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Abstract 

Background Atrial fibrillation (AF) has been linked to an increased risk of cardiovascular death, overall mortality 
and heart failure in patients with type 2 diabetes mellitus (T2DM). The present study investigated the additive effects 
of paroxysmal AF on left ventricular (LV) function and deformation in T2DM patients with or without AF using the car‑
diovascular magnetic resonance feature tracking (CMR‑FT) technique.

Methods The present study encompassed 225 T2DM patients differentiated by the presence or absence of paroxys‑
mal AF [T2DM(AF+) and T2DM(AF−), respectively], along with 75 age and sex matched controls, all of whom under‑
went CMR examination. LV function and global strains, including radial, circumferential and longitudinal peak strain 
(PS), as well as peak systolic and diastolic strain rates (PSSR and PDSR, respectively), were measured and compared 
among the groups. Multivariable linear regression analysis was used to examine the factors associated with LV global 
strains in patients with T2DM.

Results The T2DM(AF+) group was the oldest, had the highest LV end‑systolic volume index, lowest LV ejection 
fraction and estimated glomerular filtration rate compared to the control and T2DM(AF−) groups, and presented 
a shorter diabetes duration and lower HbA1c than the T2DM(AF−) group. LV PS‑radial, PS‑longitudinal and PDSR‑radial 
declined successively from controls through the T2DM(AF−) group to the T2DM(AF+) group (all p < 0.001). Compared 
to the control group, LV PS‑circumferential, PSSR‑radial and PDSR‑circumferential were decreased in the T2DM(AF+) 
group (all p < 0.001) but preserved in the T2DM(AF−) group. Among all clinical indices, AF was independently asso‑
ciated with worsening LV PS‑longitudinal (β = 2.218, p < 0.001), PS‑circumferential (β = 3.948, p < 0.001), PS‑radial 
(β = − 8.40, p < 0.001), PSSR‑radial and ‑circumferential (β = − 0.345 and 0.101, p = 0.002 and 0.014, respectively), PDSR‑
radial and ‑circumferential (β = 0.359 and − 0.14, p = 0.022 and 0.003, respectively).

Conclusions In patients with T2DM, the presence of paroxysmal AF further exacerbates LV function and deformation. 
Proactive prevention, regular detection and early intervention of AF could potentially benefit T2DM patients.
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Background
Type 2 diabetes mellitus (T2DM) is characterized by 
insulin resistance and hyperglycemia. Cardiovascu-
lar complications are the leading cause of morbidity 
and mortality in patients with diabetes [1], and the risk 
of heart failure increases 2–8 times in individuals with 
T2DM [2]. As the most common sustained arrhythmia 
worldwide, the prevalence of atrial fibrillation (AF) is 
expected to more than double in the next 3 decades [3]. 
It is characterized by rapid, disorganized excitation of the 
atria and irregular activation of the ventricles, and associ-
ated with a significantly high risk of cardiovascular mor-
bidity and mortality and reduced quality of life [4, 5]. The 
presence of T2DM, regardless of coexisting comorbidi-
ties, increases the risk of new-onset AF [6, 7]. Changes in 
cardiac structure, function, and strain in T2DM patients 
complicated with AF are not completely understood and 
are challenging to evaluate. It is of paramount signifi-
cance to investigate cardiac dysfunction in patients with 
T2DM complicated with AF before the occurrence of 
adverse events which may contribute to improve clinical 
management and reduce cardiovascular risk.

Myocardial strain, which represents the percent change 
in myocardial length from a relaxed to a contractile state, 
may be evaluated using echocardiography or cardiovas-
cular magnetic resonance (CMR) imaging. Strain param-
eters, particularly global longitudinal peak strain, are 
known to be superior to the evaluation of left ventricu-
lar ejection fraction (LVEF) in predicting LV dysfunction 
and major adverse cardiac events [8]. Circumventing the 
echocardiographic limitations of dependence on opera-
tor experience and suboptimal acoustic windows due 
to the presence of bone and lung, CMR-feature track-
ing (CMR-FT), which quantitatively tracks myocardial 
features throughout the cardiac cycle on standard cine 
imaging, provides precise and reproducible measure-
ments of myocardial strains [9]. It has been demonstrated 
to detect early LV myocardial dysfunction, including 
diastolic and systolic function, in patients with a vari-
ety of cardiovascular diseases [10, 11]. To the best of 
our knowledge, the application of this methodology to 
quantify myocardial strain for assessing LV myocardium 
abnormalities in T2DM patients with coexisting AF and 
no adverse events has not been reported.

Therefore, the present study evaluated the charac-
teristics of LV volume, function and strain in T2DM 
patients with or without paroxysmal AF to investigate 
whether AF aggravated LV myocardial dysfunction in 

T2DM patients and determine the independent factors 
associated with LV global strains.

