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Abstract 

Background Obesity is often associated with multiple comorbidities. However, whether obese subjects with hyper-
lipidemia in the absence of other complications have worse cardiac indices than metabolically healthy obese subjects 
is unclear. Therefore, we aimed to determine the effect of hyperlipidemia on subclinical left ventricular (LV) function 
in obesity and to evaluate the association of cardiac parameters with body fat distribution.

Materials and methods Ninety-two adults were recruited and divided into 3 groups: obesity with hyperlipidemia 
(n = 24, 14 males), obesity without hyperlipidemia (n = 25, 13 males), and c ntrols (n = 43, 25 males). LV strain param-
eters (peak strain (PS), peak diastolic strain rate (PDSR), peak systolic strain rate) derived from cardiovascular magnetic 
resonance tissue tracking were measured and compared. Dual-energy X-ray absorptiometer was used to measure 
body fat distribution. Correlations of hyperlipidemia and body fat distribution with LV strain were assessed by multi-
variable linear regression.

Results Obese individuals with preserved LV ejection fraction showed lower global LV longitudinal, circumferential, 
and radial PS and longitudinal and circumferential PDSR than controls (all P < 0.05). Among obese patients, those 
with hyperlipidemia had lower  longitudinal PS and PDSR and circumferential PDSR than those without hyperlipi-
demia (− 12.8 ± 2.9% vs. − 14.2 ± 2.7%, 0.8 ± 0.1  s−1 vs. 0.9 ± 0.3  s−1, 1.2 ± 0.2  s−1 vs. 1.4 ± 0.2  s−1; all P < 0.05). Multivari-
able linear regression demonstrated that hyperlipidemia was independently associated with circumferential PDSR 
(β = − 0.477,  P < 0.05) in obesity after controlling for growth differences, other cardiovascular risk factors, and central 
fat distribution. In addition, android fat had an independently negative relationship with longitudinal and radial PS 
(β = − 0.486 and β = − 0.408, respectively; all P < 0.05); and visceral fat was negatively associated with longitudinal PDSR 
(β = − 0.563, P < 0.05). Differently, gynoid fat was positively correlated with circumferential PS and PDSR and radial 
PDSR (β = 0.490, β = 0.481, and β = 0.413, respectively; all P < 0.05).
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Introduction
The global prevalence of overweight and obesity has 
markedly increased in recent decades, and obesity 
has become an epidemic in China, with an estimated 
increase in adults of 0.3% per year over fourteen years 
(2000–2014) [1]. Obesity often exists alongside comor-
bidities, such as hypertension, diabetes, and coronary 
heart disease, increasing cardiovascular disease events 
and mortality [2, 3]. However, it is unclear whether these 
patients who were only found to be hyperlipidemic and 
lacked other complications need aggressive intervention, 
such as lipid-lowering and cardiovascular protection. 
One of our study aims was to determine whether obese 
subjects with hyperlipidemia free from other complica-
tions have worse cardiac parameters than metabolically 
healthy obese subjects.

Compared with echocardiography, cardiovascular 
magnetic resonance (CMR) with a large field of view, 
better image quality, and three-dimensional (3D) cine 
images of the heart, aids in assessing ventricular geom-
etry and function with high accuracy and reproducibil-
ity[4, 5]. Moreover, due to signal interference caused by 
excessive adiposity, the application of echocardiography 
in obese individuals is limited. Thus, CMR may be a pre-
ferred method to evaluate cardiac structure and function 
in obese patients. Previous studies have shown that obe-
sity is a strong risk factor for heart failure, particularly for 
heart failure with preserved ejection fraction (EF) [6–8]. 
EF was insensitive to the myocardial changes related to 
obesity [9]. CMR tissue tracking is widely used to detect 
early myocardial dysfunction with preserved LVEF, due 
to its high sensitivity in measuring global and regional 
cardiac deformation in directions through the tracking of 
myocardial motion [10], In addition, CMR tissue tracking 
has good intra- and inter-observer reproducibility across 
different postprocessing software vendors [11].

Body mass index (BMI), as an index of general obesity, 
has been associated with increased risks of cardiovascu-
lar morbidity and mortality [12]. However, previous stud-
ies have found that regions of fat deposition have various 
effects on the heart [13, 14]. Dual X-ray absorptiometry 

(DXA) is widely used for assess body fat distribution. Sev-
eral studies have reported the associations of LV remod-
eling or peak circumferential strain with DXA-derived fat 
distribution parameters, such as total body fat, lean mass, 
lower body fat, and visceral or subcutaneous fat [15–17]. 
A recent study revealed the different effects of central 
and peripheral fat distributions on right ventricular func-
tion [18]. In this study, DXA was applied to further sub-
divided regional fat distribution, including fat mass in 
android, gynoid, trunk, upper and lower extremity, and 
visceral regions, and to explore the relationship between 
fat in these regions and LV strain in different directions 
(radial, circumferential, and longitudinal).

This study aimed to determine the association between 
hyperlipidemia and subclinical LV function based on 
CMR tissue tracking in obesity, and to evaluate relation-
ship between DXA-associated body fat distribution and 
LV function parameters.

Methods and materials
Study population
The study complied with the Declaration of Helsinki and 
was approved by the Institutional Review Board of West 
China Hospital of Sichuan University. Written informed 
consent was obtained from all study participants before 
undergoing CMR examinations.

