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Abstract 

Background Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are increasingly recognized for their role in reduc-
ing the risk and improving the prognosis of heart failure (HF). However, the precise mechanisms involved remain to be 
fully delineated. Evidence points to their potential anti-inflammatory pathway in mitigating the risk of HF.

Methods A two-sample, two-step Mendelian Randomization (MR) approach was employed to assess the correlation 
between SGLT-2 inhibition and HF, along with the mediating effects of inflammatory biomarkers in this relationship. 
MR is an analytical methodology that leverages single nucleotide polymorphisms as instrumental variables to infer 
potential causal inferences between exposures and outcomes within observational data frameworks. Genetic variants 
correlated with the expression of the SLC5A2 gene and glycated hemoglobin levels (HbA1c) were selected using 
datasets from the Genotype-Tissue Expression project and the eQTLGen consortium. The Genome-wide associa-
tion study (GWAS) data for 92 inflammatory biomarkers were obtained from two datasets, which included 14,824 
and 575,531 individuals of European ancestry, respectively. GWAS data for HF was derived from a meta-analysis 
that combined 26 cohorts, including 47,309 HF cases and 930,014 controls. Odds ratios (ORs) and 95% confidence 
interval (CI) for HF were calculated per 1 unit change of HbA1c.

Results Genetically predicted SGLT-2 inhibition was associated with a reduced risk of HF (OR 0.42 [95% CI 0.30–0.59], 
P < 0.0001). Of the 92 inflammatory biomarkers studied, two inflammatory biomarkers (C-X-C motif chemokine ligand 
10 [CXCL10] and leukemia inhibitory factor) were associated with both SGLT-2 inhibition and HF. Multivariable MR 
analysis revealed that CXCL10 was the primary inflammatory cytokine related to HF (MIP = 0.861, MACE = 0.224, FDR-
adjusted P = 0.0844). The effect of SGLT-2 inhibition on HF was mediated by CXCL10 by 17.85% of the total effect (95% 
CI [3.03%–32.68%], P = 0.0183).

Conclusions This study provides genetic evidence supporting the anti-inflammatory effects of SGLT-2 inhibitors 
and their beneficial impact in reducing the risk of HF. CXCL10 emerged as a potential mediator, offering a novel inter-
vention pathway for HF treatment.
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Introduction
Sodium-glucose cotransporter 2 (SGLT-2) inhibitors rep-
resent a novel class of antihyperglycemic drugs that act by 
inhibiting SGLT-2 in the renal tubules, thereby reducing 
the reabsorption of filtered glucose and enhancing glyco-
suria effects [1]. Further research has clarified the role of 
SGLT-2 inhibitors beyond blood glucose reduction, espe-
cially highlighting their potential in the management of 
heart failure (HF). Empirical data supports that SGLT-2 
inhibitors significantly reduce the risk of hospitalization 
for HF treatment in type 2 diabetes patients without a 
history of HF [2]; furthermore, SGLT-2 inhibitors have 
significantly reduced the composite endpoint of cardio-
vascular death or hospital readmissions due to worsen-
ing HF in patients with HF [3]. However, the precise 
mechanisms through which SGLT-2 inhibitors reduce 
the risk of HF and improve prognosis have not been fully 
elucidated.

Emerging studies have posited that the prognostic 
severity of HF correlates with elevated levels of novel 
inflammatory markers, which have been shown to out-
perform established HF biomarkers [4]. Cell-based 
and animal model research further corroborates the 
anti-inflammatory properties of SGLT-2 inhibitors [5, 

6]. This paves the way for the hypothesis that SGLT-2 
inhibitors may beneficially impact HF by modulating 
inflammatory responses.

Mendelian Randomization (MR) is an analytical 
methodology that leverages single nucleotide polymor-
phisms (SNPs) as instrumental variables to infer poten-
tial causal inferences between exposures and outcomes 
within observational data frameworks [7]. This design 
paradigm capitalizes on the stochastic distribution of 
alleles during gametogenesis to emulate the methodo-
logical rigor of randomized intervention allocations 
typical of randomized controlled trials.