Methods
Study population
We retrospectively and consecutively identified 584 
T2DM patients who had undergone CMR examina-
tions in our hospital from October 2015 to December 
2022. T2DM patients were diagnosed according to the 
recommendation of the American Diabetes Associa-
tion [12]. The following exclusion criteria were used: 
(1) known coronary artery disease (myocardial infarc-
tion, revascularization, or coronary bypass), congenital 
heart disease, cardiomyopathy or severe valvular heart 
disease; (2) prior catheter ablation, AF at the time of 
CMR or uncontrolled hypertension (systolic blood 
pressure, SBP > 160 mmHg); (3) symptoms of heart fail-
ure, LVEF < 50% or severe renal failure (eGFR < 30  ml/ 
min/1.73   m2); and (4) incomplete clinical data, inad-
equate images or poor image quality affecting LV 
measurements. Following these criteria, a total of 225 
patients were included in the study. Paroxysmal AF was 
defined as AF that spontaneously or therapeutically ter-
minates within 7  days confirmed by a 12-lead resting 
electrocardiogram (ECG) or 24-h Holter ECG based 
on the contemporary clinical guidelines [13]. To evalu-
ate the influence of AF on left ventricle, T2DM patients 
were further differentiated by the presence or absence 
of paroxysmal AF [T2DM(AF+) and T2DM(AF−) 
groups, respectively]. For comparison, 75 subjects 
who underwent CMR for health physical examination 
and matched with T2DM patients for age and sex were 
enrolled as the control group. These subjects had no (1) 
history of diseases that could impair cardiac function, 
such as hypertension, diabetes or impaired glucose tol-
erance, coronary heart disease, cardiomyopathy, val-
vular heart disease; (2) cardiovascular disease-related 
symptoms, such as chest pain, palpitation and dyspnea; 
and (3) abnormalities in electrocardiogram or cardiac 
abnormalities detected on CMR examination, such 
as decreased ejection fraction, abnormal ventricular 
motion, valvular stenosis or regurgitation.

The Biomedical Research Ethics Committee of West 
China Hospital approved this study (No. 2022-1241), 
which was performed in accordance with the Declara-
tion of Helsinki. Written informed consent have been 
waived owing to the retrospective nature of this study.

Keywords Type 2 diabetes mellitus, Atrial fibrillation, Cardiovascular magnetic resonance, Feature tracking, Left 
ventricular function
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CMR protocol
All CMR examinations were performed using a 3.0  T 
MR system (TrioTim or MAGNETOM Skyra, Siemens 
Medical Solutions, Erlangen, Germany) with 32-channel 
phased array surface coils. Balanced steady-state free-
precession (b-SSFP) cine images were obtained at the 
end of inspiratory breath-holding in a stack of standard 
short-axis slices and two long axes (horizontal and verti-
cal) covering the entire left ventricle. The imaging param-
eters were repetition time (TR) = 2.81  ms or 3.4  ms, 
echo time (TE) = 1.22  ms, flip angle (FA) = 40° or 50°, 
field of view (FOV) = 250 × 300   mm2 or 340 × 285   mm2, 
matrix = 208 × 139 or 256 × 166, slice thickness = 8  mm 
and 25 cardiac phases. Late gadolinium enhancement 
(LGE) images in the entire LV short-axis stack and from 
the two-, three- and four-chamber views were acquired 
to exclude myocardial infarct 10–15  min after intrave-
nous injection of gadolinium contrast agent (0.2  mL/
kg body weight and flow rate of 2.5–3.0  mL/s). The 
images were obtained using a phase-sensitive inver-
sion recovery sequence with the following parameters: 
TR 750/300 ms, TE 1.18/1.44 ms, FA 40°, slice thickness 
8 mm, FOV 275 × 400  mm2 or 400 × 270  mm2, and matrix 
size = 256 × 184.

CMR analysis
All CMR images were analyzed using dedicated software 
(Cvi42, v.5.11.2; Circle Cardiovascular Imaging, Calgary, 
Canada) by two experienced investigators who had more 
than three years of experience in CMR imaging and were 
blinded to the clinical data of the subjects.

In the Short-3D module, endocardial and epicardial 
borders of the left ventricle were semiautomatically out-
lined at the end-diastolic and end-systolic phases in the 
short-axis cine images. The LV functional parameters, 
including LVEF, end-diastolic volume (EDV), end systolic 
volume (ESV), stroke volume (SV) and cardiac output 
(CO), were assessed automatically. LV mass (LVM) was 
calculated by measuring the area between the endocar-
dial and epicardial borders in each of the short-axis slices. 
LV papillary muscles were included in the LV volume and 
excluded from LVM. The body surface area (BSA) was 
calculated using the Mosteller formula, and the LV func-
tional parameters and LVM were indexed for BSA. LV 
remodeling index was calculated as LVM/LVEDV.