This was an exploratory study. We recruited 
49 obese subjects defined by a BMI ≥ 27.5  kg/m2 
(range, 27.5–34.9  kg/m2) and 43 healthy volunteers 
(18.5 ≤ BMI ≤ 23 kg/m2) [19, 20] between 18 and 60 years 
old from September 2019 to June 2022. Subjects were 
excluded if they had any of the following conditions: 
hypertension (systolic blood pressure [SBP] ≥ 140 mmHg 
and diastolic blood pressure [DBP] ≥ 90  mmHg) and 
diabetes measured by oral glucose tolerance; history of 
lipid-lowering, hypoglycemic or antihypertensive drugs; 
history of cardiovascular diseases or history of any cardi-
ovascular procedures; major systemic diseases that could 
affect the myocardium, such as connective tissue diseases 
and endocrine diseases; respiratory diseases that could 
affect the heart, such as chronic obstructive pulmonary 

Conclusion Hyperlipidemia is independently associated with subclinical LV diastolic dysfunction in obesity. Cen-
tral fat distribution (android and visceral fat) has a negative association, while peripheral fat distribution (gynoid fat) 
has a positive association on subclinical LV function. These results suggest that appropriate management of hyper-
lipidemia may be beneficial for obese patients, and that the differentiation of fat distribution in different regions may 
facilitate the precise management of obese patients.

Clinical trials registration Effect of lifestyle intervention on metabolism of obese patients based on smart phone soft-
ware (ChiCTR1900026476).
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emphysema and obstructive sleep apnea; infection, fever, 
and renal failure; or any contraindications to CMR imag-
ing. According to the criteria for Asian or Chinese popu-
lation, BMI was categorized into three groups: healthy 
weight (18.5–23.0 kg/m2), overweight (23.0–27.5 kg/m2), 
and obese (≥ 27.5  kg/m2). Mild, moderate, and severe 
obesity were defined as 27.5  kg/m2 ≤ BMI < 32.5  kg/m2, 
32.5 kg/m2 ≤ BMI < 37.5 kg/m2, and BMI ≥ 37.5 kg/m2 [19, 
20]. Obese patients were divided into two subgroups, one 
with hyperlipidemia (obese (hyperlipidemia +) group: 
n = 24; median age  31  years; 14 males) and the other 
without hyperlipidemia (obese (hyperlipidemia-) group: 
n = 25; median age  29  years; 13 males), also labelled as 
metabolically healthy obesity. Age- and sex-matched vol-
unteers were included in a healthy control group (n = 43; 
median age 29 years; 25 males).

Baseline data collection
Baseline data of the participants were collected, includ-
ing medical history, weight, height, heart rate, and 
blood pressure (BP). Fasting blood glucose (FBG), fast-
ing insulin (FINS), and serum lipid profiles, including 
triglycerides, total cholesterol, high-density lipoprotein 
(HDL), low-density lipoprotein (LDL), and  very-low-
density lipoprotein were also measured. Mean 

arterial pressure (MAP; mmHg) was calculated as fol-
lows: MAP = (SBP + 2DBP)/3, respectively.

Homeostasis model assessment of insulin resistance 
(HOMA-IR) was calculated as follows: HOMA-IR = [FBG 
(mmol/L) × FINS (mU/L)]/22.5.

Dyslipidemia was defined when one of the follow-
ing criteria was met: (1) triglycerides > 1.7  mmol/L; (2) 
total cholesterol > 5.7 mmol/L, (3) LDL > 4.3 mmol/L, (4) 
HDL < 0.8 mmol/L [21].

Assessment of obesity
BMI (kg/m2) was calculated as weight (kg) divided by 
height squared  (m2). Waist circumference (WC) and hip 
circumference (HC) were measured. Body fat distribu-
tion was measured using DXA (Lunar iDXA, GE Medi-
cal Systems Lunar) and as shown in Fig. 1a. Percentages 
of fat mass in android, gynoid, trunk, peripheral, upper 
extremity, lower extremity, and visceral regions reflected 
fat deposition in the corresponding regions, relative to 
the total fat mass. In addition, Percentage of fat mass in 
peripheral region was calculated as the sum of the upper 
and lower extremity fat mass percentages. Percentages 
of fat mass in the android, trunk, and visceral regions 
were indices predictive of central obesity; while percent-
ages of fat mass in gynoid, peripheral, upper extremity, 

Fig. 1 Body fat distribution with dual X-ray absorptiometry and LV strain using cardiac magnetic resonance imaging. a Segmentation diagram 
of the whole-body fat distribution. The red and green boxes represent the android fat and gynoid fat regions, respectively. b–d LV contours are 
delineated on a short-axis, two-chamber, and four-chamber views at the end-diastolic phase. e–g Using tissue tracking, LV myocardial points 
motion from the end-diastolic phase to the end-systolic phase. h and i 3D models of the LV at the end-diastolic and end-systolic phases. J–l LV 
strain curves, radial, circumferential, and longitudinal strains in order
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and lower extremity regions were indices predictive of 
peripheral obesity.

CMR protocol
CMR examinations were performed using a 3 Tesla 
whole-body scanner (MAGNETOM Skyra, Siemens 
Healthcare) with an 18-channel phased-array coil. With 
a standard electrocardiograph-triggering device, data 
were acquired during the end-expiratory breath-hold 
period. Contiguous cine images in the short-axis view 
from the base to the apex and the two- and four-cham-
ber cine images in the long-axis were obtained by a bal-
anced steady-state free precession (bSSFP) sequence. 
The scan parameters were as follows: repetition time/
echo time = 3.3/1.22  ms, flip angle = 41°, slice thick-
ness = 8 mm, and a temporal resolution = 39.34 ms, field 
of view = 360 mm × 320 mm; and matrix size = 208 × 166.

CMR image analysis
All MRI data were imported to commercially available 
software (CVI 42 version 5.11.3, Circle Cardiovascu-
lar Imaging Inc). Two radiologists with more than three 
years of CMR experience completed the image analy-
sis and were blinded to the subject status (control vs. 
obesity).

