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Abstract
Background Gestational diabetes mellitus (GDM) and type 2 diabetes mellitus (T2DM) share many 
pathophysiological factors including genetics, but whether epigenetic marks are shared is unknown. We aimed to test 
whether a DNA methylation risk score (MRS) for T2DM was associated with GDM across ancestry and GDM criteria.

Methods In two independent pregnancy cohorts, EPIPREG (n = 480) and EPIDG (n = 32), DNA methylation in 
peripheral blood leukocytes was measured at a gestational age of 28 ± 2. We constructed an MRS in EPIPREG and 
EPIDG based on CpG hits from a published epigenome-wide association study (EWAS) of T2DM.

Results With mixed models logistic regression of EPIPREG and EPIDG, MRS for T2DM was associated with GDM: odd 
ratio (OR)[95% CI]: 1.3 [1.1–1.8], P = 0.002 for the unadjusted model, and 1.4 [1.1–1.7], P = 0.00014 for a model adjusted 
by age, pre-pregnant BMI, family history of diabetes and smoking status. Also, we found 6 CpGs through a meta-
analysis (cg14020176, cg22650271, cg14870271, cg27243685, cg06378491, cg25130381) associated with GDM, and 
some of their methylation quantitative loci (mQTLs) were related to T2DM and GDM.

Conclusion For the first time, we show that DNA methylation marks for T2DM are also associated with GDM, 
suggesting shared epigenetic mechanisms between GDM and T2DM.
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Introduction
Type 2 Diabetes Mellitus (T2DM) affects 10.5% of the 
global population in the age group 20 to 79 years. T2DM 
threatens health of the individuals and healthcare sys-
tems due to its numerous complications and high health-
care cost and is among the top ten causes of death in the 
world [1].

During pregnancy, insulin resistance increases to main-
tain adequate glucose flow to the offspring. However, if 
the pancreatic beta cells cannot compensate with suf-
ficiently high insulin secretion, this can result in hyper-
glycaemia and Gestational Diabetes Mellitus (GDM), 
which is defined by hyperglycaemia with first onset dur-
ing pregnancy [2]. GDM increases the risk of pregnancy 
complications such as pre-eclampsia, caesarean section, 
neonatal hypoglycaemia, preterm birth, and foetal mac-
rosomia. Moreover, GDM severely increases the future 
T2DM risk in the mother [3]. Although the prevalence of 
GDM is increasing globally, it varies depending on popu-
lation characteristics and the diagnostic criteria used [4].

Epigenetics is the study of changes in gene expression 
that are not caused by changes in the DNA sequence. 
Some epigenome-wide association studies (EWAS) sug-
gest that epigenetic mechanisms contribute to the patho-
genesis of T2DM [5–7]. Genetic risk scores (GRS) have 
been increasingly used to assess disease risk, such as for 
T2DM [8, 9]. Similarly, methylation risk scores (MRS) 
are increasingly studied, to assess associations with out-
comes of interest such as some cancers and kidney dis-
ease [10], and show promising potential as a tool to aid 
the prediction of T2DM and to understand gene-envi-
ronment interactions. Schrader et al. showed that MRS 
separated T2DM subjects into different groups and were 
associated with diabetic complications like cardiovascu-
lar disease, chronic kidney disease and retinopathy [11].

Despite similar genetics and pathophysiology between 
GDM and T2DM [12], genetics only explain a small 
proportion of overall T2DM risk, and environment is 
known to play an important role for epigenetics. How-
ever, whether epigenetic marks are common between 
GDM and T2D has not been reported previously. Epi-
genetics marks common for GDM and T2DM may help 
us understand these pathological mechanisms better in 
order to prevent, diagnose or improve treatment of GDM 
and T2DM. We aimed to test whether an MRS for T2DM 
is associated with a GDM across ancestry and GDM 
criteria.

