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Abstract 

Background Recent guidelines propose N-terminal pro-B-type natriuretic peptide (NT-proBNP) for recognition 
of asymptomatic left ventricular (LV) dysfunction (Stage B Heart Failure, SBHF) in type 2 diabetes mellitus (T2DM). 
Wavelet Transform based signal-processing transforms electrocardiogram (ECG) waveforms into an energy distribu-
tion waveform (ew)ECG, providing frequency and energy features that machine learning can use as additional inputs 
to improve the identification of SBHF. Accordingly, we sought whether machine learning model based on ewECG 
features was superior to NT-proBNP, as well as a conventional screening tool—the Atherosclerosis Risk in Communi-
ties (ARIC) HF risk score, in SBHF screening among patients with T2DM.

Methods Participants in two clinical trials of SBHF (defined as diastolic dysfunction [DD], reduced global longitudinal 
strain [GLS ≤ 18%] or LV hypertrophy [LVH]) in T2DM underwent 12-lead ECG with additional ewECG feature and echo-
cardiography. Supervised machine learning was adopted to identify the optimal combination of ewECG extracted 
features for SBHF screening in 178 participants in one trial and tested in 97 participants in the other trial. The accuracy 
of the ewECG model in SBHF screening was compared with NT-proBNP and ARIC HF.

Results SBHF was identified in 128 (72%) participants in the training dataset (median 72 years, 41% female) 
and 64 (66%) in the validation dataset (median 70 years, 43% female). Fifteen ewECG features showed an area 
under the curve (AUC) of 0.81 (95% CI 0.787–0.794) in identifying SBHF, significantly better than both NT-proBNP (AUC 
0.56, 95% CI 0.44–0.68, p < 0.001) and ARIC HF (AUC 0.67, 95%CI 0.56–0.79, p = 0.002). ewECG features were also led 
to robust models screening for DD (AUC 0.74, 95% CI 0.73–0.74), reduced GLS (AUC 0.76, 95% CI 0.73–0.74) and LVH 
(AUC 0.90, 95% CI 0.88–0.89).

Conclusions Machine learning based modelling using additional ewECG extracted features are superior to NT-
proBNP and ARIC HF in SBHF screening among patients with T2DM, providing an alternative HF screening strategy 
for asymptomatic patients and potentially act as a guidance tool to determine those who required echocardiogram 
to confirm diagnosis.

Trial registration LEAVE-DM, ACTRN 12619001393145 and Vic-ELF, ACTRN 12617000116325
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Background
Heart failure (HF) may be the most common cardio-
vascular cause of death among patients with type 2 dia-
betes mellitus (T2DM) [1]. More than 25% of patients 
with T2DM are reported to have stage B HF (SBHF, also 
known as asymptomatic LVD) and this is even more 
prevalent among patients with long-standing diabetes or 
poor glycemic control [3–5]. HF is a progressive disorder 
[2], preceded by subclinical left ventricular dysfunction 
(LVD), detectable with global longitudinal strain (GLS), 
diastolic indices or LV mass [1]. The reliable detection of 
SBHF would allow earlier initiation of cardioprotective 
treatment and prevention or delay of symptomatic HF.

A 2022 consensus report from the American Diabetes 
Association recommended annual testing of N-terminal 
pro-B-type natriuretic peptide (NT-proBNP) among 
patients with T2DM to facilitate early detection of HF 
[6]. However, the standard cutoff value for NT-proBNP 
performs better in ruling out patients with no HF than 
identifying those with HF [7, 8]. This is mainly because 
comorbidities such as renal diseases, obesity and other 
cardiovascular diseases (CVD) may also result in the ele-
vation of NT-proBNP value [9]. In our recent experience, 
neither clinical assessment nor NT-proBNP provided sat-
isfactory discrimination for abnormal GLS (AUC 63%), 
diastolic indices (e′, AUC 54–61%) or LV mass (AUC 
59–67%), and the high sensitivity needed for a screening 
test was attained only with an unacceptably low (< 50%) 
specificity [10]. An alternate approach in SBHF screen-
ing is the application of the Atherosclerosis Risk in Com-
munities (ARIC) HF risk score, which consists of various 
risk factors such as age, sex, race, comorbidities and vital 
signs [11]. It has been previously reported as a strong 
predictor for HF and yet, the performance in screening 
for SBHF, an asymptomatic cardiovascular dysfunction, 
remained contentious.