Global LV geometry and function
The endocardial and epicardial contours of the LV myo-
cardium were manually traced during the end-diastolic 
and end-systolic phases on the short-axis cine images. 
The global geometry and function parameters, namely 
end-diastolic volume (EDV), end-systolic volume (ESV), 
EF, and LV mass at end-diastole, were automatically com-
puted. LV mass was indexed to the  height2.7 [LV mass 
index (LVMI); g/m2.7] (13). Concentricity was calculated 
as the ratio of LV mass to LVEDV (g/mL). In addition, 
mean LV regional values for sixteen myocardial segment 
thicknesses (excluding the apex) were also automatically 
computed [American Heart Association standard sev-
enteen-segment model (14)]. Finally, the LV maximum 
myocardial thickness (LVMMT) was calculated.

LV strain
The long-axis four-chamber, two-chamber, and short-
axis cine slices were transferred to the 3D tissue tracking 
module for LV myocardial strain analysis. The endocar-
dial and epicardial contours were manually delineated 
per slice during the end-diastolic phase. For different 
directions of myocardial deformation, LV global myo-
cardial strain parameters, including the radial, circum-
ferential, and longitudinal peak strains (PS), peak systolic 
strain rates (PSSR), and peak diastolic strain rates (PDSR) 
can be calculated. (Fig. 1b–l).

Epicardial adipose tissue (EAT) quantification
EAT was defined as a high-signal intensity region 
between the myo-epicardium and pericardium. The 
measurement method has been described elsewhere [22].

Reproducibility
Intra- and inter-observer variabilities for LV myocar-
dial strain indices were analyzed in 40 random subjects, 
including twenty obese patients and twenty healthy 
controls. To determine intra-observer variability, one 
radiologist measured the same image over a one-month 
interval. To evaluate the inter-observer variability, the 
second radiologist, who was blinded to the first observ-
er’s results, re-analyzed the measurements.

Statistical analysis
All statistical analyses were performed using SPSS soft-
ware (version 23, IBM, Armonk, Armonk, New York, 
USA). Normally distributed continuous data were 
expressed as the means ± standard deviation, while non-
normally distributed data were expressed as the median 
(25–75% interquartile range). The differences between 
all  obesity and healthy controls were compared using 
Student’s t-test or the Mann–Whitney U test as appro-
priate. Categorical data were presented as numbers (per-
centages) and compared by the chi-square or Fisher’s 
exact test. In addition, Kruskal–Wallis test (non-normally 
distributed data or unequal variances) or the one-way 
analysis of variance (ANOVA) (normally distributed data 
and equal variances) was applied to compare continuous 
data among healthy control, obesity (hyperlipidemia-), 
and obesity (hyperlipidemia +) groups. Pearson’s and 
Spearman’s correlation coefficient was used to determine 
correlations between body fat distribution, cardiovas-
cular risk factors, and LV function parameters in whole 
study population. A stepwise multivariable linear regres-
sion was used to observe the correlation between hyper-
lipemia and LV strain in obesity. The metabolic variables, 
including FBG, FINS, HOMA-IR, and MAP as confound-
ing factors were added. FINS was excluded because FINS 
was collinearity with HOMA-IR. In addition, central 
fat distribution (visceral fat or android fat or trunk fat) 
as a confounder was added due to an established con-
nection between central obesity and dyslipidemia. Fur-
thermore, the stepwise multivariable linear regression 
was also used to explore the relationship between body 
fat distribution and LV strain parameters in whole study 
population. Body fat distribution, including android fat, 
gynoid fat, trunk fat, peripheral fat, visceral fat, WC, 
waist-to-hip ratio, and EAT were entered in univariable 
analyses. Growth differences data (age, sex, and height) 
were added in all multivariable analyses. Variables with a 
P < 0.1 in the univariable analyses were then included in 
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a stepwise multivariable analysis. Finally, the intraclass 
correlation coefficient (ICC) was used to evaluate both 
inter-and intra-observer variabilities. A P < 0.05 indicated 
statistical significance.

Results
Baseline characteristics among the four groups
This was a study of 49 obese adults (24 patients with 
hyperlipidemia, 25 patients without hyperlipidemia) and 
43 healthy controls. Among obese patients, 42 were mild 
obesity (85.7%) and 7 were moderate obesity (14.3%). 
Their baseline characteristics are shown in Table  1. 

Median age, gender, height, and heart rate were com-
pared, and the differences between groups were not sta-
tistically significant (P > 0.05). Although BP was within 
the normal range in all groups, obese subjects had higher 
SBP, DBP, and MAT compared with healthy controls (all 
P < 0.05), and these parameters were similar in two obese 
subgroups.

For the blood parameters, the obese (hyperlipidemia +) 
group had higher FBG, FINS, HOMA-IR, triglycer-
ides, total cholesterol, VLDL, and LDL compared to the 
healthy group and obese (hyperlipidemia-) group (all 
P < 0.05). The obese (hyperlipidemia-) group had higher 

Table 1 Baseline characteristics and body fat distribution among the four groups

Note: SBP systolic blood pressure; DBP diastolic blood pressure; MAP mean arterial pressure; FBG fasting blood glucose; HDL high-density lipoprotein; LDL low-density 
lipoprotein; VLDL very-low-density lipoprotein; FINS fasting insulin; HOMA-IR homeostasis model assessment of insulin resistance; EAT epicardial adipose tissue. 
*P < 0.05 obese patients versus normal controls; §P < 0.05 obese patients with hyperlipidemia + versus obese patients with hyperlipidemia-

Parameters Controls (n = 43) All obesity (n = 49) Obesity

Hyperlipidemia-(n = 25) Hyperlipidemia + (n = 24)

Baseline characteristics

 Male, % 25 (58.1) 27 (55.1) 13 (52) 14 (58.3)