Methods
Study population
The EPIPREG cohort
A subgroup of 480 women was selected from the STORK 
Groruddalen (STORK G) pregnancy cohort. STORK 
G included 823 healthy women from different ethnic 

origins (European, South Asian, African, Middle East-
ern and South American) who attended three different 
Child Health Clinics in the area of Groruddalen, Oslo, 
Norway, during the 2008–2010 period [13]. Ethnic origin 
was defined by either the individual’s country of birth or 
their mother’s country of birth if the latter was born out-
side of Europe [17]. The EPIPREG subgroup has a total of 
312 European subjects (EPIPREG_EU), whereof 73 were 
diagnosed with GDM, and 168 South Asians (EPIPREG_
SA), whereof 68 were diagnosed with GDM. European 
and South Asian ancestry was determined by genetic 
principal components [14]. Fasting blood samples were 
collected, and a 75 g oral glucose tolerance test (OGTT) 
was offered to all women (universal testing) at week 28 ± 2 
of pregnancy. For the present study GDM was classified 
according to the slightly modified International Asso-
ciation of the Diabetes and Pregnancy (IADPSG) criteria 
(fasting glucose ≥ 5.1 mmol/l and/or 2-hour glucose ≥ 8.5 
mmol/l, as 1-h glucose values were not available).

The Norwegian Regional Committee for Medi-
cal Health Research Ethics South East approved the 
STORK-G study including genetic and epigenetic data 
(ref. number 2015/1035). Written informed consent from 
all participants was obtained before any study-related 
procedure.

EPIDG cohort
A total of 32 (16 GDM, 16 non-GDM) pregnant women 
were selected from EPIDG cohort, which started in 2019 
and is still recruiting participants. The EPIDG cohort 
has a total of 230 Mediterranean (South European) preg-
nant women who attended the Unit of Diabetes and 
Pregnancy at University Hospital Virgen de la Victoria, 
Málaga, Spain. All participants gave their consent to par-
ticipate in the study. GDM criteria followed a two-step 
strategy from the National Diabetes Data Group (NDDG) 
guideline [15]. The first step was a screening using the 
O’Sullivan test (50  g glucose overload) between 24 and 
28 weeks. Then an oral glucose tolerance test (OGTT)-
100gr was performed on those women with a positive 
result in the O’Sullivan test (≥ 0.7.8 mmol/L). GDM was 
diagnosed if glucose values were for the OGTT-100 
higher than the threshold, at least at two points: fast-
ing > 5.8 mmol/l, after 1  h > 10.6 mmol/l, after 2  h > 9.2 
mmol/L, after 3  h > 8.0mmol/l. Pregnant women with 
normal OGTT-100gr were considered as controls (non-
GDM). The 32 samples were selected based on the avail-
ability of blood samples and matched by age, gestational 
age and pre-pregnant BMI. The study was approved by 
the Institutional review board at the Hospital Universita-
rio Virgen de la Victoria, Málaga.
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Samples extraction, DNA isolation and bisulfite conversion
In both cohorts, samples were collected in gestational 
week 28 ± 2. The samples were either aliquoted and bio-
banked or subject to routine laboratory analyses. In the 
EPIPREG sample, DNA from peripheral blood leuko-
cytes was extracted subsequently throughout the data 
collection, at the Hormone Laboratory, Oslo University 
Hospital, using a salting out procedure [16], and stored 
at -80ºC. EZ DNA methylation TM Kit (ZYMO Research, 
Tustin, CA, USA) was used for the bisulphite conversion 
of DNA. In EPIDG cohort, DNA from peripheral blood 
leukocytes was extracted using DNA Blood Mini Kit 
(Quiagen, Hiden, Germany). Epitect Bisulfite Kit (Qia-
gen, Germany) was used for bisulphite conversion. DNA 
methylation in both cohorts was quantified with Infinium 
MethylationEPIC BeadChip (Illumina, San Diego, USA).

Methylation values extraction
Raw data from both studies were analysed in R. In 
EPIPREG, the Meffil R package (https://cran.r-project.
org/) was used for quality control (QC), normalization 
and reporting of B-values [14]. During the QC procedure 
implemented in Meffil R package, we removed six sam-
ples who were considered outliers from the methylated to 
unmethylated ratio comparison (> 3SD), one sample that 
was an outlier in control probes bisulfite 1 and 2 (> 5SD), 
and one sample due to sex discrepancy (predicted sex 
outlier > 5 SD). Probes with a bead count fewer than three 
and dectection p-value < 0.01. In total 472 of the 480 sam-
ples and 864,560 probes passed the QC. Functional nor-
malization was implemented in Meffil R, which takes into 
account potential batch effects such as slide, row and col-
umns. Proportions of blood cells (namely, CD8T, CD4T, 
NK, β-cells, monocytes, and neutrophils) were calculated 
using the Houseman method [27] during the QC [17].