In line with these premises, we posit that inflamma-
tory biomarkers may mediate the influence of SGLT-2 
inhibitors on HF risk. Our study initially engages in a 
two-sample MR assessment to interrogate the asso-
ciation between SGLT-2 inhibition and HF. This is 
followed by a sophisticated two-step MR analysis 
employing an array of 92 inflammatory biomarkers to 
unravel the potential pathways through which SGLT-2 
inhibitors exert their influence on HF risk, thereby 
augmenting our understanding of the inflammatory 
underpinnings related to the cardiac benefit of SGLT-2 
inhibitors.

Graphical Abstract
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Methods
This study adhered to the guidelines of the Strengthen-
ing the Reporting of Observational Studies in Epidemi-
ology using Mendelian Randomization (STROBE-MR) 
[8]. A two-sample MR design was employed to ensure 
the validity of causal effects (Fig.  1). MR analysis relies 
on three core assumptions: (1) the relevance assumption, 
which states that genetic variation is robustly associated 
with exposure; (2) the independence assumption, which 
states that genetic variation is independent of confound-
ing factors; and (3) the exclusion restriction assumption, 
which states that genetic variation affects the outcome 
only through the exposure (Fig. 1).

Genetic instruments for SGLT‑2 inhibitors
We selected genetic variants for SGLT-2 inhibitors 
through the following steps (Fig. 1), which were described 
in the previous study [9]. First, we used genetic loci asso-
ciated with mRNA expression to create instrumental 
variables representing the treatment effects of SGLT-2 
inhibitors. We selected genetic variants associated with 

SGLT-2 mRNA expression levels using publicly available 
datasets from the Genotype-Tissue Expression (GTEx) 
project [10] and the eQTLGen consortium [11], and fil-
tered for SNPs within ± 250 kb of the gene locus that were 
significantly associated with the corresponding trait at a 
genome-wide significance level (P < 0.001). Third, con-
sidering the glucose-lowering effect of SGLT-2 inhibi-
tors, we estimated the association of each SGLT-2 variant 
with glycated hemoglobin (HbA1c) levels, an indica-
tor of the glucose-lowering effect, and selected variants 
significantly associated with HbA1c (P < 1 × 10–4). The 
genome-wide association study (GWAS) data for HbA1c 
came from the UK Biobank and included 344,182 indi-
viduals of European ancestry (Additional file 1: Table S1). 
Finally, we performed colocalization analysis for SGLT-2 
and HbA1c, using a posterior probability threshold 
of > 70% as evidence of colocalization, and performed 
clumping analysis with PLINK to remove SNPs in strong 
linkage disequilibrium (r2 = 0.8 and kb = 250) based on 
the 1000 Genomes Project reference panel of individuals 
of European ancestry.

Fig. 1 The flowchart of two-sample and two-step mendelian randomization evaluating the effects of inflammation biomarkers in mediating 
the effect of SGLT-2 inhibition on heart failure. HbA1c glycated hemoglobin, GWAS genome-wide association study, pQTL protein quantitative trait 
loci SNP single nucleotide polymorphism, LD linkage disequilibrium, CRP C-reactive protein, SGLT-2 sodium-glucose Cotransporter-2
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Genetic instruments for inflammatory biomarkers
The data for inflammatory biomarkers were obtained 
from the study by Zhao et al. (Additional file 1: Table S1) 
[12]. This study conducted a comprehensive assess-
ment of genetic effects on inflammation-related proteins 
through a genome-wide study of protein quantitative 
trait loci (pQTL). The study included 14,824 participants 
and measured 91 plasma proteins using the Olink panel. 
Additionally, C-reactive protein (CRP), a commonly 
studied inflammatory marker, was not included in the 
study by Peters et al. [12] We used the summary genetic 
information of European ancestry for CRP-related 
genetic variants provided by Dehghan et al. and included 
575,531 individuals of European ancestry (Additional 
file  1: Table  S1) [13]. We analyzed only genetic variants 
that were independently associated (LD r2 < 0.001 within 
a 10,000  kb range) and had genome-wide significance 
(P < 5e–8) at the gene level for each inflammatory bio-
marker. In cases where the number of SNPs for inflam-
matory biomarkers was less than 3, we used a suggestive 
genome-wide P-value threshold (P < 5e–7) to identify 
a sufficient number of SNPs (at least 3) between the 
inflammatory biomarkers and HF [14, 15]. To address 
weak instrument bias in our instrumental variable analy-
sis, we calculated the F-statistic for the selected SNPs as 
a test of weak instrument bias. A value greater than 10 
was considered a strong instrument. To assess whether 
the selected SNPs were associated with other traits at a 
genome-wide significance level, we performed analyses 
using PhenoScanner (http:// www. pheno scann er. medsc 
hl. cam. ac. uk/). We performed the main analyses after 
excluding potentially pleiotropic SNPs. The SNPs that 
were unavailable in the outcome dataset were searched 
for proxies in LDlink (R2 > 0.9).