 Age (years) 29.0 (24.0, 34.0) 30.0 (26.0, 37.5) 29.0 (25.0, 37.5) 31.0 (26.5, 38)

 Height (cm) 166.6 ± 8.3 167.6 ± 9.4 167.1 ± 8.5 168 ± 10

 Body weight (kg) 53.7 (50.0, 62.0) 84.0 (75.0, 91.0)* 81.5 (71.3, 91.0)* 85.0 (78.1, 93.2)*

 BMI (kg/m2) 19.9 (18.8, 20.9) 28.4 (29.4, 31.1)* 28.6 (28.0, 30.4) * 30.0 (29.4, 31.2)*§

 Heart rate (bpm) 74.2 ± 8.0 73.7 ± 9.6 73.7 ± 9.5 73.8 ± 9.9

 SBP (mmHg) 109 ± 11 124 ± 10* 123 ± 11* 124.4 ± 9.0*

 DBP (mmHg) 71.6 ± 8.8 78.9 ± 6.5* 77.1 ± 6.5* 80.8 ± 6*

 MAP (mmHg) 83.9 ± 9.2 93.8 ± 6.6* 92.2 ± 6.7* 95.4 ± 6.3*

 FBG (mmol/L) 4.8 ± 0.3 5.4 ± 0.6* 5.2 ± 0.7* 5.5 ± 0.5*§

 Total cholesterol (mmol/L) 4.0 ± 0.7 4.9 ± 1.1* 4.3 ± 0.8 5.4 ± 1*§

 Triglycerides (mmol/L) 0.5 (0.4, 0.7) 1.6 (1.0, 2.7)* 1.0 (0.7, 1.4) 2.6 (1.9, 3.5) *§

 HDL (mmol/L) 1.6 ± 0.4 1.3 ± 0.3* 1.3 ± 0.2* 1.2 ± 0.3*

 LDL (mmol/L) 2.1 ± 0.5 2.7 ± 0.8* 2.4 ± 0.7* 2.9 ± 0.9*§

 VLDL (mmol/L) 0.2 (0.2, 0.3) 0.7 (0.5, 1.2)* 0.5 (0.3, 0.6)* 1.2 (0.9, 1.6)*§

 FINS (mmol/L) 5.9 (3.7, 7.7) 13.8 (10.9, 20.4)* 11.9 (9.7, 15.0)* 15.8 (12.3, 27.4)*§

 HOMA-IR 1.2 (0.8, 1.6) 3.4 (2.7, 4.8)* 3.0 (2.3, 3.5)* 4.2 (3.6, 7.0)*§

Adiposity measurement

 EAT  (cm3) 17.9 (14.2, 23.1) 46.2 (37.7, 56.3)* 44.2 (37.6, 57.3)* 47.8 (38.1, 60.5)*

 Total fat (kg) 11.5 ± 2.6 29.5 ± 5.1* 28.2 ± 6.5* 30.4 ± 4.5*

 Trunk fat (%) 45.5 ± 5 57.7 ± 4.7* 55.6 ± 4.0* 60.0 ± 4.5*§

 Peripheral fat (%) 46.5 ± 5.5 38.5 ± 5* 40.4 ± 4.2* 36.4 ± 4.9*§

 Upper extremities fat (%) 10.9 ± 1.1 10.5 ± 1.5 11.0 ± 1.3 9.9 ± 1.6*§

 Lower extremities fat (%) 35.6 ± 5.1 28 ± 4.2* 29.4 ± 3.9* 26.5 ± 4.1*§

 Android fat (%) 5.8 ± 1.2 9.8 ± 1.5* 9.2 ± 1.3* 10.4 ± 1.5*§

 Gynoid fat (%) 18.0 ± 2.9 14.9 ± 2.0* 15.4 ± 1.7* 14.4 ± 2.2*

 Visceral fat (%) 2.2 (0.9, 3.3) 4.2 (3.3, 5.9)* 3.6 (3.0, 4.8)* 5.3 (3.6, 7.4)*§

 Waist circumference (cm) 73.4 ± 5.2 100 ± 11* 99 ± 13* 100.1 ± 8.7*

 Hip circumference (cm) 92.6 ± 4.2 107.3 ± 4.1* 107.3 ± 4.3* 107.3 ± 4.1*

 Waist-to-hip ratio 0.79 ± 0.05 0.93 ± 0.09* 0.9 ± 0.1* 0.93 ± 0.07*

 Waist-to-height ratio 0.44 ± 0.04 0.6 ± 0.06* 0.6 ± 0.07* 0.6 ± 0.04*
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FBG, FINS, HOMA-IR, VLDL, and LDL compared with 
the healthy group (all P < 0.05). In contrast, all obese 
groups had lower HDL compared with the healthy group 
(P < 0.05).

In addition, the obese groups had greater conventional 
fat indices, including WC, HC, waist-to-hip ratio, and 
waist-to-height ratio compared to the healthy group (all 
P < 0.05). The obese groups had greater EAT than the 
healthy control group (P < 0.05). Additionally, the obese 
groups had greater DXA-related central fat deposition 
indices, including trunk fat, visceral fat, and android 
fat compared to the healthy group (all P < 0.05). Among 
obese patients, those with hyperlipidemia had greater 
central fat deposition indices than those without hyper-
lipidemia (all P < 0.05). In contrast, the obese groups had 
lower DXA-related peripheral fat deposition indices, 
including gynoid fat, peripheral fat, and lower extrem-
ity fat compared with healthy individuals (all P < 0.05). 
In addition, obese individuals with hyperlipidemia had 
lower peripheral fat and upper and lower extremity fat 
than those without hyperlipidemia (all P < 0.05).