For LV myocardial strain analysis, the short-axis, long-
axis four- and two-chamber cine images were transferred 
to the tissue tracking module. The LV endocardial and 
epicardial borders at the end-diastolic phases (refer-
ence phase) in all series were semiautomatically deline-
ated. The software automatically calculated the global 
LV strain variables (Fig.  1), including global radial, 

circumferential and longitudinal peak strain (PS), peak 
systolic strain rate (PSSR) and peak diastolic strain rate 
(PDSR). Strain is calculated as the percentage change in 
the length of myocardium and strain rate refers to the 
rate of myocardial deformation. PS is defined as the abso-
lute value of maximum strain measured throughout the 
cardiac cycle, PSSR defined as the absolute value of the 
maximum strain rate from end diastole to end systole, 
and PDSR defined as the absolute value of the maximum 
strain rate from end systole to end diastole. During the 
systolic phase, the radial strain had a positive value due 
to myocardium thickening, and the circumferential and 
longitudinal strains had negative values because the myo-
cardium shortened.

Reproducibility analysis
To assess the intra-observer variability, one investigator 
measured the LV global strain parameters in 60 randomly 
selected subjects (40 T2DM patients and 20 healthy con-
trols) twice after one month. A second investigator, who 
was blinded to the results of the first investigator and 
clinical data, reevaluated the measurements to determine 
the interobserver variability.

Statistical analysis
All statistical analyses were performed using SPSS (ver-
sion 23.0, IBM SPSS Inc., Armonk, New York, USA). 
Continuous data are presented as the means ± standard 
deviation (SD) or medians with interquartile range (IQR), 
and categorical variables are presented as n (%). Param-
eters among the T2DM(AF−), T2DM(AF+) and control 
groups were compared using one-way analysis of variance 
(one-way ANOVA) with post hoc Bonferroni correction 
(normally distributed variables) or Kruskal‒Wallis tests 
(nonparametric variables), as appropriate. The diabetes 
duration and HbA1c level between the patient groups 
were compared using the Mann–Whitney U test. Cat-
egorical variables were compared using the chi-squared 
or Fisher’s exact test, as appropriate. Univariable linear 
regression analyses were performed to demonstrate the 
relationship between candidate factors and LV global 
strain parameters. Variables with a value of p < 0.1 in uni-
variable analysis and no collinearity as well as AF, age and 
sex were included in stepwise multivariable linear regres-
sion analyses to determine the independent determinants 
of LV global strains. A variance inflation factor (VIF) of 
5 was set to avoid multicollinearity between the univari-
able parameters. Intraclass correlation coefficients (ICCs) 
were evaluated to determine the inter- and intra-observer 
variability in strain measurement. A two-sided p < 0.05 
was considered statistically significant.
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Results
Baseline characteristics
Of the 225 T2DM patients, 182 patients were in 
the T2DM(AF−) group (102 [56.0%] males, mean 
age 58.2 ± 9.1  years), and 43 patients were in the 
T2DM(AF+) group (19 [44.2%] males, mean age 
67.1 ± 10.7  years). The main baseline characteristics 
of the patient groups and controls are presented in 
Table 1. Both patient groups showed higher body mass 
index (BMI), SBP and fasting blood glucose than con-
trols (all p < 0.05). Patients with T2DM(AF+) were 
older than the control and T2DM(AF−) groups (all 
p < 0.001) but had a shorter diabetes duration, lower 
HbA1c and eGFR levels than patients without AF (all 
p < 0.05). Patients with T2DM(AF+) had lower use of 
oral and insulin antidiabetic therapy (all p < 0.05) but 

higher use of β-blockers than the T2DM(AF−) group 
(p = 0.011).

Comparison of LV functional and strain parameters
The CMR-measured LV parameters for the patient 
groups and healthy controls are shown in Table 2. Com-
pared to the controls, the T2DM(AF−) and T2DM(AF+) 
groups showed a significantly larger LVMI (p < 0.001 
and p = 0.012, respectively) and LV remodeling index 
(p = 0.001 and = 0.036, respectively), but these param-
eters were not significantly different between the patient 
groups. The LVESVI and LVEF in the T2DM(AF+) group 
were significantly higher and lower, respectively, than the 
T2DM(AF−) group (p = 0.021 and p < 0.001, respectively) 
and controls (p = 0.014 and p = 0.001, respectively). The 
LVEDVI, LVSVI and cardiac index were not significantly 
different among the groups (all p > 0.05).

Fig. 1 Representative cardiovascular magnetic resonance (CMR) pseudocolor images at the end‑diastole and CMR‑ derived peak strain curves. 
A1–4: an individual of control group; B1–4: a T2DM patient without AF; C1–4: a T2DM patient with AF. A1–C1: left ventricular (LV) pseudocolor 
images in short‑axis; A2–C2: LV global peak strain (PS) curve in radial direction; A3–C3: LV pseudocolor images in horizontal 4‑chamber long‑axis; 
A4–C4: LV global peak strain curves in longitudinal direction
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The LV PS-radial, PS-longitudinal and PDSR-radial 
declined significantly from controls through the 
T2DM(AF−) group to the T2DM(AF+) group (all 
p < 0.001). Compared to the control group, the LV PS-
circumferential, PSSR-radial and PDSR-circumfer-
ential were decreased in the T2DM(AF+) group (all 
p < 0.001) but preserved in the T2DM(AF−) group. 
The PSSR-longitudinal and PDSR-longitudinal were 
reduced in both patient groups, but these parameters 
were not significantly different between these groups.