The energy waveform electrocardiogram (ewECG) 
uses continuous wavelet transform (CWT) based signal 
processing to provide time-based Fourier Transform fre-
quency domain information of the acquired ECG signal. 
This is a feasible screening tool as the 12-lead ECG is a 
standard test and no additional expertise is required and 
the ewECG waveform is simply post-acquisition signal 
processing that takes a few seconds. ewECG extracted 
features have been shown to be key machine learn-
ing model features that improve overall model perfor-
mance above and beyond conventional ECG features for 
machine learning models built to be predictive for LV 
diastolic dysfunction [12, 13] and more recently SBHF 

in a community population at risk of HF [14]. However, 
although patients with T2DM have a heightened risk of 
HF, this is heterogeneous, with systolic as well as diastolic 
dysfunction being involved [15]. Accordingly, in order to 
determine an effective way to screen for SBHF and guide 
clinicians on those who required further echocardio-
gram, we used machine learning algorithms to develop 
a DM-specific screening model based on ewECG data to 
identify SBHF among asymptomatic patients and com-
pare its performance with conventional clinical HF risk 
indicators in NT-proBNP and the ARIC HF risk score.

Methods
Study design and setting
The training dataset comprised asymptomatic par-
ticipants with T2DM from the Determining the 
Effect of Dapagliflozin on Preventing Heart Failure in 
Patients with Type 2 Diabetes (LEAVE-DM, ACTRN 
12619001393145) trial. These community-based par-
ticipants were aged ≥ 65 years recruited from Melbourne 
but excluded those with: (i) moderate or severe valvular 
heart disease; (ii) history of HF or hypertrophic cardio-
myopathy; (iii) currently undergoing therapy with SGLT2 
inhibitors or GLP-1 receptor agonist; (iv) systolic blood 
pressure < 110 mmHg; (v) estimated glomerular filtration 
rate < 45 mL/min/1.73   m2; (vi) baseline New York Heart 
Association (NYHA) classification > 2 and (vii) oncologic 
life expectancy < 12 months.

The validation dataset comprised participants with 
T2DM In the Victorian Study of Echocardiographic 
Detection of Left Ventricular Dysfunction (Vic-ELF, 
ACTRN 12617000116325). This community-based study 
recruited participant aged ≥ 65  years with at least one 
of the following HF risk factors: (i) obesity (body mass 
index ≥ 30  kg/m2), (ii) diagnosed T2DM, or (iii) hyper-
tension (systolic blood pressure ≥ 140  mmHg or on 
hypertensive medication). Exclusion criteria included LV 
ejection fraction ≤ 40%, symptomatic HF, known coro-
nary artery disease (CAD), moderate or severe valvular 
heart disease, renal impairment and symptoms of HF.

Participant characteristics
Participants’ baseline characteristics such as age, sex, 
blood pressure, heart rate and body mass index (BMI) 
are summarised in Table  1. Risk factors for HF such as 
hypertension, peripheral vascular disease and family his-
tory of coronary artery disease (CAD) and HF were also 
included. In addition, the Charlson Comorbidity Index 
(CCI) and ARIC HF risk score were calculated to evaluate 
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the severity of comorbidities and 4-year risk of incident 
symptomatic HF, respectively. Participants’ NT-proBNP 
levels were also measured.