After processing, 472 of the 480 available individuals 
remained and 810.266 in the EPIPREG sample passed 
QC. In EPIDG, the full sample and 741.479 probes 
passed QC (Supplementary Fig. 1).

Methylation risk score
To construct the weighted DNA MRS for T2DM in our 
sample we used summary data for the CpGs sites discov-
ered in an EWAS of T2DM in five prospective European 
cohorts (n = 5.859) [7, 18–21]. The regression coefficients 
for the EWAS of T2DM was based in β-values. We cal-
culated MRS for each of the discovered CpG sites avail-
able in our two cohorts. Due the QC filters of CpGs in 
each cohort only 42 of 72 CpG could be included in the 
MRS (Supplementary Table 1). MRS was constructed by 
multiplying the regression coefficient from the EWAS of 
T2DM with individual β-values in EPIPREG and EPIDG 
(EPIPREG-EU, EPIPREG-SA and EPIDG). Thereafter we 
summarized the individual score for each of the 42 CpGs 

sites to obtain the MRS. Figure 1 illustrates the workflow, 
including development of the MRS and the statistical 
analysis.

Statistical analysis
All the statistical analyses were performed using Rstudio 
(3.4.4). Clinical variables were compared between GDM 
and non-GDM in each group separately (EPIPRE_EU, 
EPIPREG_SA and EPIDG), depending on if the variable 
was normally distributed or not, t-test or Whitney U test 
were used for the continuous variable. A logistic mixed 
model regression was used to elucidate if MRS was asso-
ciated with GDM in our three groups. Linear mixed 
model regressions were performed to test the association 
between MRS and continuous variables such as HOMA-
IR, C-peptide, fasting glucose and 2 h glucose level, using 
a Bonferroni corrected threshold p < 0.0125 (0.05/4). 
We used the R packages lme4 and lmerTest [22] to per-
form mixed models regression. In these models, ances-
try (European, South Asian, Mediterranean (EPIDG)) 
was treated as a random intercept to overcome potential 
ancestry-related differences in DNA methylation. We 
performed an unadjusted and an adjusted model by age, 
pre-pregnant BMI, family history of diabetes and smok-
ing status, since these are covariates that are associated 
with both epigenetic marks and gestational diabetes.

To identify individual CpG sites associated with GDM 
in the studied populations, we performed logistic regres-
sions for each CpGs used in the MRS across the three 
groups, followed by a fixed effects meta-analysis of the 
three groups for each CpG site using METAL [23]. Since 
random-effect models may bias the results if smaller 
studies have a large effect compared to well-performed, 
larger studies [24], we decided to use a fixed-effect model 
for a conservative approach, where the case-control 
design in EPIDG would not count more than the popula-
tion-based design in EPIPREG.

mQTLs and phenotypes associated
Due to low statistical power for mQTL analysis in 
EPIPREG, we performed look-ups in GoDMC of the 
significant CpGs obtained in the meta-analysis to iden-
tify methylation quantitative trait loci (mQTL) to see if 
these methylation sites were influenced by genetic vari-
ants. GoDMC include Cis and trans meta-analysis results 
from genome-wide scans of 420.509 DNA methylation 
sites. This information come from several projects, with 
the aim to share data on genetic basis of DNA meth-
ylation variation. GoDMC provides a list of SNPs that 
have been associated with the CpG of interest. We used 
the LDlink-SNPclip tool [25] to identify SNPs in linkage 
disequilibrium (r2 > 0.8, MAF = 0.01) and the selected 
populations were European and South Asians. To assess 
relevance of the mQTLs to diabetes related phenotypes, 

https://cran.r-project.org/
https://cran.r-project.org/
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we performed explorative look-ups in Phenoscanner [26] 
of phenotypes nominally associated with the mQTLs. 
Phenoscanner is a database holding publicly available 
results from large-scale GWAS. Although the default 
threshold used by Phenoscanner is p < 1 × 10− 5, we also 
looked up phenotypes with p-value < 0.05 due to the 
explorative nature of this look-up [27].