Outcomes
We included all type of HF patients in our study, encom-
passing those HF with preserved as well as reduced ejec-
tion fraction. The summary level data of HF obtained 
from the largest-scale GWAS meta-analysis involving 
participants of European ancestry (Additional file  1: 
Table  S1) [16]. The meta-analysis included 26 cohorts 
(with a total of 29 distinct datasets) comprising 47,309 
HF cases and 930,014 controls. HF was assessed through 
hospitalization, physician diagnosis or death records. 
Participants clinically diagnosed with HF were defined as 
cases, while those without HF were defined as controls. 
The clinical characteristics of the HF population was 
described in Additional file 1: Table S6. Among the heart 
failure patients, 27% were diagnosed with diabetes, com-
pared to 6.5% in the control group. In the HF group, the 
proportion of male patients and the risk of occurrence 

for conditions such as hypertension (68.5% vs. 26.7%), 
chronic kidney disease (23.3% vs. 3.2%), myocardial 
infarction (39.2% vs. 4.7%), coronary heart disease (57.9% 
vs. 8.2%), and atrial fibrillation (36.6% vs. 3.1%) were all 
higher than those in the control group.

Statistical analysis
When there is only a single SNP available for instru-
mental variable construction, the Wald ratio method is 
employed to derive MR estimates. In cases where multi-
ple SNPs are available for instrumental variable construc-
tion, the inverse variance-weighted (IVW) method was 
used as the primary analysis because it provides the most 
precise and powerful estimates [17]. The Cochrane’s Q 
statistic was used for the global test of heterogeneity in 
the IVW to evaluate heterogeneity among the genetic 
instruments. Considering the high correlation among 
inflammatory biomarkers, we performed multivariable 
MR to identify the most likely causally related inflamma-
tory biomarkers. We used MR-BMA, a two-sample mul-
tivariable MR method, which can identify true causal risk 
factors even in the presence of a high correlation between 
candidate factors [18]. First, we conducted MR analyses 
using a weighted linear regression model for combina-
tions of multiple inflammatory biomarkers similar to the 
IVW method and assessed the posterior probabilities of 
the causal relationship for each specific model within the 
Bayesian framework. Then, for each candidate inflam-
matory marker, we summed the posterior probabilities 
of all models that included the candidate inflammatory 
marker to calculate the marginal inclusion probability 
(MIP), which represents the probability of being a causal 
inflammatory marker for HF. Additionally, we computed 
the model-averaged causal effect estimates (MACE), rep-
resenting the average causal effect of each inflammatory 
marker on HF. We calculated P-values for each inflamma-
tory marker using permutation methods. For the assess-
ment of the mediating effects of inflammatory markers 
on the association between SGLT-2 inhibitors and HF, we 
conducted a two-step MR analysis to evaluate the medi-
ating effects of inflammatory biomarkers (Fig. 1). First, we 
estimated the effect of SGLT-2 inhibitors on 92 inflam-
matory markers using the univariable MR approach (β1). 
Second, we further selected those inflammatory markers 
showing a significant association with SGLT-2 inhibitor 
and estimated the effect of each inflammatory marker on 
HF (β2). The proportion of mediation by each inflamma-
tory marker in the association between SGLT-2 inhibi-
tors and HF was calculated as the product of β1 and β2 
divided by the total effect of SGLT-2 inhibitors on HF. 
The 95% confidence interval (CI) for the mediation effect 
was calculated using the delta method [19].

