecting the pharmacologic effects of SGLT2 
inhibitor in the renal and systemic vascular bed. Second, in a single patient with T2D, eGFR may not be an appropriate 
parameter to assess the true change of renal function after receiving SGLT2 inhibitor based therapy.

Trial registration  clinicaltrials.gov (NCT02752113).
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Introduction
Sodium-glucose-cotransporter-2 (SGLT2) inhibitors 
have demonstrated remarkable cardiovascular (CV) and 
renal benefits beyond glycemic control in several trials 
and emerged as therapeutic agents in the treatment of 
heart failure and chronic kidney disease [1–10]. How-
ever, it has been repeatedly described that initiation of 
SGLT2 inhibitor therapy causes an initial decline of esti-
mated glomerular filtration rate (eGFR), which may lead 
to physician’s concern [1, 6, 7, 11–15]. This initial decline 
in eGFR with SGLT2 inhibitor treatment is suggested to 
be related to a reduction in intraglomerular pressure [7, 
11–16]. The mechanism underlying the reduction of the 
intraglomerular pressure with SGLT2 inhibitor treat-
ment appears to be different in different cohorts. Previ-
ously, we showed in type 2 diabetes (T2D) patients with 
empagliflozin treatment that this reduction in intraglo-
merular pressure is caused by a postglomerular vasodi-
latation, rather than a preglomerular vasoconstriction by 
tubuloglomerular feedback as demonstrated in patients 
with type 1 diabetes and experimental studies [16–18]. In 
support to our study, van Bommel et al. observed similar 
results in T2D patients with dapagliflozin treatment [19]. 
Although this vasodilatory effect on the efferent arteri-
oles results in an initial drop in eGFR, in the long term it 
comes to an improvement of kidney function and slows 
the progression of kidney disease [1, 3, 6, 7]. 

The predictive and clinical value of the initial eGFR 
decline remains controversial. While the post-hoc anal-
ysis of the EMPA-REG OUTCOME trial did not find 
any association between the initial “eGFR dip” and the 
treatment effect of empagliflozin, similar analysis of 
the DAPA-HF trial showed better clinical outcome in 
patients with initial eGFR decline after dapagliflozin 
treatment [11, 14]. In consequence, this controversial 
results regarding initial decline in eGFR might result in 
an inappropriate discontinuation of the pharmacother-
apy by healthcare providers or patients themselves, out 
of fear that the medication could harm the kidneys. This 
may result in a missed opportunity to slow the progres-
sion of kidney and CV disease. Thus, there is a crucial 
need to understand the implications of the initial GFR 
decline after the beginning of SGLT2 inhibitor treatment.

Previously, we have shown that SGLT2 inhibitor treat-
ment exerts beneficial effects on different vascular 
parameters, e.g. in the renal and systemic circulation 
in different cohorts [20–22]. The main aim of the cur-
rent study was to evaluate whether there is a relation-
ship between the initial GFR decline assessed using input 
steady state input clearance technique with inulin and 
vascular changes in the systemic circulation. In addi-
tion to renal function, we measured pulse wave veloc-
ity (PWV) since according to several guidelines [23–25] 
PWV is recommended to most reliably reflect vascular 

compliance of large arteries in the systemic circulation. 
Moreover, PWV has been identified to be an indepen-
dent prognostic marker of CV fatal events [26–30] and 
its change to improved prognosis [31]. 

Materials and methods
Study design
This single-center, retrospective study includes 65 
patients with T2D who were randomized (1:1) either to 
receive empagliflozin and linagliptin (SGLT2 inhibitor 
based treatment) or metformin and insulin (non-SGLT2 
inhibitor based treatment) combination therapy. We ana-
lyzed the SGLT2 inhibitor based treatment group and 
the non-SGLT2 inhibitor based treatment group (con-
trol group) separately. The rationale for these combina-
tion treatments was to compare the renal hemodynamic 
effects of the timely standard combination T2D treat-
ment (SGLT2 inhibitor + Dipeptidyl peptidase 4 inhibitor) 
with the combination of insulin and metformin (tradi-
tional or old way of treatment). All patients participated 
in the „Effects of Empagliflozin + Linagliptin vs. Metfor-
min + Insulin Glargine on Renal and Vascular Changes in 
Type 2 Diabetes (ELMI)“ trial (NCT02752113) between 
April 2016 and November 2018 in our clinical research 
center at the University Hospital Erlangen-Nuremberg 
(www.crc-erlangen.de). The main results of the effects 
of these two different anti-hyperglycmic treatment strat-
egies have been reported previously [17, 20]. Here we 
analyzed the prespecified analysis of patients with com-
pleted inulin clearance at baseline and after 12 weeks of 
treatment (The inulin application had to be immediately 
stopped in our lab after an official warning due to ana-
phylactic reactions observed during infusions of inulin in 
France, which ultimately lead to the withdrawal of inulin 
from the market).