Comparison of CMR findings between the obese subjects 
and healthy controls
The LVEFs were within the normal range (LVEF > 50.0%) 
for all obese patients, and there was no difference among 

the groups (P > 0.05). Compared with the healthy con-
trols, obese patients exhibited greater LV volume 
(LVEDV, LVESV), LV mass, LV mass index, and LVMMT 
(all P < 0.05). There was no difference in LV concentric-
ity among the groups (P > 0.05). For LV strain, the obese 
group showed lower global LV longitudinal, circumfer-
ential, and radial PS and longitudinal and circumferential 
PDSR than controls (all P < 0.05). Among obese patients, 
the group with hyperlipidemia had lower global longi-
tudinal PS and PDSR and circumferential PDSR than 
the patients without hyperlipidemia (all P < 0.05, Fig. 2). 
There was no difference in PSSRs in three directions 
among the groups (P > 0.05) (Table 2). 

Association between hyperlipidemia and LV strain 
in obesity
Stepwise multivariable linear regression demonstrated 
that after adjusting for sex, age, height, MAP, FBG, and 
HOMA-IR, hyperlipidemia was independently associated 
with longitudinal and circumferential PDSR (β = − 0.362 
and β = −  0.477, all P < 0.001). Furthermore, after addi-
tional adjustment for central fat distribution (visceral fat 
or android fat or trunk fat), the relationship between LV 
circumferential PDSR and hyperlipidemia was persisted 
(β = − 0.477, P < 0.001). (Table 3).
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Fig. 2 Dot plots comparing the left ventricular strain parameters of patients with obesity and healthy controls. a–c Global longitudinal, 
circumferential, and radial PS; d–f Global longitudinal, circumferential, and radial PDSR. Obese (H-) and obese (H +) represent the obese patients 
without and with hyperlipidemia, respectively. *P < 0.05. PS peak strain, PDSR peak diastolic strain rate
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Association between LV functional parameters and body 
fat distribution in whole study population
The  correlation analysis showed the relationships 
between LV functional parameters and body fat distri-
bution as follows: (1) DXA-related central fat distribu-
tion indices (trunk fat, android fat, and visceral fat) had 

negative relationships with global PS and PDSR in longi-
tudinal, circumferential, and radial directions (r = − 0.252 
to −  0.563); (2) DXA-related peripheral fat distribution 
indices (peripheral fat and gynoid fat) had positive rela-
tionships with global PS and PDSR in three directions 
(r = 0.286–0.529); (3) BMI had a negative correlation 

Table 2 Comparison of Cardiac Magnetic Resonance Parameters among the four Groups

Note: LV left ventricular; EF ejection fraction; ESV end-systolic volume; EDV end-diastolic volume; MMT maximum myocardial thickness; PS peak strain; PSSR peak 
systolic strain rate; PDSR peak diastolic strain rate *P < 0.05 obese patients versus normal group; §P < 0.05 obese patients with hyperlipidemia + versus obese patients 
with hyperlipidemia -

Parameters Controls (n = 43) All obesity (n = 49) Obesity

Hyperlipidemia-(n = 25) Hyperlipidemia + (n = 24)

LV global function

 LVEF 60.6 ± 5.0 62.7 ± 4.6 62.8 ± 4.6 62.7 ± 4.7

 LVEDV (ml) 128 ± 20 158 ± 28* 163 ± 26* 153 ± 30*

 LVESV (ml) 51 ± 10 59 ± 13* 61 ± 12* 58 ± 15*

 LV mass (g) 75 ± 17 91 ± 20* 91 ± 20* 91 ± 21*

 LV mass index (g/m2.7) 19.0 ± 3.7 22.3 ± 3.5* 22.5 ± 3.9* 22.1 ± 3.1*

 LV concentricity (g/ml) 0.59 ± 0.08 0.57 ± 0.09 0.55 ± 0.08 0.6 ± 0.1

 LVMMT (mm) 7.4 ± 0.9 8.0 ± 1.3* 7.7 ± 1.0 8.4 ± 1.5*§

PS (%)

 Longitudinal − 15.8 ± 2.0 − 13.5 ± 2.9* − 14.2 ± 2.7* − 12.8 ± 2.9*§

 Circumferential − 20.6 ± 2.0 − 19.6 ± 2.0* − 20.0 ± 2.0 − 19.2 ± 2.0*

 Radial 35.2 ± 5.4 32.1 ± 5.5* 32.4 ± 5.9* 31.9 ± 5.0*

PSSR (1/s)

 Longitudinal − 0.8 ± 0.2 − 0.8 ± 0.3 − 0.8 ± 0.2 − 0.8 ± 0.2

 Circumferential − 1.1 ± 0.2 − 1.0 ± 0.3 − 1.0 ± 0.1 − 1.0 ± 0.1

 Radial 2.0 ± 0.5 1.9 ± 0.4 1.8 ± 0.3 1.9 ± 0.5

PDSR (1/s)

 Longitudinal 1.1 ± 0.2 0.8 ± 0.2* 0.9 ± 0.3* 0.8 ± 0.1*§

 Circumferential 1.5 ± 0.3 1.3 ± 0.2* 1.4 ± 0.2 1.2 ± 0.2*§

 Radial − 2.8 ± 0.7 − 2.6 ± 0.6 − 2.7 ± 0.6 − 2.5 ± 0.5*

Table 3 Multivariable Linear Regression Analysis of Association between LV Strains and Hyperlipidemia in Patients with Obesity

BMI body mass index; MAP mean artery pressure; FBG fasting blood glucose; HOMA-IR homeostasis model assessment of insulin resistance; PDSR peak diastolic strain 
rate
*  P < 0.1 and § P < 0.05