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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Sensitivity analyses
Sensitivity analyses were performed using the MR-
Egger, MRPRESSO, weighted median, simple mode, and 
weighted mode methods. The MR-Egger method tests 
for the presence of horizontal pleiotropy, where a non-
zero intercept value indicates the presence of horizontal 
pleiotropy and potential bias in the IVW estimate [20]. 
Additionally, the MR-PRESSO method was employed to 
assess the presence of horizontal pleiotropy by detect-
ing possible outliers and recalculating the estimates after 
removing the outliers [21]. The weighted median method 
provides an unbiased causal estimate if at least 50% of the 
genetic instruments satisfy the three assumptions of MR 
[22]. The simple mode is a mode-based method that uses 
the causal effect estimates of single SNPs to form clusters 
and takes the largest SNP cluster for causal effect estima-
tion [23]. The weighted mode method uses the same pro-
cess but assigns weights to each SNP.

To address multiple hypothesis testing, we applied the 
Benjamini–Hochberg sequential p-value method to esti-
mate the false discovery rate (FDR) adjusted p-values 
(q-values) [24]. A q-value less than or equal to 10% was 
considered significant [25]. A P-value < 0.05 for the effect 
of SGLT-2 inhibitors on HF was considered statisti-
cally significant. All MR analyses were conducted using 
the "TwoSampleMR," "MendelianRandomization," and 
"MRPRESSO" packages in R software (version 4.2.2). The 
code for the MR-BMA analysis can be found at the fol-
lowing URL: https:// github. com/ verena- zuber/ demo_ 
AMD.

Results
Impact of SGLT‑2 Inhibition on HF
A total of 14 independent single nucleotide polymor-
phisms (SNPs) were selected as genetic instruments for 
SGLT-2 inhibition, with all SNPs having an F-statistic 
greater than 10 (Additional file  1: Table  S2). We found 
a significant association between SGLT-2 inhibition and 

reduced risk of HF (0.42 [0.30–0.59], P < 0.0001), achieved 
by a 1-standard deviation decrease in HbA1c through 
SGLT-2 inhibition (Table  1). These results were sup-
ported by sensitivity analysis using MR-PRESSO. There 
was no evidence of heterogeneity among the genetic 
instruments (Q = 9.5282, P = 0.7320) and no detec-
tion of horizontal pleiotropy (Egger intercept = 0.0021, 
P = 0.8331).

Impact of SGLT‑2 inhibition on inflammatory biomarkers
We estimated the effects of SGLT-2 inhibition on 92 cir-
culating inflammatory biomarkers and observed signifi-
cant associations with 31 biomarkers (Table  2, Fig.  2A 
and Additional file  1: Table  S3). We found that SGLT-2 
inhibitors reduced the levels of CXCL10 (OR = 0.55 [95% 
CI 0.33–0.93], P = 0.0245, FDR-corrected P = 0.0750), 
leukemia inhibitory factor (LIF) (OR = 0.48 [95% CI 
0.27–0.86], P = 0.0135, FDR-corrected P = 0.0518), and 
CRP (OR = 0.88 [95% CI 0.80–0.96], P = 0.0058, FDR-cor-
rected P = 0.0334).