All patients had stable metformin medication for 
at least 3 months (850 or 1000  mg orally twice daily). 
Patients that were randomized to the SGLT2inhibitor 
based treatment study arm received 10 mg empagliflozin 
and 5  mg linagliptin orally once daily. Empagliflozin 
was uptitrated to 25  mg if fasting blood glucose was 
≥ 100  mg/dl. Patients in the non-SGLT2 inhibitor based 
treatment group received initially 2–4 units (U) of insulin 
subcutaneous once daily in addition to their metformin 
medication. It was adjusted every third day by adding 2 U 
if fasting blood glucose was not ≤ 125 mg/dl until stable 
dose was reached.

The respective study was approved by the local Ethical 
Review Committee (ethics committee of the University of 
Erlangen-Nuremberg, Germany) and the study was con-
ducted according to the Declaration of Helsinki. Written 
informed consent was obtained from all patients prior to 
study inclusion.

http://www.crc-erlangen.de
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Study cohort
A total of 65 patients with T2D aged 18–75 were included 
in this analysis. Thirty-four patients have been allocated 
to the SGLT2 inhibitor based treatment group and 31 
to the non-SGLT2 inhibitor based treatment group. 
The eligibility criteria for the study included an glycated 
haemoglobin (HbA1c) level of ≥ 6.5% for those individu-
als with antidiabetic monotherapy and ≥ 6.0% for those 
receiving dual antidiabetic therapy. Main exclusion crite-
ria were the use of insulin, glitazones, dipeptidyl pepti-
dase-4 inhibitor or SGLT2 inhibitor within two months 
prior to randomization. Patients with congestive heart 
failure New York Heart Association (NYHA) III/IV were 
excluded. Furthermore, patients with HbA1c > 10.5% 
or fasting plasma glucose > 240  mg/dl, urinary albumin 
to creatinine ratio (UACR) > 300  mg/g, eGFR < 60  ml/
min/1.73  m², body-mass-index (BMI) > 40  kg/m² or 
cardio- and cerebro-vasacular events within the past 6 
months were not considered for the study. For female 
patients, a negative pregnancy test was mandatory before 
and during the study period.

Assessments
Vascular and renal function measurements were per-
formed at baseline and after 12 weeks of treatment. These 
measurements have been described in detail previously 
[17, 20]. Briefly, before attended BP measurement was 
performed the patient remained seated and relaxed for 
3–5 min. An appropriate cuff size was selected according 
to the arm circumference of each individual. Office BP 
were calculated from the average of three measurements 
and were measured with validated devices following the 
recommendations of the European Society of Hyper-
tension/European Society of Cardiology [32, 33]. . The 
SphygmoCor™ system (AtCor Medical, Sydney, Australia) 
was used for the vascular assessment of the compliance 
of large arteries by measuring pulse wave velocity (PWV) 
under standardized conditions in our research facility.

Constant-infusion input-clearance technique with 
inulin (Inutest, Fresenius, Linz, Austria) and sodium 
p-aminohippurate (PAH) (Daiichi Sankyo, Tokyo, Japan) 
were used to measure the true renal function (mGFR) 
and renal plasma flow (RPF), respectively. This method 
is the most widely used method for the measurement of 
mGFR since a good correlation between the traditional 
method with urine collection and the constant infusion 
technique without urine collection (r = 0.993) has been 
demonstrated [34]. Based on serum creatinine measure-
ments, the eGFR was calculated according to the Chronic 
Kidney Disease Epidemiology Collaboration (CKD-EPI) 
formula [17]. 