Determinants of LV strains
After univariable linear regression analysis (Table  3), 
AF was significantly associated with all three directions 
of LV global PS (all p < 0.001). eGFR was significantly 
associated with LV PS-longitudinal and PS-circum-
ferential (p < 0.001 and = 0.013, respectively) (Fig.  2A). 
The univariable linear regression analyses for LV PSSR 
and PDSR are shown in Table  4. AF was significantly 
associated with LV PSSR-radial and all three directions 
of PDSR (all p < 0.1), and eGFR was associated with 

Table 1 Baseline characteristics of the study cohort

The values are the mean ± SD, Numbers in the brackets are percentages. T2DM, type 2 diabetes mellitus; AF, atrial fibrillation; BMI, body mass index; BSA, body surface 
area; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein cholesterol; 
LDL, low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor 
blocker

CHA(2)DS(2)-VASc score indicate a measure of the risk of stroke in which congestive heart failure, hypertension, diabetes mellitus, vascular disease, an age of 
65–74 years and female are each assigned 1 point, and an age of ≥ 75 years and previous stroke or transient ischemic attack are assigned 2 point [13]
* p < 0.05 versus controls
† P < 0.05 versus T2DM(AF−) group

Controls (n = 75) T2DM(AF−) (n = 182) T2DM(AF+) (n = 43)

Male, n (%) 38 (50.7) 102 (56.0) 19 (44.2)

Age (years) 57.0 ± 11.1 58.2 ± 9.1 67.1 ± 10.7*†

BMI (kg/m2) 22.97 ± 2.49 24.35 ± 3.47* 25.16 ± 4.06*

BSA (kg/m2) 1.71 ± 0.18 1.71 ± 0.16 1.68 ± 0.17

Heart rate (beats/min) 71.2 ± 11.4 72.6 (65.2, 81.9) 73.2 ± 14.9

SBP (mmHg) 120 (106, 125) 127 (119, 140)* 128 (120, 143)*

DBP (mmHg) 74.9 ± 8.5 80.2 ± 10.9* 78.6 ± 12.8

Diabetes duration (years) NA 6 (2.8, 12) 1 (0.5, 4.5)†

AF duration (months) NA NA 2 (1,12)

CHA(2)DS(2)‑VASc score NA NA 4 (2,5)

Laboratory data

FBG (mmol/L) 5.12 (4.78, 5.73) 7.30 (6.10, 8.95)* 8.32 (6.44, 11.78)*

HbA1c (%) NA 7.01 (6.40, 8.22) 6.45 (6.20, 7.3)†

Triglycerides (mmol/L) 1.38 ± 0.57 1.67 ± 1.23 1.61 ± 1.82

Total cholesterol (mmol/L) 4.51 ± 0.78 4.35 ± 0.96 3.72 ± 1.03*†

HDL (mmol/L) 1.36 ± 0.37 1.27 ± 0.40 1.16 ± 0.38*

LDL (mmol/L) 2.66 ± 0.67 2.59 ± 0.85 1.97 ± 0.77*†

eGFR (mL/min/1.73  m2) 88.57 ± 19.06 90.77 ± 18.93 73.69 ± 28.39*†

Medications, n (%)

Statin NA 49 (26.9) 5 (11.4)†

Biguanides NA 108 (59.3) 12 (37.3)†

Sulfonylureas NA 45 (24.7) 9 (20.5)

α‑Glucosidase inhibitor NA 74 (40.7) 5 (11.4)†

Insulin NA 60 (33.0) 6 (13.6)†

ACEI/ARB NA 46 (25.3) 15 (34.9)

β‑blocker NA 19 (10.5) 12 (27.9)†

Calcium channel blocker NA 54 (29.7) 13 (30.2)

Ia/Ic antiarrhythmics NA NA 4 (9.3)
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Table 2 CMR findings between controls, T2DM(AF−) group and T2DM(AF+) group

T2DM, type 2 diabetes mellitus; AF, atrial fibrillation; LV, left ventricular; M, mass; EDV, end diastolic volume; ESV, end systolic volume; SV, stroke volume; I, indexed to 
BSA; EF, ejection fraction; PS, peak strain; PSSR, peak systolic strain rate; PDSR, peak diastolic strain rate
* p < 0.05 versus controls
† p < 0.05 versus T2DM(AF−) group