ewECG
Participants underwent ewECG evaluation using a com-
mercially-available conventional 12-lead ECG device with 
additional signal processing to provide the ewECG wave-
form (MyoVista version 2.0, HeartSciences, Southlake, 
Texas). This ECG signal is deconstructed and presented 
in an energy scalogram which illustrates the distribution 
of energy over time and frequency, known as the “energy 
waveform”. Energy is expressed as coefficients that rep-
resent the agreement between wavelet and signal at dif-
ferent scales, rather than discrete energy measurements 
[13]. Fourier based signal processing is used extensively 

in medical devices to improve diagnostic performance. 
An example is the use of Fourier based Doppler signal 
processing to assess blood flow in echocardiography. A 
proprietary software generates a total of 643 CWT fea-
tures at specific points throughout the cardiac cycle. The 
ewECG interface also provides a standard 12-lead ECG 
trace and an automated diagnostic interpretation based 
on the University of Glasgow 12-lead ECG interpretive 
analysis algorithm, offering both quantitative parameters 
and qualitative interpretations [16]. These CWT features 
are combined with conventional measurements to pro-
vide 1124 parameters (Additional file 1: Table S1).

Echocardiography
A transthoracic 2-dimensional and Doppler echocar-
diographic study was performed among using standard 

Table 1 Baseline characteristics

Continuous variables are given as median [IQR]

CCI: Charlson Comorbidity Index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate; BMI: body mass index; ARIC HF: Atherosclerosis Risk in 
Communities Heart Failure score; CAD: coronary artery disease; HF: heart failure; NT-proBNP: N-terminal prohormone of brain natriuretic peptide; LVMI: left ventricular 
mass index; GLS: global longitudinal strain; LAVI: left atrial volume index; QOL: quality of life