Impact of inflammatory biomarkers on HF
Among the 31 inflammatory biomarkers associated 
with SGLT-2 inhibitors, genetic instrumental could not 
be found for three biomarkers. Therefore, we listed the 
causal relationships between the remaining 28 inflamma-
tory markers and HF (Additional file 1: Table S4, Fig. 2B). 
We found that two inflammatory biomarkers were signif-
icantly associated with HF. We observed a positive corre-
lation between CXCL10 levels and HF (OR 1.30 [95% CI 
1.15–1.48], P = 5.95e–5, corrected P = 0.0042). There was 
no evidence of heterogeneity among the genetic instru-
ments (Q = 4.6105, P = 0.2026), and no detection of hori-
zontal pleiotropy (Egger intercept = 0.0727, P = 0.5995). 
We also observed a negative correlation between LIF and 
HF (0.71 [0.56–0.89], P = 0.0036, corrected P = 0.0996).

Table 1 MR estimates of the effect of SGLT2 inhibition on heart failure

The heterogeneity test in the IVW methods was performed using Cochran’s Q statistic and the global test for the MR-PRESSO method. P < 0.05 was considered 
significant

OR Odds ratio, CI 95% confidence interval, IVW inverse–variance weighted, P-heterogeneity P value for heterogeneity test, P-intercept P value for the intercept of 
MR-Egger regression

Method Number of 
SNPs

OR (95% CI) P value Q statistic P‑heterogeneity Egger‑intercept P‑intercept

Inverse variance weighted 14 0.42(0.30–0.59) 0.0000 9.5282 0.7320

MR egger 14 0.36(0.09–1.48) 0.1814 9.4818 0.6613 0.0021 0.8331

Simple mode 14 0.47(0.23–0.96) 0.0590

Weighted median 14 0.46(0.29–0.72) 0.0007

Weighted mode 14 0.44(0.23–0.83) 0.0242

MR-PRESSO 14 0.42(0.31–0.56) 0.0000 10.6687 0.8170

https://github.com/verena-zuber/demo_AMD
https://github.com/verena-zuber/demo_AMD
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Results of multivariable analysis
In the MR-BMA analysis, we included CXCL10 and 
LIT, which were significantly associated with HF in the 
univariable MR analysis. The three models in MR-BMA 
analysis were respectively included for CXCL10, LIF, 
and both CXCL10 and LIF. These three models based 
on posterior probabilities are shown in Additional file 1: 
Table  S5, while Table  3 displays the ranking of inflam-
matory biomarkers based on MIP. Additionally, the 

MACE values for each lipid are provided. The highest-
ranking model included only CXCL10 (posterior prob-
ability = 0.797), which was also the strongest overall 
evidence for an inflammatory cytokine (MIP = 0.861, 
MACE = 0.224, FDR-corrected P = 0.0844).

Mediation effects of inflammatory biomarkers
Only two inflammatory biomarkers, CXCL10 and LIF, 
were found to be associated with both SGLT-2 inhibition 
and HF. Additionally, the highest-ranking model exclu-
sively included CXCL10, which provided the strongest 
overall evidence for an inflammatory cytokine. Therefore, 
we reported only CXCL10 as biomarker in the media-
tion effect analysis. We observed that SGLT-2 inhibition 
had an indirect effect on the total effect of HF (OR 0.86 
[95% CI 0.74–0.96], P = 0.0160) through CXCL10, with a 
mediation proportion of 17.85% (95% CI [3.03%–32.68%], 
P = 0.0183) (Central Illustration and Fig. 3).

Discussion
In this study, we employed univariable and multivari-
able MR analyses and mediation analysis to evaluate the 
relationship between SGLT-2 inhibition, inflammatory 
biomarkers, and HF. Our findings suggest that SGLT-2 
inhibitors may reduce the risk of heart failure (HF) by 
modulating inflammatory biomarkers, with CXCL10 
potentially playing a mediating role—accounting for 
approximately 18% of the association between SGLT-2 
inhibition and HF risk.

Previous clinical trials and meta-analyses have con-
firmed the effectiveness of SGLT-2 inhibitors in the pre-
vention of HF [2] and the improvement in prognosis by 
SGLT-2 inhibitors is independent of the type of HF [3]. 
Our analysis encompassed all types of HF and demon-
strated a significant negative correlation between SGLT-2 
inhibitors and HF, aligning with clinical evidence. How-
ever, the exact mechanisms by which SGLT-2 inhibitors 
decrease the risk and prognosis of HF remain incom-
pletely understood.