Controls T2DM(AF−) T2DM(AF+) P value

LV geometry and function

LVEDVI (ml/m2) 72.60 ± 11.67 74.05 ± 15.04 77.18 ± 19.71 0.787

LVESVI (ml/m2) 26.01 ± 6.60 26.75 ± 8.62 31.50 ± 11.10*† 0.014

LVSVI (ml/m2) 46.59 ± 8.27 47.31 ± 9.89 45.68 ± 11.75 0.674

LVCI (L/min/m2) 3.32 ± 0.81 3.49 ± 0.79 3.15 ± 1.27 0.28

LVEF (%) 64.31 ± 6.16 64.26 ± 7.26 59.03 ± 7.13*†  < 0.001

LVMI (g/m2) 41.46 ± 8.56 48.40 ± 12.40* 49.29 ± 14.91*  < 0.001

LV remodeling index (g/mL) 0.58 ± 0.12 0.67 ± 0.18* 0.67 ± 0.21* 0.001

Myocardial strain

PS, %

 Radial 36.55 ± 7.25 33.29 ± 8.52* 26.66 ± 9.31*†  < 0.001

 Circumferential − 20.84 ± 2.61 − 19.94 ± 2.75 − 16.46 ± 4.50*†  < 0.001

 Longitudinal − 14.87 ± 2.44 − 12.91 ± 2.94* − 10.14 ± 3.60*†  < 0.001

PSSR, 1/s

 Radial 2.02 (1.65, 2.32) 1.75 (1.52, 2.31) 1.43 (1.16, 1.92)*†  < 0.001

 Circumferential − 1.06 (− 1.20, − 0.89) − 1.00 (− 1.15, − 0.90) − 0.99 (− 1.12, − 0.70) 0.366

 Longitudinal − 0.78 (− 0.88, − 0.70) − 0.73 (− 0.86, − 0.63)* − 0.69 (− 0.86, − 0.57)* 0.008

PDSR, 1/s

 Radial − 2.29 (− 3.02, − 1.88) − 2.04 (− 2.62, − 1.72)* − 1.77 (− 2.17, − 1.28)*†  < 0.001

 Circumferential 1.23 ± 0.29 1.14 ± 0.24 1.07 ± 0.73*†  < 0.001

 Longitudinal 0.87 (0.71, 1.02) 0.78 (0.66, 0.92)* 0.67 (0.51, 0.98)* 0.001

Table 3 Univariable and multivariable analysis between the magnitude of LV peak strain and clinical indices in T2DM patients

T2DM, type 2 diabetes mellitus; AF, atrial fibrillation; BMI, body mass index; SBP, systolic blood pressure; FBG, fasting blood glucose; HbA1c, glycated hemoglobin; 
HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; LV, left ventricular; PS, peak strain
a Variables with P < 0.1 in the univariable analysis as well as AF, age and sex were included in the multivariable analysis

PS-longitudinal PS-circumferential PS-radial

Univariable Multivariable Univariable Multivariable Univariable Multivariable

B p Ba p B p Ba p B p Ba p

AF 2.804  < 0.001 2.218  < 0.001 3.409  < 0.001 3.948  < 0.001 − 6.243  < 0.001 − 8.40  < 0.001

Age (years) 0.036 0.099 − 0.105 0.188 0.013 0.584 − 0.089 0.203 0.041 0.504 0.138 0.040

Sex (male = 1) 1.198 0.006 1.378 0.003 1.042 0.022 1.495 0.001 − 3.249 0.007 − 3.946 0.002

BMI (kg/m2) 0.069 0.275 0.096 0.136 − 0.015 0.933

HR (beats/min) 0.013 0.426 0.019 0.318 − 0.026 0.613

SBP (per 10 mmHg) 0.021 0.086 0.111 0.103 0.004 0.756 − 0.013 0.707

FBP (mmol/L) − 0.004 0.939 − 0.054 0.382 − 0.007 0.967

HbA1c (%) − 0.073 0.566 − 0.011 0.935 − 0.175 0.613

Triglycerides (mmol/L) 0.179 0.296 0.010 0.954 0.032 0.947

Total cholesterol (mmol/L) − 0.340 0.095 0.025 0.731 − 0.390 0.066 0.012 0.866 0.755 0.150

HDL (mmol/L) − 1.752 0.002 − 0.950  > 0.999 − 1.129 0.06 − 0.046 0.509 0.729 0.650

LDL (mmol/L) − 0.425 0.111 − 0.629 0.023 − 0.035 0.607 1.252 0.091 0.059 0.406

eGFR (mL/min/1.73  m2) − 0.043  < 0.001 − 0.031 0.004 − 0.028 0.013 − 0.050 0.465 0.038 0.208

Smoking 0.977 0.046 − 0.070 0.349 0.124 0.02 0.092 0.218 − 4.433 0.002 − 0.091 0.243

Diabetic duration (years) − 0.028 0.454 − 0.092 0.019 − 0.064 0.342 0.175 0.095 − 0.017 0.826
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LV PDSR-radial and PDSR-longitudinal (all p < 0.05) 
(Fig. 2B).