LEAVE-DM (n = 178) Vic-ELF (n = 97) p

Age, years 72 [69–76] 70 [68–73]  < 0.001

Female (%) 73 (41.0) 42 (43.3) 0.71

CCI, score 5 [4–6] 1 [1, 2]  < 0.001

SBP, mmHg 145 [134–155] 141 [130–150] 0.04

DBP, mmHg 77 [70–85] 85 [78–90]  < 0.001

HR, bpm 71 [64–83] 71 [65–79] 0.63

BMI, kg/m2 29.9 [27.3–34.5] 31.0 [27.4–33.9] 0.66

ARIC HF, score 13.8 [8.0–22.8] 9.7 [6.5–14.7]  < 0.001

Obesity (%) 82 (46.6) 58 (59.8) 0.04

Hypertension (%) 126 (70.8) 80 (82.5) 0.03

Type 2 diabetes (%) 178 (100) 97 (100) –

Peripheral vascular disease (%) 10 (5.7) 1 (1.0) 0.06

Family history of CAD (%) 95 (53.7) 25 (25.8)  < 0.001

Family history of HF (%) 31 (17.6) 4 (4.1) 0.001

NT-proBNP (pg/mL) 93.0 [50.7–228.3] 43.0 [30.3–88.5]  < 0.001

LVMI (g/m2) 82.0 [70.8–98.5] 70.4 [56.6–83.6]  < 0.001

Ejection fraction (%) 59.0 [54.0–62.0] 60.1 [56.6–66.0] 0.004

GLS (−%) 17.4 [16.0–19.2] 18.0 [16.7–20.0] 0.005

E/e′ 9.5 [7.9–11.5] 8.5 [7.4–10.7] 0.02

LAVI (mL/m2) 30.6 [27.1–40.3] 33.4 [28.3–40.4] 0.19

E/A 0.8 [0.7–0.9] 0.8 [0.7–0.9] 0.93

QOL, score 83 [71–93] 80 [70–90] 0.03

RR interval (ms) 873 [750–977] 893 [817–995] 0.064

PR interval (ms) 170 [156–186] 176 [161–188] 0.142

QRS duration (ms) 90 [84–102] 94 [86–104] 0.291

QT duration (ms) 394 [375–422] 400 [380–424] 0.157

QTc interval (ms) 426 [411–440] 425 [411–439] 0.707
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equipment (ACUSON SC2000, Siemens Healthcare 
USA, Mountain View, California and GE E95 ultra-
sound device, GE Healthcare, Chicago, Illinois, United 
States) and transducer (4V1c, 1.25 to 4.5  MHz; 4Z1c, 
1.5 to 3.5 MHz) in accordance with the American Soci-
ety of Echocardiography guidelines. Subclinical LV sys-
tolic function was assessed with GLS computed using 
speckle tracking (Syngo VVI; Siemens Healthcare USA) 
[17]. Diastolic function was assessed from transmitral 
flow (peak early [E] and late diastolic velocity E/A ratio), 
mitral annular early diastolic velocities (e′) and E/e′ 
ratio, left atrial volume index (LAVi) indexed to body sur-
face area, and tricuspid regurgitation velocity [18].

SBHF was defined by the presence of one or more of: (i) 
diastolic dysfunction (DD) (E/e′ > 15 or E/e′ > 10 with left 
atrium enlargement (LAE) or impaired relaxation with 
LAE); (ii) reduced GLS (≤ 18%); or (iii) left ventricular 
hypertrophy (LVH, LV mass index > 95  g/m2 in women 
and > 115 g/m2 in men).

Machine learning classification model
A supervised machine learning approach was applied 
to develop a screening model for the primary out-
come—SBHF and three secondary outcomes—(i) DD; 
(ii) reduced GLS and (iii) LVH. The proposed models for 
these outcomes included extremely randomised trees 
[19], random forest [20], explainable boosting machine 
(EBM) [21], and extreme gradient boosting (XGBoost) 
[22], all of which were applied using the Scikit-learn [23] 
and XGBoost and EBM libraries.

Given the high dimensionality of the data from the 
ewECG features, a bottom-up step-forward feature selec-
tion method was performed to identify high-predictive 
features for the selected outcomes. The feature selection 
started with zero features in the feature set and added one 
feature at a time across its iterative process. After includ-
ing each feature, the feature set was evaluated using a 
k-fold cross-validation procedure over the training data-
set on a machine learning model, where k was set to five 
based on the size of LEAVE-DM and Vic-ELF cohorts. 
In summary, k-fold cross-validation assessed the predic-
tive performance of the model by splitting the data into 
k folds, training and learning it on k–  1 folds, and sub-
sequently validating it on the remaining fold. The evalu-
ation of each feature relied on both sensitivity and AUC 
of the model. After this step, the best performing feature 
was combined with the remaining feature set. This itera-
tive process continued until all features were assessed or 
stopping criteria were achieved (e.g. deterioration or sta-
bilisation of the predictive performance when including 
new features to the feature set).

The Shapley Additive Explanations (SHAP) method—
which provides an overview of how the features are 

generally linked to the model’s prediction [24]—was then 
applied to explain the ewECG models. SHAP is a game 
theory-based method to derive explanations for individ-
ual prediction, in which combined results yield a global 
interpretation of the model’s behavior.

Statistical analysis
Descriptive statistics were used to present the partici-
pants’ baseline characteristics. Parametric variables were 
reported as means ± standard deviations while non-para-
metric variables were reported as medians [interquartile 
ranges (IQR)]. To compare participants’ baseline char-
acteristics between the training and validation dataset, 
Kruskal–Wallis H test was performed on non-parametric 
variables and chi-square test on categorical variables.

The performance of each model in identifying the cor-
responding outcomes (SBHF, DD, reduced GLS and LVH) 
among the training and validation dataset were reported 
using the area under the receiver operating characteris-
tics (ROC) curve (AUC). The optimal threshold for the 
machine learning model was set as 0.5 to identify the 
model’s sensitivity and specificity. The performance of 
NT-proBNP and ARIC HF risk score in identifying the 
outcomes among participants from the validation data-
set was also evaluated and compared using the AUC. 
The optimal cut-off value for NT-proBNP and ARIC 
HF was identified using Youden’s Index and the accu-
racy in identifying participants with each outcome was 
demonstrated.