Statistical analysis
Statistical analysis was performed using SPSS Statis-
tics 28.0 (IBM, Armonk, New York, USA) and data were 
expressed as mean ± standard deviation (SD) in text and 
tables. A two-sided p-value of < 0.05 was considered 
statistically significant. Paired t-test was applied for the 
comparison of the end of 12 weeks treatment phase ver-
sus baseline within each treatment group. The unpaired 
Student’s t-test was used to determine the statistical sig-
nificance of the differences between the SGLT2 inhibitor 
based and non-SGLT2 inhibitor based treatment arms. 
Bivariate correlation analyses were assessed by perform-
ing Pearson’s test. The correlation analysis of the param-
eter UACR was assessed by performing Spearman’s test, 
since UACR was not normally distributed. Since change 
of PWV is strongly dependent on change in systolic BP, 
we adjusted our approach to the change of systolic BP 
and the change of heart rate after 12 weeks by applying 
covariance analysis. The Bland-Altman Plot was used as 
a descriptive tool to evaluate the agreement between two 
methods, showing the relationship between the change of 
mGFR and eGFR and the mean of the two methods.

Results
Clinical characteristics at baseline and after 12 weeks of 
treatment
The clinical characteristics of the SGLT2 inhibitor based 
treatment (n = 34) and non-SGLT2 inhibitor based treat-
ment (n = 31) groups are shown in Table  1. The average 
age of the patients was 59.4 ± 8.4 years in the SGLT2 
inhibitor based treatment group and 59.9 ± 9.7 years in 
the non-SGLT2 inhibitor based treatment group. 77% 
of the patients were male with no between group differ-
ences. The two groups did not differ in terms of demo-
graphic data.

We observed a significant reduction of glycaemic 
parameters like fasting plasma glucose and HbA1c after 
12 weeks in both treatment arms (Table  2). Patients in 
the SGLT2 inhibitor based treatment arm had a signifi-
cant reduction in weight and BMI, whereas no change in 
these parameters was observed in the non-SGLT2 inhibi-
tor based treatment group (Table 2). The effects on renal 
hemodynamics of the SGLT2 inhibitor based treatment 
group and non-SGLT2 inhibitor based treatment group 
have been described previously [17] and are presented in 
Table 2 for the patients included in the current analysis. 
Renal function decreased in both treatment groups irre-
spective whether analysed by mGFR or eGFR. Briefly, in 
patients with SGLT2 inhibitor based treatment, PWV 
decreased from 8.2 ± 1.6 to 7.8 ± 1.5  m/s after 12 weeks 
of treatment (p = 0.028), whereas no change in PWV 
occurred after 12 weeks of treatment in the non-SGLT2 
inhibitor based treatment group (p = 0.169).
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Table 1  Baseline characteristics
Parameters SGLT2 inhibitor based treatment group (n = 34) Non-SGLT2 inhibitor based treatment group

(n = 31)
p-value

Demographic data
Age (years) 59.4 ± 8.4 59.9 ± 9.7 0.807
Gender (m/f ) 27/7 23/8 0.618
Weight (kg) 90.6 ± 15.1 94.9 ± 18.4 0.306
BMI (kg/m²) 30.2 ± 3.6 31.6 ± 3.8 0.138
Laboratory values
Fasting plasma glucose (mg/dl) 169.1 ± 30.4 170.1 ± 32.8 0.895
HbA1c (%) 7.9 ± 0.7 8.0 ± 0.7 0.803
Total cholesterol (mg/dL) 208.4 ± 39.3 210.6 ± 34.1 0.811
LDL-cholesterol (mg/dL) 136.4 ± 29.6 139.8 ± 26.4 0.635
HDL-cholesterol (mg/dL) 47.7 ± 10.7 45.8 ± 10.1 0.466
Triglycerides (mg/dL) 215.5 ± 120.4 219.0 ± 107.9 0.902
Hs-CRP (mg/L) 2.0 ± 2.9 3.0 ± 2.5 0.158
Hemoglobine (g/dL) 14.5 ± 1.0 14.4 ± 0.9 0.561
Hematocrit (%) 42.6 ± 2.6 42.5 ± 2.8 0.835
Creatinine (mg/dL) 0.8 ± 0.2 0.8 ± 0.2 0.561
eGFR (ml/min/1.73 m²) 94.8 ± 10.6 93.2 ± 10.5 0.547
mGFR (ml/min) 126.5 ± 13.0 126.5 ± 14.8 0.991
BP
Systolic BP (mmHg) 135.1 ± 10.8 134.9 ± 10.3 0.922
Diastolic BP (mmHg) 82.4 ± 8.2 81.9 ± 10.6 0.835
Heart rate (bpm) 74.5 ± 11.8 72.1 ± 11.6 0.406
Data are presented as mean ± standard deviation