Longitudinal PDSR Circumferential PDSR

Uni-r Multi-β(R2 = 0.299) Uni-r Multi-β(R2 = 0.228)

Hyperlipidemia − 0.387* NS − 0.477* − 0.477§/− 0.477§/− 0.477§

Sex − 0.410* NS 0.012 NS

Age 0.120 NS − 0.197* NS

Height − 0.217* NS 0.024 NS

MAP − 0.258* NS − 0.091 NS

FBG − 0.033 NS − 0.139 NS

HOMA-IR − 0.056 NS − 0.217* NS

Visceral fat/Android 
fat/Trunk fat

− 0.518*/− 0.459*/− 0.489* − 0.518§/− 0.459§/− 0.489§ − 0.370*/− 0.341*/− 0.418* NS
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with global PS, longitudinal PSSR and PDSR, and cir-
cumferential PDSR (r = −  0.214 to −  0.446); (4) WC 
was inversely associated with global longitudinal PS and 
PDSR and circumferential PS (r = − 0.222 to − 0.383); (5) 
waist-to-hip ratio was negatively associated with global 
longitudinal PS and PDSR (r = − 0.315 and − 0.360); (6) 
EAT was negatively associated with global longitudinal 
PS and PDSR and circumferential PDSR (r = −  0.283 to 
− 0.352) (Table 4).

After adjusting for sex, age, height, and related body 
fat distribution parameters with a P < 0.1 in the univari-
able analyses, a stepwise multivariable linear regres-
sion demonstrated that LV longitudinal and radial 
PS had independently negative relationships with 
android fat (β = −  0.486, β = −  0.408; all P < 0.001); 
LV longitudinal PDSR was independently correlated 
with visceral fat (β = −  0.563, P < 0.001); conversely, 
LV circumferential PS and PDSR and radial PDSR 

were positively correlated with gynoid fat (β = 0.490, 
β = 0.481, β = 0.413, respectively; all P < 0.001). (Table 5 
and Fig. 3). 

Association between body fat distribution 
and cardiovascular risk factors in whole study population
After controlling for age and sex, android fat, visceral 
fat, and trunk fat were positively correlated with tri-
glycerides, total cholesterol, LDL, VLDL, FBG, FINS, 
HOMA-IR, and MAP (r = 0.270–0.648), while nega-
tively correlated with HDL (r = −  0.549 to −  0.595). 
In contrast, peripheral fat and gynoid fat had nega-
tive associations with triglycerides, total cholesterol, 
LDL, VLDL, FBG, HOMA-IR, and MAP (r = −  0.226 
to −  0.593), whereas positive associations with HDL 
(r = 0.524 and r = 0.436, respectively) (Table 6).

Table 4 Correlation Coefficients between Left Ventricular Strain and Body Fat Distribution in Whole Population

Note: All strain parameters are calculated as absolute values. PS peak strain; PSSR peak systolic strain rate; PDSR peak diastolic strain rate; BMI body mass index; WC 
waist circumference; EAT epicardial adipose tissue
*  P < 0.05 and ** P < 0.01

BMI WC Waist-to-hip ratio Trunk fat Peripheral fat Android fat Gynoid fat Visceral fat EAT

PS (%)

Longitudinal − 0.446** − 0.383** − 0.315** − 0.493** 0.459** − 0.525** 0.410** − 0.516** − 0.323**

Circumferential − 0.226* − 0.222* − 0.174 − 0.284** 0.318** − 0.273** 0.393** − 0.291** − 0.177

Radial − 0.273** − 0.205 − 0.143 − 0.305** 0.286** − 0.316** 0.304** − 0.252* − 0.151

PSSR (1/s)

Longitudinal − 0.214* − 0.121 − 0.087 − 0.152 0.099 − 0.211* 0.108 − 0.201 − 0.105

Circumferential − 0.162 − 0.056 − 0.038 − 0.111 0.050 − 0.144 0.078 − 0.114 − 0.111

Radial − 0.183 − 0.040 0.008 − 0.145 0.103 − 0.168 0.094 − 0.131 − 0.081

PDSR (1/s)

Longitudinal − 0.429** − 0.374** − 0.360** − 0.505** 0.529** − 0.526** 0.497** − 0.563** − 0.352**

Circumferential − 0.284** − 0.194 − 0.171 − 0.368** 0.408** − 0.356** 0.481** − 0.424** − 0.283**

Radial − 0.137 − 0.135 − 0.117 − 0.262* 0.325** − 0.297** 0.413** − 0.362** − 0.163

Table 5 Multivariable Linear Regression Analysis of Association between Left Ventricular Strain Parameters and Body Fat 
Distribution in Whole Population

Note: All strain parameters are calculated as absolute values. PS peak strain; PDSR peak diastolic strain rate

Independent variables R square Factors in models B β P value

Longitudinal PS 0.312 Android fat% − 0.556 − 0.486  < 0.001

Sex − 1.065 − 0.194 0.034

Circumferential PS 0.213 Gynoid fat% 0.372 0.490  < 0.001

age 0.065 0.261 0.012

Radial PS 0.179 Android fat% − 0.915 − 0.408  < 0.001

age 0.202 0.296 0.004

Longitudinal PDSR 0.317 Visceral fat% − 0.067 − 0.563  < 0.001

Circumferential PDSR 0.231 Gynoid fat% 0.050 0.481  < 0.001

Radial PDSR 0.170 Gynoid fat% 0.098 0.413  < 0.001
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Intra- and interobserver variability
Good intra- and interobserver agreement was observed 
for LV global function and geometry (ICC 0.946–0.982 
and 0.930–0.977, respectively), LV global strain (ICC 
0.925–0.932 and 0.906–0.921, respectively), and LV 
global strain rate (PSSR and PDSR) (ICC 0.845–0.902 and 
0.832–0.874, respectively). (Additional file 1: Table S1).