Results
Characteristics of the samples
The clinical characteristics of EPIPREG and EPIDG are 
represented in Table  1. In the EPIPREG cohort, non-
GDM and GDM women differed significantly in pre-
pregnant BMI, fasting glucose (Gluc0), 2 h glucose after 
OGTT (Gluc2), systolic blood pressure (SBP), glycosyl-
ated hemoglobin A1C (HbA1C), Homeostatic Model 
Assessment for insulin resistance (HOMA-IR), triglycer-
ides (TAG), cholesterol and HDL across ethnicities. Only 
fasting glucose levels differed significantly between GDM 
cases and controls in the EPIDG cohort (Table 1).

Methylation risk score
In the mixed models regression, MRS for T2D lev-
els were higher in women with GDM compared to 

non-GDM (adjusted model O.R: 1.4, 95%C.I: 1.10–1.74, 
P.val = 0.00014). For continuous traits, the MRS for 
T2D was significantly associated only with fasting glu-
cose in the adjusted linear mixed models (P.val = 0.0086) 
(Table  2). When assessing EPIDG, EPIPREG Europeans 
and EPIPREG South Asians separately, MRS for T2D 
was associated with higher OR for GDM in EPIPREG 
South Asians, and followed the same direction of effect 
in EPIPREG Europeans and EPIDG although not statisti-
cally significant (Fig. 2; Supplementary Table 2).

mQTLs for CpG sites common between T2DM and GDM
In the meta-analysis of the 42 CpG sites included in the 
MRS for T2DM, six CpGs were significantly associated 
with GDM (FDR < 0.05) (Table 3). All the identified CpG 
sites, except cg25130381, had significant mQTLs from 
lookups in GoDMC. A total of 23 mQTLs were found 
(supplementary Table 3). According to lookups in Phe-
noscanner, only two CpGs had mQTLs associated at 
p-value < 1 × 10− 5 with phenotypes related to immuno-
globulin G, Rheumatoid arthritis, and body composition 
(Supplementary Table 4). However, when using a liberal 
threshold (p-value < 0.05), we observed some mQTLs 
possibly related to diabetes related phenotypes (Table 4).

Fig. 1 Workflow of the methodology followed to construct the MRS and the rest of the statistical analysis. preBMI: previous pregnancy BMI, Fam his 
diabetes: family history of diabetes. Blue Line indicate the in-house data vs. the public data used in our study
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Discussion
This is the first study to show that an MRS for T2DM is 
associated with GDM across our two cohorts, diagnostic 
criteria and ancestry. In addition, the MRS for T2DM was 
associated with higher fasting glucose levels. Six CpGs of 
the 42 included in the MRS, were significantly associ-
ated with GDM across EPIPREG Europeans, EPIPREG 
South Asians and EPIDG Mediterranean. We identified 
23 mQTLs linked to the 6 CpG sites. Some of them were 
associated with T2DM and GDM with nominal signifi-
cance in lookups of GWAS summary data.

GDM and T2DM share many pathophysiological fac-
tors, but the exact underlying mechanisms are largely 
unknown. There is a need to know how T2DM and GDM 
are linked to improve the prevention and thus avoid met-
abolic complications in the future. Genome-wide asso-
ciation studies (GWAS) have been used to investigate the 
potential link between GDM and T2DM [12], but none 
have so far tested whether GDM and T2DM share epi-
genetic marks. An increasing number of studies suggest 

that environmental factors are associated with epigenetic 
marks and that those marks may be important to under-
stand interactions between genetics and environmental 
factors. A few EWAS of GDM in maternal peripheral 
blood are published so far, but the data is not sufficient 
for an MRS for GDM due to heterogeneity in diagnosis 
criteria used as well as their small sample sizes [28–31].

Our MRS was constructed from a meta-analysis of five 
European cohorts that identified CpGs associated with 
incident T2DM [18]. According to the bibliography of 
the genes included in the MRS, some of them were asso-
ciated with glucose metabolism [32, 33], T2DM, type 1 
diabetes mellitus and GDM [34]. ATP binding cassette 
subfamily G member 1 (ABCG1) is a gene involved in 
macrophage cholesterol and phospholipid transport and 
may regulate cellular lipid homeostasis. ABCG1 has been 
associated with diabetes and metabolic syndrome [35]. 
Furthermore, some studies show that GDM affects cho-
lesterol homeostasis through this gene, therefore it could 
have a role in GDM and cardiovascular events [36].