BMI – body mass index, HbA1c – glycated hemoglobin, LDL – low density lipid, HDL – high density lipid, hs-CRP – high sensitive C reactive protein, eGFR - estimated 
glomerular filtration rate, CKD-EPI - Chronic Kidney Disease Epidemiology Collaboration calculated based on CKD-EPI formula, UACR –urine albumin-creatinine ratio 
(spontaneous urine), mGFR - measured glomerular filtration rate, BP –blood pressure, bpm – beats per minute

Table 2  Changes in baseline characteristics after 12 weeks of treatment with SGLT2 inhibitor based therapy or non-SGLT2 inhibitor 
based treatment (only those variables with p < 0.05 are shown)
Parameters SGLT-2 inhibitor based 

treatment
p-value vs. Baseline Non-SGLT2 inhibitor based 

treatment
p-value vs. Baseline

Baseline 12 weeks Baseline 12 weeks
Demographic data
Weight (kg) 90.6 ± 15.1 87.8 ± 14.2 < 0.001 94.9 ± 18.4 94.4 ± 18.3 0.247
BMI (kg/m²) 30.1 ± 3.6 29.3 ± 3.4 < 0.001 31.5 ± 3.8 31.5 ± 3.9 0.981
Laboratory values
Fasting plasma glucose (mg/
dl)

158.4 ± 27.9 138.1 ± 23.6 < 0.001 159.8 ± 26.0 123.0 ± 20.2 < 0.001

HbA1c (%) 7.7 ± 0.6 7.3 ± 0.7 < 0.001 7.8 ± 0.7 6.9 ± 0.8 < 0.001
Blood pressure
Systolic BP (mmHg) 135.1 ± 10.8 127.1 ± 10.6 0.002 134.9 ± 10.3 127.5 ± 11.7 0.042
Diastolic BP (mmHg) 82.4 ± 8.2 77.8 ± 9.2 0.001 81.9 ± 10.6 76.7 ± 9.2 < 0.001
Heart rate (bpm) 74.5 ± 11.8 69.8 ± 10.2 < 0.001 72.1 ± 11.6 70.8 ± 10.3 < 0.001
Renal hemodynamics
eGFR (ml/min/1.73 m²) 94.8 ± 10.6 81.6 ± 20.8 < 0.001 93.2 ± 10.5 82.1 ± 22.8 0.002
mGFR (ml/min) 126.5 ± 13.0 120.2 ± 13.8 0.003 126.5 ± 14.8 119.8 ± 13.3 0.001
RPF (ml/min) 597.3 ± 108.3 584.1 ± 105.9 0.401 611.8 ± 128.0 568.5 ± 105.6 0.005
Pulse wave velocity
PWV (m/s) 8.2 ± 1.6 7.8 ± 1.5 0.028 8.5 ± 1.3 8.3 ± 1.1 0.169
Data are presented as mean ± standard deviation

SGLT2- sodium-glucose-cotransporter-2, BMI – Body Mass Index, blood pressure – BP, bpm – beats per minute, eGFR – estimated glomerular filtration rate, mGFR – 
measured glomerular filtration rate calculated based on CKD-EPI formula, HbA1c – glycated hemoglobin, RPF – renal plasma flow, PWV – pulse wave velocity
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Relationship between renal and systemic vascular bed
The change of mGFR in the SGLT2 inhibitor based treat-
ment group correlated with the change of PWV (r = 0.476, 
p = 0.005, Table 3A, Fig. 1A). Such a correlation could not 
be shown between the change of eGFR and the change 
of PWV (r=-0.038, p = 0.834, Table 3A, Fig.  1B). We did 
not found any correlation between PWV and mGFR or 
eGFR in the non-SGLT2 inhibitor based treatment group 
(all p > 0.10, Table 3B). Similarly, we found a correlation 
between change of mGFR and change of office systolic 
BP (r = 0.398, p = 0.023; Fig. 2) as well as change of office 
diastolic BP (r = 0.354, p = 0.040) in the SGLT2 inhibi-
tor based treatment group, but no correlation between 
change of eGFR and change of office systolic or diastolic 

BP was observed. Noticeably, the relationship described 
between change in mGFR and change in PWV remained 
significant after adjustment for the change of systolic BP 
and the change of heart rate after 12 weeks (r = 0.422, 
p = 0.018). In the non-SGLT2 inhibitor based treatment 
group no such correlations of the changes in systolic and 
diastolic BP with change in PWV were observed with 
neither mGFR nor eGFR.