Emerging evidence indicates that SGLT-2 inhibitors 
possess the ability to modulate inflammatory responses 
[5]. Studies have exhibited that empagliflozin reduces 
pro-inflammatory biomarkers, including interleukin 
(IL)-6, tumor necrosis factor (TNF), monocyte chemoat-
tractant protein (MCP)-1, interferon (IFN)-γ, P-selectin, 
and intercellular adhesion molecule (ICAM)-1 in the 
hearts of Zucker diabetic fatty rats [26, 27]. Canagliflo-
zin has been shown to decrease serum leptin and IL-6 
levels compared to glimepiride in patients with type 2 
diabetes [28]. Empagliflozin treatment has also been 
associated with reductions in high-sensitivity C-reactive 
protein (hs-CRP) and myeloperoxidase, along with an 
increase in the anti-inflammatory biomarkers IL-10 [29]. 

Table 2 Impact of SGLT-2 Inhibition on inflammatory biomarkers

CI confidence interval, OR odds ratio, CCL19 C–C motif chemokine 19, CCL20 
C–C motif chemokine 20, CCL28 C–C motif chemokine 28, CXCL10 C-X-C motif 
chemokine 10, CXCL6 C-X-C motif chemokine 6, CXCL9 C-X-C motif chemokine 
9, DNER Delta and Notch-like epidermal growth factor related receptor, 
FGF19 Fibroblast growth factor 19, FGF21 Fibroblast growth factor 21, FGF23 
Fibroblast growth factor 23, IFN-γ Interferon gamma, IL-10 Interleukin-10, IL-12B 
Interleukin-12 subunit beta, IL-22RA Interleukin-22 receptor subunit alpha-1, 
IL-6 Interleukin-6, LAP TGF-β1 Latency associated peptide transforming growth 
factor beta 1, LIF Leukemia inhibitory factor, MCP -1 Monocyte chemoattractant 
protein-1, MCP-4 Monocyte chemoattractant protein-4, PD-L1 Programmed cell 
death 1 ligand 1, SULT1A1 Sulfotransferase 1A1, TNF Tumor necrosis factor, TSLP 
Thymic stromal lymphopoietin, uPA Urokinase type plasminogen activator, CRP 
C-reactive protein