Multivariable linear regression analyses adjusting 
for confounders revealed that AF were independently 
associated with LV PS-longitudinal, -circumferential 
and -radial (β = 2.218, 3.948 and − 8.40, all p < 0.001), 
and eGFR was associated with LV PS-longitudinal 
(β = − 0.031, p = 0.004). AF was independently associ-
ated with PSSR-radial and -circumferential (β = − 0.345 
and 0.101, p = 0.002 and 0.014, respectively), PDSR-radial 
and -circumferential (β = 0.359 and − 0.14, p = 0.022 and 
0.003, respectively), but not with PSSR-longitudinal or 
PDSR-longitudinal. In addition, eGFR was indepen-
dently associated with LV PDSR-longitudinal (β = 0.003, 
p = 0.001). Detailed information is shown in Tables 3 and 
4.

Intra- and interobserver variability
The measured CMR parameters were highly reproduc-
ible on an intra- and inter-observer level (Table 5), which 
were reflected in the ICC (0.872–0.975) for the intra-
observer reproducibility and (0.812–0.942) for the inter-
observer reproducibility.

Discussion
The present study investigated the combined effects 
of paroxysmal AF on CMR-derived LV functional and 
strain parameters in T2DM patients with no coexistent 
cardiovascular events and examined the independent 

predictors of LV dysfunction. Our study showed that (1) 
T2DM patients demonstrated adverse LV remodeling 
and subclinical LV systolic and diastolic dysfunction even 
in the absence of AF. (2) When AF was present, T2DM 
patients showed a significant decrease in LVEF and a 
more severe reduction in systolic and diastolic strain 
indices than T2DM patients without AF and normal con-
trols. (3) After adjusting for confounding factors, AF and 
eGFR were independent predictors of reduced LV sys-
tolic and diastolic function in T2DM patients.

Diabetic cardiomyopathy is a common complication 
of diabetes and the most common cause of mortality. 
Several previous studies reported adverse LV remod-
eling and dysfunction in diabetes, which was demon-
strated by increased LVMI and diastolic dysfunction, 
with or without systolic dysfunction [14–16]. The role 
of CMR-FT in the detection of early cardiac dysfunc-
tion in diabetes has gained attention in recent years. 
Using the CMR-FT method, our results showed that 
absolute values of the LV radial and longitudinal PS and 
PDSR as well as longitudinal PSSR were significantly 
reduced in the T2DM patients without AF, but they had 
comparable LVEF to the controls. These results showed 
that this CMR measured LV dysfunction detected sub-
clinical contractile and diastolic dysfunction in T2DM; 
which further confirmed that the CMR-FT derived 
parameters are more sensitive in identifying subclini-
cal alterations in LV function. The precise underly-
ing mechanisms of T2DM on LV systolic and diastolic 

Fig. 2 Linear regression analysis between LV peak strain (A1–A3) or PDSR (B1–B3) and eGFR in T2DM patients. eGFR, estimated glomerular 
filtration rate; PS, peak strain; PDSR, peak diastolic strain rate
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dysfunction are not fully understood but are likely 
multifactorial and may be explained as follows. Hyper-
glycemia, metabolism-related disorders and insulin 
resistance trigger oxidative stress, an inflammatory 
response and thrombosis, which lead to calcium han-
dling disturbance, excitation–contraction coupling 

disorders, myocardial interstitial fibrosis and microvas-
cular abnormalities [17, 18].

Despite being a very frequent scenario in daily clini-
cal practice, descriptions of CMR-measured LV myo-
cardial abnormalities in AF patients are limited in the 
literature. A previous study showed that T1 mapping 

Table 4 Univariate and multivariate analysis between the magnitude of LV peak systolic or diastolic strain rate and clinical indices in 
T2DM patients

T2DM, type 2 diabetes mellitus; AF, atrial fibrillation; BMI, body mass index; SBP, systolic blood pressure; FBG, fasting blood glucose; HbA1c, glycated hemoglobin; 
HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; LV, left ventricular; PSSR, peak systolic 
strain rate; PDSR, peak diastolic strain rate
a Variables with P < 0.1 in the univariable analysis as well as AF, age and sex were included in the multivariable analysis

PSSR-longitudinal PSSR-circumferential PSSR-radial

Univariable Multivariable Univariable Multivariable Univariable Multivariable

B p Ba p B p Ba p B p Ba p

AF 0.028 0.402 0.069 0.071 0.06 0.124 0.101 0.014 − 0.352 0.003 − 0.345 0.002

Age (years) 0.001 0.39 − 0.033 0.650 0.002 0.248 − 0.022 0.753 − 0.007 0.143 0.021 0.755

Sex (male = 1) 0.007 0.771 − 0.019 0.774 0.001 0.732 − 0.050 0.435 0.008 0.539 − 0.068 0.336