A p-value of < 0.05 was considered statistically signifi-
cant for all analyses. Analyses were conducted using Stata 
17.0 (StataCorp, College Station, Texas, USA) and Python 
(Python Software Foundation).

Results
Patient characteristics
The training (n = 178) and validation (n = 97) datasets 
comprised elderly patients with T2DM and risk factors, 
but participants from the training dataset were older, at 
higher risk of comorbidity and HF, and had a stronger 
family history of CAD and HF than in the validation 
dataset (Table  1). Participants from the training data-
set had higher NT-proBNP, higher left ventricular mass 
index, and marginally worse cardiac function. Partici-
pants from the training dataset were also shown to have a 
higher risk of HF incidence given the significantly greater 
ARIC HF risk score than the validation dataset.

ewECG machine learning models
The ewECGs for T2DM patients with and without 
SBHF were demonstrated in Additional file  1. From 
the training dataset, models were developed for the 
four outcomes based on feature selection from the 643 
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ewECG features. Additional file  1 provides a detailed 
description for each of these ewECG features. The fea-
tures selected in each model were also listed in Addi-
tional file 2: Figures. Overall, 15 features were selected 
with an explainable boosting machine model to iden-
tify participants with SBHF (Additional file  2: Fig. S2, 
n = 128, 71.9%); 11 features for DD (Additional file  2: 
Fig. S4, n = 66, 37.1%) with an XGBoost model; 18 fea-
tures for reduced GLS (Additional file 2: Fig. S4, n = 99, 
55.6%) with a random forest model and 22 features 
for LVH (Additional file  2: Fig. S5, n = 36, 20.2%) with 
an extremely randomised trees model. None of the 15 
ewECG features from the SBHF screening model was 
also selected across all other three outcomes, although 
there was a preponderance of LV systolic markers, 
emphasized by differences in the energy signal in the 
parametric display (Fig. 1). In the training dataset, the 
SBHF model showed an AUC of 0.87 (95% CI 0.83–
0.84), with 98% sensitivity and 58% specificity. Separate 
models were also developed for other outcomes with 
different constituents, which led to acceptable discrimi-
nation for DD (AUC 0.83 [95% CI 0.81–0.82]), impaired 
GLS (0.84 [95%CI 0.84–0.85]) and LVH (0.96 [95%CI 
0.95–0.952]) in the training dataset.

NT-pro-BNP and the ARIC HF risk score
The optimal cut-off value for NT-proBNP was identi-
fied in the validation dataset using Youden’s Index. Com-
pared with the recommended cut-off value of 125 pg/mL, 
Youden’s Index identified that 21 pg/mL in NT-proBNP 
showed the highest screening accuracy for SBHF, hence 
being deemed as the optimal cut-off value. Table 2 dem-
onstrates the AUC for applying NT-proBNP as a screen-
ing tool for SBHF, DD, reduced GLS and LVH, as well 
as the sensitivity and specificity for both recommended 
(125  pg/mL) and optimal (21  pg/mL) cut-off values. 
Meanwhile, a score of 8% was deemed as the optimal cut-
off value for the ARIC HF risk score for SBHF screening,

Interpretations of ewECG models
The SHAP plot in Additional file  2: Fig. S2 details and 
ranks the most important CWT features for the SBHF 
screening model. The amplitude of R-wave in lead II, 
early repolarization in lead V1 and duration of QRS 
interval in lead V3 are some of the key features identified 
in SBHF screening. Additional file 2: Fig. S2 demonstrates 
that higher R-wave amplitude in lead II and longer dura-
tion of QRS interval in lead V3 indicated a greater risk 
of SBHF. Conversely, a mixed pattern was identified for 
features such as R-wave amplitude in lead I and T-wave 
onset in lead II.