Variants OR (95% CI) P value FDR 
adjusted P 
value

CCL19 1.85 (1.10–3.12) 0.0199 0.0678

CCL20 2.84 (1.69–4.76) 0.0001 0.0014

CCL28 1.89 (1.15–3.12) 0.0125 0.0499

CD5 4.01 (2.40–6.69) 0.0000 0.0000

CXCL10 0.55 (0.33–0.93) 0.0245 0.0750

CXCL6 2.36 (1.40–3.95) 0.0012 0.0092

CXCL9 0.51 (0.28–0.91) 0.0223 0.0734

DNER 0.35 (0.19–0.65) 0.0010 0.0086

Protein S100-A12 1.82 (1.09–3.05) 0.0232 0.0737

FGF19 2.72 (1.63–4.54) 0.0021 0.0149

FGF21 1.78 (1.06–2.99) 0.0297 0.0881

FGF23 0.37 (0.22–0.62) 0.0001 0.0020

IFN-Y 0.47 (0.27–0.84) 0.0110 0.0482

IL-10 2.29 (1.36–3.85) 0.0017 0.0121

IL12B 3.78 (2.22–6.45) 0.0000 0.0000

IL-22RA 2.72 (1.51–4.88) 0.0008 0.0074

IL-6 1.99 (1.19–3.33) 0.0086 0.0416

LAP TGF-B1 3.35 (1.76–6.40) 0.0002 0.0025

LIF 0.48 (0.27–0.86) 0.0135 0.0518

MCP-1 1.98 (1.19–3.32) 0.0091 0.0416

MCP-4 2.02 (1.21–3.38) 0.0074 0.0380

Neurturin 0.49 (0.27–0.87) 0.0150 0.0553

PD-L1 0.36 (0.21–0.59) 0.0001 0.0014

SULT1A1 0.35 (0.17–0.75) 0.0068 0.0367

TNF 0.48 (0.27–0.85) 0.0125 0.0499

TSLP 2.00 (1.12–3.59) 0.0198 0.0678

uPA 2.19 (1.31–3.66) 0.0029 0.0176

CRP 0.88 (0.80–0.96) 0.0058 0.0334
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Furthermore, a meta-analysis by Theofilis et al. reported 
reductions in IL-6, CRP, TNF-α, and MCP-1 levels with 
SGLT-2 inhibitors [6]. Consistent with these findings, our 
study revealed reduced levels of IFN-r, TNF, and CRP, 
as well as increased levels of IL-10, with SGLT-2 inhibi-
tors. Additionally, utilizing a comprehensive pQTL data-
set, our study identified significant effects of SGLT-2 

inhibitors on CXCL9, CXCL10, DNER, FGF23, LIF, Neu-
rturin, PD-L1, and SULT1A1. Our results were consist-
ent with the study by Nakano et  al., which showed that 
SGLT-2 inhibition directly suppressed tumor‐releasing 
CXCL10, suggesting a potential mechanism for the anti-
tumor effects of SGLT-2 inhibitors in hepatocellular car-
cinoma [30].

Previous observational studies have provided 
insights into the relationship between inflammatory 
biomarkers, such as tumor necrosis factor (TNF) [31] 
and C-reactive protein [32], and HF. Recent MR studies 
have yielded contradictory findings regarding the role 
of inflammation in HF. Remmelzwaal et al. and Li et al. 
found no causal link between common inflammatory 
markers like CRP, TNF, IL-1, IL-6, and interleukins 
and HF [33, 34]. In contrast, Wei et  al.’s larger study 
did find evidence of a causal relationship between cer-
tain inflammatory markers, including IL-2ra, IP-10, 
IL-6, and MIF, and HF [35]. In our study, we failed to 
observe a relationship between interleukins, growth 
factors, and HF. Furthermore, our analysis revealed 

Fig. 2 The forest plot of showing the effects of SGLT-2 inhibition on inflammation biomarkers and the effects of inflammation biomarkers on heart 
failure. A The effects of SGLT-2 inhibition on the remaining 28 selected inflammation biomarkers from 92 inflammation biomarkers, which were 
significantly associated with SGLT-2 inhibition. B The effects of the above 28 inflammation biomarkers on heart failure. CI confidence interval, OR 
odds ratio, CCL19 C–C motif chemokine 19, CCL20 C–C motif chemokine 20, CCL28 C–C motif chemokine 28, CXCL10 C-X-C motif chemokine 10, 
CXCL6 C-X-C motif chemokine 6, CXCL9 C-X-C motif chemokine 9, DNER Delta and Notch-like epidermal growth factor related receptor, FGF19 
Fibroblast growth factor 19, FGF21 Fibroblast growth factor 21, FGF23 Fibroblast growth factor 23, IFN-γ Interferon gamma, IL − 10 Interleukin-10, 
IL − 12B Interleukin-12 subunit beta, IL − 22RA Interleukin-22 receptor subunit alpha-1, IL − 6 Interleukin-6, LAP TGF-β1 Latency associated 
peptide transforming growth factor beta 1, LIF Leukemia inhibitory factor, MCP − 1 Monocyte chemoattractant protein-1, MCP − 4 Monocyte 
chemoattractant protein-4, PD − L1 Programmed cell death 1 ligand 1, SULT1A1 Sulfotransferase 1A1, TNF Tumor necrosis factor, TSLP Thymic stromal 
lymphopoietin, uPA Urokinase type plasminogen activator, CRP C-reactive protein

Table 3 Prioritization of causal inflammation biomarkers of heart 
failure using the MR-BMA method