Table 1 Characteristics of the study subjects in each cohort
EPIPREG EPIDG

Cohorts European n = 312 South Asian n = 168
Variable non-GDM 

(n = 237)
GDM 
(n = 73)

P.val non-GDM 
(n = 99)

GDM 
(n = 69)

P.val Non-GDM 
(N = 16)

GDM 
(N = 16)

P-
value

Age 30.08 (4.47) 30.14 (4.95) 0.9421 27.87(4.512) 28.69(4.68) 0.2661 34.1(4.5) 33.81(4.1) 0.808
Gestational age (weeks) 28.10 (12.5) 28.04(13.83) 0.716 27.5 (10.2) 27.8(12.05) 0.194 27.56(2.1) 28.06 ± 2.8 0.579
O’Sullivan (mg/dl) 160.7(16.3) 172.94(22.2) NS
Fasting glucose (mmol/l) 4.48 (0.32) 5.461 (0.59) 2.2E-16 4.57(0.322) 5.5(0.526) 2.2E-16 4.55(0.4) 4.96(0.6) 0.036
2 h gGlucose (mmol/l) 5.7(1.11) 7.038 (0.98) 3.9E-09 5.94(0.451) 7.064(0.542) 6.05E-06
prepregnant BMI (kg/m2) 24.077 (5.01) 26.27 (6.05) 0.00503 23.004(3.215 24.84(4.446) 0.0064 25.5(4.19) 25.8(4.5) 0.862
SBP (mmHg) 105.88(9.46) 110.07(9.19) 0.001 99.24(8.53) 103.94(8.25) 0.001 104.25(9.9) 111.4(15.4) 0.131
DBP (mmHg) 67.81(6.99) 69.68(7.22) 0.027 65.48(7.68) 67.08(5.78) 0.075 69.1(8.2) 70.1(7.8) 0.71
HbA1C (%) 5.037 (0.255) 5.22(0.338) 4.3E-05 5.19(0.313) 5.4 (0.333) 5.31E-05 5.1(0.28) 5.3(0.37) 0.151
HOMA-IR 1.55(1.12) 1.936(0.922) 0.0014 1.694(0.678) 2.277(0.512) 6.02E-06 1.6(0.7) 2.1(1.2) 0.147
TAG (mmol/l) 1.94 (0.721) 1.969(0.68) 0.82 1.997(0.583) 2.08(0.681) 0.42 2.2(0.6) 2.2(0.5) 0.829
Total cholesterol (mmol/l) 6.51(1.093) 6.016(1.05) 0.0007 6.186(1.025) 5.753(1.027) 0.0084 7.04(1.2) 6.7(1.3) 0.446
HDL (mmol/l) 1.97 (0.412) 1.835(0.408) 0.0112 1.941(0.436) 1.80(0.451) 0.0467 2.1(0.47) 2.01(0.4) 0.424
Smoking (Yes/No) 71/45 28/45 0.046 2/95 1/67 1.21E-15 0/16 0/16 0.310
BMI: body mass index. SBP: systolic blood pressure. DBP: diastolic blood pressure. HDL: high density lipoprotein cholesterol. TAG: triacylglycerol. GDM: Gestational 
Diabetes Mellitus group. Non-GDM: non- Gestational Diabetes Mellitus group

Table 2 Association between the MRS for T2D and phenotypes in EPIPREG and EPIDG
Model Estimate Std.Error df t.value P.val

HOMA-IR Unadjusted 0.989 0.802 0.0479 1.23 2.18E-01
C-peptide 0.422 0.167 0.0483 2.535 0.0116
Fasting glucose 0.8351 0.2726 0.0279 3.064 0.0024
2 h glucose 0.751 0.707 0.451 1.063 0.2882
HOMA-IR Adjusted* 0.416 0.777 0.0468 0.536 0.592
C-peptide 0.254 0.152 0.0478 1.67 0.0964
Fasting glucose 0.707 0.268 0.0313 2.641 0.00869
2 h glucose 0.389 0.701 0.512 0.568 0.57
HOMA-IR: Homeostatic Model Assessment of Insulin Resistance. Gluc.0: fasting glucose; 2h Gluc: glucose level after 2h from the OGTT. *Model adjusted for age, 
prepregnant BMI, family history of diabetes and smoking status
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The mQTLs were nominally associated with T2DM and 
GDM in lookups, but were interestingly also associated 
with phenotypes related to body composition, immu-
noglobulin G and autoimmune diseases associated with 
inflammation, such as rheumatoid arthritis and Crohn’s 
disease. These observations may suggest a pleiotropic 
relationship between these mQTLs for diabetes related 
CpG sites, but further exploration is necessary to assess 
the relevance and understand potential mechanisms.