BMI (kg/m2) 0.001 0.752 0.001 0.732 0.008 0.539

HR (beats/min) − 0.005  < 0.001 − 0.005  < 0.001 − 0.008  < 0.001 − 0.009  < 0.001 0.024  < 0.001 0.013 0.001

SBP (per 10 mmHg) 0.001 0.304 0.001 0.439 − 0.006 0.016 − 0.063 0.011

FBP (mmol/L) − 0.002 0.637 − 0.003 0.413 0.005 0.671

HbA1c (%) 0.004 0.584 0.001 0.874 − 0.011 0.662

Triglycerides (mmol/L) − 0.006 0.57 − 0.016 0.174 0.039 0.260

Total cholesterol (mmol/L) 0.001 0.918 0.012 0.363 − 0.024 0.555

HDL (mmol/L) 0.015 0.643 0.071 0.065 0.081 0.207 − 0.264 0.023 − 0.253 0.021

LDL (mmol/L) 0.005 0.759 0.017 0.344 0.006 0.120

eGFR (mL/min/1.73  m2) − 0.001 0.224 − 0.028 0.955 0.001 0.625

Smoking − 0.021 0.473 − 0.033 0.334 − 0.057 0.582

diabetic duration (years) 0.002 0.472  < 0.001 0.961  < 0.001 0.978

PDSR-longitudinal PDSR-circumferential PDSR-radial

Univariable Multivariable Univariable Multivariable Univariable Multivariable

B p Ba p B p Ba p B p Ba p

AF − 0.073 0.086 − 0.062 0.419 − 0.163 0.001 − 0.14 0.003 0.43 0.002 0.359 0.022

Age (years) − 0.001 0.374 0.004 0.032 − 0.004 0.06 0.037 0.609 0.007 0.173 − 0.054 0.487

Sex (male = 1) − 0.037 0.249 − 0.092 0.193 − 0.038 0.315 − 0.071 0.311 0.218 0.043 0.261 0.024

BMI (kg/m2) 0.001 0.775 − 0.009 0.106 0.002 0.157

HR (beats/min) 0.006  < 0.001 0.005 0.001 0.007  < 0.001 0.006  < 0.001 − 0.006 0.193 − 0.023 0.748

SBP (per 10 mmHg) − 0.001 0.311 − 0.001 0.553 0.005 0.11 0.068 0.039

FBP (mmol/L) 0.002 0.65 0.004 0.394 0.005 0.739

HbA1c (%) − 0.001 0.898 0.002 0.847 0.002 0.939

Triglycerides (mmol/L) − 0.022 0.085 − 0.115 0.103 − 0.014 0.333 0.009 0.824

Total cholesterol (mmol/L) 0.016 0.298 0.028 0.108 − 0.093 0.064 0.115 0.436

HDL (mmol/L) 0.046 0.275 0.107 0.031 0.092 0.048 − 0.121 0.394

LDL (mmol/L) 0.033 0.094 0.101 0.162 0.038 0.096 0.039 0.579 − 0.159 0.015 − 0.155 0.029

eGFR (mL/min/1.73  m2) 0.002 0.006 0.003 0.001 0.001 0.141 − 0.006 0.018 − 0.042 0.595

Smoking − 0.005 0.892 0.015 0.742 0.217 0.082 − 0.017 0.835

Diabetic duration (years) 0.004 0.094 0.106 0.144 0.004 0.249 − 0.012 0.189
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detected LV myocardial abnormalities and correlated 
well with myocardial fibrosis in patients with AF and 
combined cardiovascular diseases [19, 20]. In AF patients 
without coexisting cardiovascular disease, a series of 
studies showed subclinical LV dysfunction manifested 
as impaired strain indices [21, 22], diffusion myocardial 
fibrosis (higher native T1 [21] and lower post-contrast T1 
[23]), and reduced myocardial energetics using 31P mag-
netic resonance spectroscopy [24]. Although the mean 
LVEF of all T2DM patients enrolled was greater than 50% 
in our study, we found that patients with T2DM(AF+) 
showed a significantly higher LVESVI and lower LVEF 
than normal controls and patients with T2DM(AF−). 
This result revealed that the damage due to AF in T2DM 
patients already existed even when the LVEF was at a 
relatively normal level. Moreover, the T2DM(AF+) group 
showed a more remarkedly decreased LV global PS and 
PDSR in three directions, and PSSR-radial and longitu-
dinal, and some of these parameters were lower than 
T2DM patients without AF. The mechanism for cardiac 
impairment in AF may be hemodynamic or nonhemo-
dynamic. The deleterious hemodynamic effect of AF is 
explained by several pathophysiological mechanisms, 
such as loss of effective atrial contraction, shortening LV 
diastolic filling by tachycardia, or heart rhythm irregu-
larity causing neurohumoral activation [25]. The non-
hemodynamic deterioration effect was functional and 
structural alterations at the cellular level, such as reduced 
 Ca2+ homeostasis (indicating negative inotropic effects), 
prolonged action potential duration and decreased sar-
comere regularity (impaired cardiac contractility) [26]. 
In addition, myocardial perfusion is impaired in patients 

with AF, and it is related to LV systolic and diastolic dys-
function [22].