Discussion
In this study, we compared LV geometry and func-
tion among obese (hyperlipidemia +), obese (hyperlipi-
demia-), and healthy control subjects using CMR and 
assessed the association between LV strain and body 

fat distribution. The principal findings were as follows: 
(1) the obese group with preserved LVEF had impaired 
subclinical LV function manifesting as diminished radial, 
longitudinal, and circumferential PS and longitudinal and 
circumferential PDSR compared with healthy controls; 
(2) among obese patients, those with hyperlipidemia had 
lower global longitudinal PS and PDSR and circumfer-
ential PDSR than those without hyperlipidemia; (3) the 
hyperlipidemia was independently associated with sub-
clinical LV diastolic dysfunction; (4) Central fat distri-
bution (android fat and visceral fat) has a negative and 
peripheral fat distribution (gynoid fat) a positive impact 
on subclinical LV function.
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Fig. 3 Correlations between regional fat distribution and left ventricular strain parameters. a and b show inverse correlations between android fat 
with longitudinal and radial PS; c demonstrates a negative correlation between visceral fat and longitudinal PDSR. d, e and f show that gynoid fat 
is positively associated with circumferential PS, circumferential PDSR, and radial PDSR. PS peak strain, PDSR peak diastolic strain rate

Table 6 Association between Body Fat Distribution and Cardiovascular Risk Factors after Controlling for Age and Sex in Whole 
Population

Note: HDL high-density lipoprotein; LDL low-density lipoprotein; VLDL very-low-density lipoprotein; FBG fasting blood glucose; FINS fasting insulin; HOMA-IR 
homeostasis model assessment of insulin resistance; MAP mean artery pressure; *P < 0.05

Triglycerides Total cholesterol HDL LDL VLDL FBG FINS HOMA-IR MAP

Android fat% 0.610* 0.369* − 0.595* 0.329* 0.609* 0.432* 0.518* 0.627* 0.482*

Gynoid fat% − 0.459* − 0.277* 0.436* − 0.226* − 0.459* − 0.250* − 0.282* − 0.521* − 0.319*

Visceral fat% 0.613* 0.361* − 0.549* 0.270* 0.612* 0.348* 0.335* 0.535* 0.436*

Trunk fat% 0.599* 0.354* − 0.587* 0.301* 0.599* 0.373* 0.376* 0.648* 0.518*

Peripheral fat% − 0.558* − 0.354* 0.524* − 0.298* − 0.558* − 0.298* − 0.527* − 0.593* − 0.418*
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Hyperlipidemia may aggravate subclinical LV dysfunction 
in obesity
Our study showed that although all LVEFs were within 
the normal range in both obese and healthy individu-
als, obese subjects had impaired radial, longitudinal, and 
circumferential PS and longitudinal and circumferential 
PDSR compared with healthy controls. The results are 
consistent with previous studies on CMR in adults and 
children without hypertension, diabetes, and heart dis-
ease, indicating that these obese patients had subclinical 
LV dysfunction with preserved LVEF [22–24]. This find-
ing was explained by capacity overload, increased blood 
pressure, LV structural remodelling (increased myo-
cardial mass, wall thickness, and chamber size), insulin 
resistance, and increased EAT volume in obesity in our 
previous study [22]. Furthermore, although the obese 
individuals did not have hypertension, diabetes, and car-
diovascular disease, they had elevated triglycerides, total 
cholesterol, VLDL, and LDL and reduced HDL levels 
compared with the healthy controls. To determine the 
association of hyperlipidemia with LV function in obese 
patients, we divided them into two subgroups based on 
the presence of hyperlipidemia. We found that those 
obese patients with hyperlipidemia had lower global lon-
gitudinal PS and PDSR and circumferential PDSR than 
those without hyperlipidemia.  In addition, hyperlipi-
demia was independently associated with subclinical LV 
diastolic dysfunction in obesity even after controlling for 
growth differences, other metabolic-related  cardiovas-
cular risk factors, and central fat distribution. Previous 
echocardiographic studies also indicated that metaboli-
cally unhealthy obese patients (i.e., those diagnosed with 
metabolic syndrome) had lower subclinical LV diastolic 
and/or systolic function than obese patients who were 
metabolically healthy [25, 26]. Compared with past stud-
ies, ours excluded obese individuals with diabetes and 
hypertension and focused on the specific effect of hyper-
lipidemia on subclinical LV function in obesity.

Elevated free fatty acid (FFA) levels promote VLDL 
synthesis in the liver, hypertriglyceridemia, reduced HDL 
concentration, and the formation of small, dense LDL 
particles, raising the risk of cardiovascular disease [27]. A 
previous study also showed that obese women had higher 
glycerol and FFA rates than normal subjects [28]. In addi-
tion, Peterson et al. [29] showed that obese women have 
increased myocardial FFA uptake and oxygen consump-
tion. Despite an increase in myocardial FFA oxidation in 
obesity, there is evidence of lipid accumulation in human 
hearts using either magnetic resonance spectroscopy or 
lipid staining of postmortem tissue [30, 31], indicating 
an imbalance in myocardial fatty acid metabolism, with 
absorption surpassing oxidation. Thus, hyperlipidemia 
may be considered as a marker of increased fatty acids 

and myocardial lipid deposition. Evidences from animal 
studies also indicated that excessive accumulation and 
oxidation of lipids in the myocardium results in cardio-
myocyte apoptosis and myocardial dysfunction, in which 
ceramide, oxidative stress, and reactive oxygen species 
production may be intermediate steps [32–35].