The strengths of this study include the combination 
of two independent cohorts with case-control design in 
EPIDG which maximizes differences in GDM and non-
GDM versus the population-based design in EPIPREG 
which includes the full range of values including less 
severe GDM. This combined with the two ancestries in 

EPIPREG, strengthen the evidence that these CpG sites 
may be important to understand the common epigenetic 
grounds of GDM and T2D. Limitations include limited 
statistical power in analysis of each sample separately and 
in associations between separate CpG sites and GDM. 
Still, the MRS for T2D was associated with GDM in 
EPIPREG South Asians, with the same direction of effect 
in EPIPREG Europeans and EPIDG. Further, an MRS for 
GDM based on an EWAS of GDM instead could have 
given a more precise prediction of GDM. Unfortunately 
published EWAS of GDM are still few and have small 
sample sizes which would result in a less robust MRS 
[40–42]. Also, our cross-sectional study design cannot 
entangle whether GDM status influence DNA methyla-
tion or vice versa. Hence this MRS should be tested in 
early pregnancy to be considered as potential predictor 
of GDM.

Genetic risk score reflects the inherited risk but have 
shown poor performance in complex disease such as dia-
betes. MRS is thought to reflect environmental triggers 
of the disease or phenotype and help to understand dis-
ease mechanism. Recent studies have shown the utility 
of both GRS and MRS for clinical prediction of different 
phenotypes [43]. Although GRS is being used in multi-
ple diseases, their use present some limitations [44]. For 
example, GRS doesn’t reflect the effect of the environ-
ment on the phenotype whereas MRS incorporate both 

Table 3 List of the 6 CpGs significantly associated with GDM 
across the three samples (EPIPREG_EU, EPIPREG_SA, EPIDG)
CpG* Effect StdErr Di-

rec-
tion

FDR Genes

cg14020176 1364.7387 334.8719 +++ 0.00192906 SLC9A3R1
cg22650271 2288.3955 612.9638 +++ 0.003969 SYNGR1
cg14870271 10.0163 2.7782 +++ 0.0043652 LGALS3BP
cg27243685 2434.2168 716.9641 +++ 0.00576156 ABCG1
cg06378491 3200.9735 938.6366 +++ 0.00576156 MAP4K2
cg25130381 106,813,769 38646.6933 +++ 0.039984 SLC9A1
*This model was performed using β-values

Fig. 2 Boxplot MRS for each group: red (SA_nonGDM)- EPIPREG south Asians non-GDM, Yellow (SA_GDM)- EPIPREG South Asians GDM, Green (EU_non-
GDM)- EPIPREG Europeans non-GDM, Light Blue (EU_GDM): EPIPREG Europeans GDM, Dark Blue (M_nonGDM)- EPIDG (Mediterraneas) non-GDM, Pink 
(M_GDM)- EPIDG GDM
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genetic factors and environmental exposures and their 
variation over time. Undoubtedly, combining both scores 
would enhance their clinical application for predicting 
or stratification of risk subjects. The MRS level differed 
between EPIPREG and EPIDG cohort, suggesting that 
the MRS may be population specific. Although we can-
not rule out that part of these differences may be due to 
the batch or handling effect, they could also be a result of 
the EPIDG control group not having negative O’sullivan 
test, while non-GDM women in EPIPREG had normal 
fasting and 2 h glucose values (1 h glucose OGTT miss-
ing in EPIPREG). Further, the populations in EPIPREG 
and EPIDG differ largely in many aspects, including the 
severity of GDM.

To conclude, we are the first to show that MRS for 
T2DM is significantly associated with GDM, suggest-
ing shared epigenetic mechanisms between GDM and 
T2DM. This may help explain some of the molecular 
mechanisms mediating the increased risk of develop-
ing T2DM after GDM. Future research should compare 
whether GRS and MRS or a combination of the two pro-
vide better predictions of GDM and T2DM and explore 
how transcription of the identified genes impact meth-
ylation on nearby genes. Furthermore, understanding the 
role of the genetic variants in disease development may 
help to improve prevention and management of both 
GDM and T2DM in the future.
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