When T2DM and AF are combined, patients have a 
significantly higher risk for cardiovascular death, over-
all mortality and heart failure [27, 28], but available data 
on the AF-related influence on LV function in T2DM 
patients are scarce. Although there was a shorter diabetic 
duration, less insulin using and lower HbA1c level, the 
cardiac dysfunction was more severe in the T2DM(AF+) 
group than the T2DM(AF−) group. Therefore, we spec-
ulate that the myocardial impairment due to diabetes 
in T2DM(AF+) is lower, and the more severe cardiac 
dysfunction in this patient group may be due to the 
superposition effect of AF. As explained above, T2DM 
and AF each impair the heart in their own ways. When 
T2DM is comorbid with AF, these superimposed fac-
tors in the myocardium may be amplified and promote 
the aggravation of myocardial contractility and relaxa-
tion impairment. Effective treatment aimed at prevent-
ing the occurrence and timely management of AF in 
patients with diabetes may improve survival outcomes, 
in which sodium dependent glucose cotransporter 2 
inhibitors (SGLT2i) significantly reduced the incidence of 
AF [29] and were associated with a lower risk of hospi-
talization for heart failure [30]. Several studies revealed 
that rhythm control in AF patients had reduced mortal-
ity, better quality of life, and reverse remodeling with 
improved LV function and cardiovascular outcomes [20, 
31, 32]. Therefore, once T2DM is diagnosed, clinicians 
and patients should pay attention to the prevention, 
detection and intervention of AF.

In addition, we identified that patients with 
T2DM(AF+) had lower eGFR level than patients with-
out AF and controls. Several previous studies showed 
that kidney function (lower eGFR and proteinuria) inde-
pendently contributed to a higher risk of incident AF, 
and incident AF was also independently associated with 
a higher risk of developing end-stage renal disease and 
the development and progression of chronic kidney dis-
ease at earlier stages, furthermore, both of these condi-
tions were associated with a higher risk of heart failure 
[33–35]. As a cross-sectional study, we could not explore 
the casualty between kidney dysfunction and the occur-
rence of AF. However, our results revealed that eGFR was 
independently associated with the magnitude of LV lon-
gitudinal PS and PDSR in T2DM patients. We inferred 
that renal dysfunction had an adverse effect on LV myo-
cardial deformation and cardiac function in T2DM 
patients. Various mechanisms, including hemodynamic 
disturbance, neuroendocrine system activation, oxida-
tive stress, anemia and metabolism remodeling, lead to 
myocardial injury in these patients and result in adverse 
cardiac outcomes during the process of chronic kidney 

Table 5 Intra‑and inter‑observer variability of LV global strain 
and strain rate

LV, left ventricular; PS, peak strain; PSSR, peak systolic strain rate; PSDR, peak 
diastolic strain rate. ICC, intraclass correlation coefficient; CI, confidence interval

Intra-observer Inter-observer

ICC 95%CI ICC 95%CI

LV PS

Radial 0.936 0.857–0.972 0.902 0.831–0.953

Circumferential 0.975 0.948–0.986 0.931 0.861–0.972

Longitudinal 0.973 0.918–0.975 0.936 0.861–0.965

LV PSSR

Radial 0.872 0.781–0.973 0.842 0.725–0.923

Circumferential 0.973 0.949–0.983 0.869 0.747–0.942

Longitudinal 0.891 0.769–0.953 0.812 0.7521–0.913

LV PDSR

Radial 0.931 0.872–0.959 0.812 0.695–0.892

Circumferential 0.958 0.947–0.979 0.942 0.858–0.974

Longitudinal 0.925 0.837–0.972 0.819 0.692–0.912
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dysfunction [36, 37]. Therefore, it is of great importance 
to monitor and intervene in renal dysfunction in patients 
with T2DM, especially in those with coexisting AF.

Limitations
There are some limitations in the present study. First, this 
study was retrospective in nature, and the sample size 
of patients with paroxysmal AF suitable for the present 
study was small. Therefore, potential selection bias may 
be present, and the results require further validation. 
Second, this study was a cross-sectional study that could 
not establish causality between T2DM and AF, and future 
studies with long-term follow-up are needed to compre-
hensively investigate the evolution of cardiac remodeling 
and function over time with AF initiation and progres-
sion. Finally, we did not take into account the duration 
and severity of AF, which could potentially influence LV 
myocardial remodeling. We hope to investigate these fac-
tors in our forthcoming research efforts.

Conclusions
AF had an additive deleterious effect on LV function and 
global strains in patients with T2DM. It should receive 
more attention when patients are diagnosed with T2DM, 
and proactive prevention, regular detection and early 
intervention of AF may be beneficial for T2DM patients.
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