In addition, we observed a correlation between change 
in mGFR (but not with eGFR) and change in UACR and 
change in high sensitive C reactive protein (hs-CRP) in 
patients in the SGLT2 inhibitor based treatment only 
(r = 0.367, p = 0.033 and r = 0.376, p = 0.031, Fig.  3a and 
b). We did not observe any correlation between change 
in mGFR and change in fasting plasma glucose (r = 0.177, 
p = 0.317) or change in HbA1c (r=-0.235, p = 0.181). No 
correlation between change in eGFR and change in fast-
ing plasma glucose (r = 0.025, p = 0.889) or change in 
HbA1c (r = 0.136, p = 0.443) was observed as well.

Relationship between change in mGFR and change in eGFR
Despite a reduction of mGFR and eGFR, we observed 
no correlation between the change of mGFR and eGFR 
(r=-0.148, p = 0.404, Fig.  4). Comparing the decline in 
eGFR and mGFR in the SGLT2 inhibitor based treatment 
cohort, we found that the decline of true renal function 
(mGFR) tended to be lower compared to the decline of 
eGFR (p = 0.057). In accordance, the Bland-Altman plot 
shows poor agreement between mGFR and eGFR change 
with wide limits of agreement ranging from − 33.2 to 
+ 47.0 ml/min/1.73 m² (Fig. 5).

Discussion
SGLT2 inhibitor therapy often causes an initial decline 
of eGFR after starting treatment. The main finding of 
our study is that the initial decline in true renal func-
tion, which is defined as mGFR, with SGLT2 inhibitor 
treatment is linearly associated with improved vascular 
compliance of large arteries, thereby reflecting the phar-
macologic effects of SGLT2 inhibitors both in the renal 
and systemic vascular bed. No such relationship was 
observed in the non-SGLT2 inhibitor based therapy serv-
ing as a control group in this retrospective study. Another 
key message of this study is that the decline in eGFR with 
SGLT2 inhibitor treatment does not reflect the decline 
in true renal function. This lack of relationship may 
explain also the failure to find any correlations between 
the change in eGFR and change in PWV. Thus, we pos-
tulate if renal function is correctly assessed, decline of 
GFR after starting SGLT2 inhibitor therapy is paralleled 
by changes of vascular compliance of large arteries in the 
systemic circulation.

While we observed a decline in eGFR and mGFR 
for both treatment arms, only patients in the SGLT2 

Table 3  Correlation between change of PWV or hsCRP with the 
change of mGFR or eGFR
A: SGLT2 inhibitor based treatment group

SGLT2 inhibitor based 
treatment

Change of 
mGFR

Change of 
eGFR

r-value p-value r-value p-value
Change of PWV 0.476 0.005 -0.038 0.834
Change of hsCRP 0.376 0.031 0.061 0.735
Change of office systolic BP 0.398 0.023 -0.016 0.927
Change of office diastolic BP 0.354 0.040 -0.023 0.898
Change of UACR 0.367 0.033 0.011 0.953
Change of HbA1c -0.235 0.181 0.136 0.443
Change of fasting plasma 
glucose

0.177 0.317 0.025 0.889

SGLT2- sodium-glucose-cotransporter-2, eGFR - estimated glomerular filtration 
rate, CKD-EPI - Chronic Kidney Disease Epidemiology Collaboration calculated 
based on CKD-EPI formula, mGFR - measured glomerular filtration rate, PWV – 
pulse wave velocity, BP –blood pressure, UACR –urine albumin-creatinine ratio 
(spontaneous urine), HbA1c – glycated hemoglobin, hs-CRP – high sensitive C 
reactive protein

B  Non-SGLT2 inhibitor based treatment group
Non-SGLT2 inhibitor based 
treatment