Recent studies also showed that dyslipidemia was 
related to higher levels of inflammatory markers, such 
as interleukin-6 (IL-6), tumor necrosis factor alpha-a 
(TNF-α), and C-reactive protein (CRP) [36–38]. IL-6 
played a crucial role in aldosterone-induced macrophage 
recruitment and infiltration of myocardial macrophages, 
causing myocardial fibrosis [39]. TNF-α activates sphin-
gomyelinase to catalyze the sphingomyelin hydrolysis 
to ceramide [40]. CRP and TNF-α have been associated 
with insulin resistance and atherosclerosis. Earlier studies 
demonstrated that myocardial fibrosis, ceramide accu-
mulation, and insulin resistance were associated with 
cardiomyocyte apoptosis and LV dysfunction [22, 32]. 
In addition, Mahemuti et  al. reported the link between 
hyperlipidemia and systemic immunity-inflammation 
index, a novel inflammatory marker [41]. A recent study 
with a large sample size demonstrated a strong associa-
tion between elevated systemic immunity-inflammation 
index levels and heart failure [42]. Increased inflamma-
tion may be a potential mechanism to explain how hyper-
lipidemia was associated with impaired LV function. 
More researches are needed to elucidate this effect.

In addition, our study found no significant associa-
tion between FBG and LV strain in obese patients. Prior 
studies showed that hyperglycemia was associated with 
impaired LV strain in patients with diabetes mellitus, 
whereas there was no significant difference in LV strain in 
patients with impaired glucose tolerance alone compared 
with healthy controls [43, 44]. Our study excluded people 
with diabetes mellitus and most had normal fasting glu-
cose, which may explain the lack of significant correlation 
between FBG and LV strain. In addition, a mendelian 
randomization study also indicated that glycemic levels 
were no associated with LV structure and function [45].

Body fat distribution and subclinical LV function
Our study assessed the relationship between regional fat 
distribution and LV function in whole study population. 
Our result demonstrated that central fat distribution (vis-
ceral and android fat) had a negative association, while 
peripheral fat distribution (gynoid fat) had a positive 
association on LV function. Prior study have also revealed 
that VAT is independently associated with impairment of 
LV strain, while lower-body fat is not associated with it 
[17].

One explanation for the inconsistency may be related to 
the different effects of body fat distribution on metabolic 
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disorders. Our findings showed that after controlling for 
age and sex, visceral and android fat were positively asso-
ciated with triglycerides, total cholesterol, LDL, FBG, 
MAP, and HOMA-IR, but negatively correlated with 
HDL. In contrast, peripheral fat distribution had the 
opposite effect on these parameters. Previous researches 
also suggested that android and visceral fat had a posi-
tive association with cardiometabolic risk factors (hyper-
triglyceridemia, impaired fasting glucose, elevated blood 
pressure, and insulin resistance), whereas gynoid fat had 
a negative association with these factors [18, 46–48]. As 
discovered in this study, hyperlipidemia impaired LV 
function in obese patients. Moreover, insulin resistance 
was independently associated with subclinical LV dys-
function (shown as decreased circumferential PS and 
PDSR) in obese patients without hypertension, diabetes, 
and other cardiovascular diseases [22]. In addition, cen-
tral fat distribution increased the risk of hypertension, 
while peripheral fat distribution decreased this risk [46]. 
Lastly, hypertension was a significant risk factor for LV 
diastolic dysfunction [49].

Another explanation may be chronic inflammatory 
factors and adipokines related to obesity. Visceral and 
android fat were inversely associated with adiponec-
tin [50], while positively associated with leptin [51]. In 
addition, lower extremity fat was positively associated 
with adiponectin [52]. Adiponectin as a cardioprotec-
tive adipokine mediated insulin-sensitizing effects and 
reduces hyperlipidemia [53]. Leptin plays a beneficial 
role in enhanced insulin sensitivity and the inhibition of 
food intake. However, hyperleptinemia in obesity prin-
cipally resulted from leptin resistance, which had a pro-
inflammatory role [54]. Abdominal fat and visceral fat 
had positive correlations with TNF-α and CRP; in con-
trast, peripheral fat (lower extremity fat, thigh subcuta-
neous fat, or gynoid fat) had an inverse correlation with 
these factors [47, 50, 52]. As mentioned above, CRP and 
TNF-α were associated with insulin resistance and cera-
mide production, which may be associated with reduced 
LV function.

In summary, the association between central or periph-
eral adiposity and LV strain may be partially mediated 
through its effects on metabolic related cardiovascular 
risk factors, systemic inflammation, or adipokines. Our 
study suggested the importance of categorizing obese 
subjects into different types of obesity when investigating 
its associations on LV function.

There were several limitations in this study. First, it was 
cross-sectional. We cannot determine causal associa-
tions of hyperlipemia and regional fat distribution with 
LV strain. Second, this was an exploratory study with 
limited sample size, especially in the subgroup of obese 

patients (hyperlipidemia- and hyperlipidemia +). There-
fore, further confirmation of our findings is required in 
large sample studies. Third, although previous studies 
have reported intramyocardial triglycerides accumula-
tion (myocardial lipotoxicity) in obesity, myocardial lipid 
accumulation was not quantified in our study. Finally, our 
study reported the relationships between regional fat dis-
tributions and metabolic related cardiovascular risk fac-
tors to explain the effect of regional fat distributions on 
LV function. However, more data, such as inflammatory 
markers and cytokines are needed to understand the dif-
ferent associations of regional fat distributions with LV 
function.

Conclusion
In obesity, hyperlipidemia is independently associated 
with subclinical LV diastolic dysfunction assessed by 
strain analysis. Central fat distribution (android and 
visceral fat) has a negative association, while periph-
eral fat distribution (gynoid fat) has a positive associa-
tion on subclinical LV function. The results might help 
determine appropriate strategies for the management 
of patients with obesity.
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