Inflammation biomarkers ranked by the marginal inclusion probability in the 
MR-BMA analysis after model diagnostics. Empirical P-values were computed 
using 10,000 permutations. The prior probability and prior variance used in the 
MR-BMA analysis were 0.1 and 0.5

MIP marginal inclusion probability, MACE model-averaged causal effect, CXCL10 
C-X-C motif chemokine 10, LIF Leukemia inhibitory factor

Inflammation 
biomarker

MIP MACE Empirical
P‑value

FDR adjusted
P value

CXCL10 0.861 0.224 0.0422 0.0844

LIF 0.203 −0.018 0.9006 0.9006
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a significant positive correlation between CRP and 
HF, though heterogeneity and pleiotropy among the 
genetic instruments were apparent. After outlier cor-
rection using the MR-PRESSO method, we found no 
causal relationship between CRP and HF. However, 
we did observe a significant impact of SGLT-2 inhibi-
tors on CXCL10, and mediation analysis indicated that 
CXCL10 mediated the association between SGLT-2 
inhibitors and HF.

CXCL10, a chemokine receptor closely associated 
with HF [36], exhibits elevated levels in symptomatic 
HF patients classified as New York Heart Association 
class II to IV. This chemokine, along with MIP-1α and 
CD40 ligand, appears to dominate in advanced-stage 
HF patients [37], highlighting the unique character-
istics of inflammatory mediators in HF. Furthermore, 
T lymphocytes and the adaptive immune system have 
been implicated in the chronic inflammatory process 
of congestive HF. As a chemokine for T cells and a 
polarizing factor for pro-inflammatory phenotypes, 
CXCL10 plays a crucial role in recruiting Th1 cells 
to the heart in volume overload HF [38]. Therefore, 
the elevated levels of CXCL10 in HF patients and its 
role in promoting cardiac inflammation suggest its 
potential as a therapeutic target for HF. Previous clini-
cal studies investigating anti-inflammatory agents as 
treatments for HF have yielded neutral results [39–42], 
indicating the need for further exploration of poten-
tial targets. Our study indicates that SGLT-2 inhibitors 
improve HF prognosis by inhibiting the inflammatory 
pathway, offering promising prospects for anti-inflam-
matory interventions in HF.

Strengths and limitations of the study
This study is the first to investigate the relationship 
between SGLT-2 inhibition, inflammatory biomarkers, 
and HF using MR analysis. Nonetheless, our study has 
several limitations. Firstly, while simulating the genetic 
variations of SGLT-2 inhibitors may better reflect life-
long exposure, the effect sizes may not accurately rep-
resent the short-term effects. Therefore, MR analysis is 
more useful for examining potential directions of cau-
sality rather than quantifying effect sizes. However, the 
expected direction of effect can guide further explora-
tion of therapeutic effects in clinical trials. Secondly, 
as our study was conducted using data from individu-
als of European ancestry, generalizing these results 
to other populations requires further investigation. 
Thirdly, despite the comprehensive range of inflamma-
tory proteins included in our study, some inflammatory 
biomarkers were omitted, indicating the need for more 
comprehensive pQTL databases to explore additional 
potential targets. Lastly, the pathophysiology of HFpEF 
and HFrEF may differ, necessitating separate MR anal-
yses for different populations. However, the limited 
availability of databases specific to certain types of HF 
makes achieving this purpose challenging. Neverthe-
less, previous studies have demonstrated that the ben-
efits of SGLT-2 inhibitors in HF are independent of the 
HF type [3], and the relationship between inflammation 
and HF should be consistent across different types of 
HF [43, 44].

Fig. 3 The CXCL10 mediated the causal effect of SGLT-2 inhibitor on heart failure. The β1 value between the SGLT-2 inhibitor and inflammation 
biomarker and the β2 value between inflammation biomarker and heart failure are MR estimates using the inverse–variance weighted method
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Conclusion
This study provides genetic support for the relationship 
between SGLT-2 inhibition, inflammatory biomarkers, 
and HF. Specifically, CXCL10 appears to mediate the 
effect of SGLT-2 inhibitors on HF.
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