Change of 
mGFR

Change of 
eGFR

r-value p-value r-value p-value
Change of PWV 0.078 0.678 0.189 0.308
Change of hsCRP -0.218 0.239 -0.255 0.166
Change of office systolic BP 0.175 0.348 0.071 0.703
Change of office diastolic BP -0.021 0.913 0.125 0.502
Change of UACR -0.036 0.851 0.265 0.166
Change of HbA1c 0.312 0.099 -0.246 0.199
Change of fasting plasma 
glucose

0.167 0.377 -0.066 0.727

SGLT2- sodium-glucose-cotransporter-2, eGFR - estimated glomerular filtration 
rate, CKD-Epi - Chronic Kidney Disease Epidemiology Collaboration calculated 
based on CKD-EPI formula, mGFR - measured glomerular filtration rate, PWV – 
pulse wave velocity, BP –blood pressure, UACR –urine albumin-creatinine ratio 
(spontaneous urine), HbA1c – glycated hemoglobin, hs-CRP – high sensitive C 
reactive protein
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inhibitor based treatment arm had a significant decrease 
in PWV from 8.2 ± 1.6 to 7.8 ± 1.5 m/s after 12 weeks of 
treatment. As suggested in the current guidelines of the 
European Society of Hypertension, PWV is known to 
be a unique measure of arterial stiffness and an impor-
tant tool to assess vascular aging [23, 35, 36]. Two large 
meta-analyses revealed that this parameter is able to 

classify CV risk more accurately than conventional risk-
based scores and that it improves CV event prediction, 
especially in young and middle-aged patients [26, 27]. 
Cherney et al. previously reported a decrease in arterial 
stiffness in 40 subjects with type 1 diabetes after 8 weeks 
of empagliflozin treatment [37]. In accordance, we pre-
viously reported beneficial effects of 12 weeks SGLT2 

Fig. 1  Correlation between change in mGFR (A; upper part) or change in eGFR (B; lower part) and change in PWV after 12 weeks of treatment in SGLT2 
inhibitor based treatment group
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inhibitor based treatment regarding vascular function 
[20]. Noticeably, in this study we observed a correlation 
between the change of mGFR and the change of PWV 
with SGLT2 inhibitor based treatment, which demon-
strates the close relationship between renal and systemic 
vascular bed. This correlation was only observed in the 
SGLT2 inhibitor based treatment group and persisted 
after adjustment for the change of office systolic BP and 
the change of heart rate after 12 weeks. Moreover, we 
observed a correlation between change in mGFR and 
change in office systolic and diastolic BP in the SGLT2 
inhibitor based treatment group. Thus, the observed 
linear relationship between decline of mGFR and PWV 
indicate that decline of mGFR reflects also vascular 
changes in the systemic circulation exerted by SGLT2 
inhibitors, and the magnitude of the initial decline of 
renal function is therefore of clinical relevance indicative 
of the magnitude of improved arterial stiffness.

In accordance, the DAPA-HF results showed an 
association between the initial decline in eGFR after 
dapagliflozin treatment and better CV outcome [11]. 
Compared to patients without initial eGFR decline, 
patients with an initial eGFR decline also had a slower 
long term eGFR decline [11]. Van Bommel et al. previ-
ously reported a reduction in pulse pressure in patients 
with T2D after 12 weeks of dapagliflozin treatment and a 
correlation between the reduction in pulse pressure and 

the reduction in mGFR [38]. Similar to PWV, pulse pres-
sure is an indirect marker of arterial stiffness. Noticeably, 
in our study we observed the association between the 
change of mGFR and improvement of arterial stiffness 
independent of BP changes. In contradiction to these 
results a post hoc analysis of the EMPA-REG OUT-
COME trial could not find any impact of the initial eGFR 
dip and the treatment effect of empagliflozin on CV out-
come [14]. 

In accordance to our main results, we observed a cor-
relation between change in mGFR and change in UACR 
in the SGLT2 inhibitor based treatment group. Increased 
urinary albumin excretion is considered as a marker of 
impaired permeability of the endothelium in the renal 
circulation. Likewise, transcapillary escape of radioac-
tively marked albumin has been observed in the systemic 
circulation [39], thus suggesting that increased albumin 
escape from the blood stream (which can be easily mea-
sured in the renal vascular bed by UACR) is a marker not 
restricted to indicate renal prognosis. In several prospec-
tive clinical studies, albuminuria has been found to be 
an independent risk marker for CV events in various CV 
high risk populations, including T2D [40–45]. Our find-
ing regarding the relationship of change in UACR and 
change in mGFR in the SGLT2 inhibitor based treatment 
group again support the link between the renal and sys-
temic vascular bed.

Fig. 2  Correlation between change in mGFR and change in office systolic blood pressure after 12 weeks of treatment in SGLT2 inhibitor based treatment 
group
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Porrini E. et al. previously discussed the reliability 
of eGFR equations and concluded them to be unreli-
able tools to assess renal function in individual patients 
[46]. In accordance, we did not observe any correlation 
between the change of eGFR and mGFR after initiat-
ing SGLT2 inhibitor based treatment. Similarly, we have 

shown in a study with 190 T2D patients in the early stage 
of their disease that change of renal function after vari-
ous short-term pharmacological intervention is not accu-
rately and precisely reflected by the change of eGFR.

There is no doubt that carefully conducted pharma-
cological studies documented that SGLT2 inhibitors 

Fig. 3  Correlation between change in in mGFR after 12 weeks of treatment and change in UACR (A; upper part) and change in hs-CRP (B; lower part) in 
SGLT2 inhibitor based treatment group
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Fig. 5  Bland-Altman Plot for the agreement between change in mGFR and change in eGFR in the SGLT2 inhibitor based treatment group

 

Fig. 4  Correlation between change in mGFR and change in eGFR after 12 weeks of treatment in SGLT2 inhibitor based treatment group
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decrease renal function in several study cohorts. The 
inaccuracy of eGFR to measure renal function may be 
dependent on the sample size of study populations. In 
large-scale populations there is a consistent decrease of 
eGFR and individual variations of eGFR may be offset by 
large number of patients [2, 9, 47]. Nevertheless, from 
a clinical perspective, eGFR may not be an appropriate 
parameter to assess the true change of renal function in 
a given patient or small study cohorts after receiving a 
SGLT2 inhibitor therapy, since according to our data any 
decline in eGFR with SGLT2 inhibitor treatment does 
not necessarily reflect a decline in true renal function .

In our study, we not only observed a decline in GFR in 
patients with SGLT2 inhibitor based treatment, but also 
in patients receiving the non- SGLT2 inhibitor based 
treatment with insulin + metformin. Our group previ-
ously reported a decrease in renal plasma flow and renal 
blood flow paralleled by an increase in renal vascular 
resistance in patients with insulin + metformin treatment, 
which may explain the decline in GFR in this treatment 
group [17]. 

Limitations
Our study has several limitations. It is a single-center 
analysis with a small sample size due to the forced by the 
lack of availability of inulin due to its withdrawal from 
the market. However, it is a prespecified analysis and in 
contrast to the large controlled randomized trials [2, 9, 
11, 14], we measured GFR in our patients with the “gold 
standard”, which is a reliable tool to assess true renal 
function. Patients were randomized to receive either 
empagliflozin and linagliptin or metformin and insulin. 
For our present analysis this combination treatment is a 
limitation, since it is not possible to attribute the associa-
tion between vascular improvement and mGFR decline 
only to empagliflozin treatment. However, we previ-
ously showed that linagliptin treatment does not cause 
any decline in mGFR or eGFR or any other renal hemo-
dynamic parameter [48]. Thus, we believe that the GFR 
decline in our trial and its correlation to the change in 
PWV is attributed to the initiation of empagliflozin treat-
ment. Our study cohort include only patients with T2D 
and our findings cannot be necessarily transferred to 
other cohorts like patients with type 1 diabetes, chronic 
kidney disease or heart failure.

Conclusion
In conclusion, we found that initial decline in true renal 
function with SGLT2 inhibitor based treatment goes in 
parallel with improved vascular stiffness of large arteries, 
thereby reflecting the pharmacologic effects of SGLT2 
inhibitors both in the renal and systemic vascular bed. 
Thus, our data indicate that decline of renal function 
reflects also changes in vascular function in the systemic 

circulation, i.e. improvement of arterial stiffness. Accord-
ing to our observations, eGFR may not be an appropri-
ate parameter to assess the true change in renal function 
after receiving SGLT2 inhibitor based treatment in an 
individual patient and potentially may lead to the inap-
propriate decision to discontinue SGLT2 inhibitor 
therapy.
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