Correspondingly, the T-wave area in lead V2 and 
P-wave amplitude in lead III were key identifiers for DD 
(Additional file 2: Fig. S3). The amplitude of ST interval 
in lead II was the most impactful feature in the screen-
ing for reduced GLS (Additional file 2: Fig. S4). The fre-
quency of peak depolarization origin measure in lead V3 
and delta wave confidence in lead II were some of the key 
features in the ewECG screening model for LVH (Addi-
tional file 2: Fig. S5).

Comparison of the screening strategies for LV dysfunction
A total of 64 participants from the validation data-
set (66%) had SBHF. The ewECG screening features 
were predictive for SBHF in the validation dataset 
(AUC = 0.81, 95%CI 0.787–0.794), outperforming both 
NT-proBNP and ARIC HF risk score significantly, with 
a sensitivity of 89% and specificity of 62% (Fig. 2). At a 
recommended cut-off value of 125 pg/mL, NT-proBNP 
was less discriminative for SBHF (AUC 0.55 [95%CI 
0.43–0.66]), with a sensitivity of 15% and specificity of 
94% (Table 2). On the other hand, applying the optimal 
cut-off value (21  pg/mL) for NT-proBNP resulted in a 
sensitivity of 85% and a specificity of 10%. Meanwhile, 
the ARIC HF yielded an AUC of 0.67 (95%CI 0.56–0.79) 
in SBHF screening.

Figure  3 illustrates the number of participants who 
would be advised to have echocardiography based on 
ewECG model versus NT-proBNP as a screening tool 
for SBHF. The ewECG model identified 67 out of the 
97 participants from the validation dataset as partici-
pants who required echocardiography, of whom 85% 
were deemed to have SBHF. In comparison, the appli-
cation of NT-proBNP, with cutoff values of 125 pg/mL 
and 21 pg/mL, as a screening tool resulted in unneces-
sary echocardiography in 85% and 35% of participants 
respectively.

The prevalence of DD in participants from the vali-
dation dataset was 44% (n = 43). The ewECG model 
(AUC = 0.74, 95% CI 0.73–0.74) outperformed both 
NT-proBNP-21  pg/mL (AUC = 0.52, 95%CI 0.40–0.63) 
and ARIC HF (AUC = 0.61, 95%CI 0.50–0.73) in screen-
ing for DD. The sensitivities of the ewECG and NT-
proBNP-21  pg/mL approaches were similar (81% and 
88%, p = 0.347), but the specificity of ewECG exceeded 
that of NT-proBNP (71% vs 14%, p < 0.001). As for NT-
proBNP with a cut-off value of 125 pg/mL, the sensitivity 
and specificity were 10% and 86% respectively.

Reduction in GLS (–18% or worse) was present in 
51% of participants from the validation dataset (n = 49). 
Again, the ewECG model showed a higher AUC (0.76, 
95%CI 0.73–0.74) in screening for reduced GLS than NT-
proBNP-21  pg/mL (AUC = 0.52, 95%CI 0.41–0.64). The 
ewECG model for reduced GLS accurately screened 76% 
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Fig. 1 Parametric display of ewECG for patients with and without Stage B Heart Failure. The detection of SBHF was predominantly based on LV 
systolic markers, emphasized by differences in the energy signal in the parametric display. The color display is referenced to The color displays peak 
energy relative to the peak of the R-wave (the highest energy component of the waveform)
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Table 2 The accuracy of NT-proBNP and ARIC HF in identifying Stage B Heart Failure, diastolic dysfunction, reduced global 
longitudinal strain and left ventricular hypertrophy in the validation dataset

NT-proBNP: N-terminal pro-B-type natriuretic peptide; ARIC HF: atherosclerosis Risk in Communities Heart Failure score; AUC: area under the curve; CI: confidence 
interval; SBHF: stage B Heart Failure; DD: diastolic dysfunction; GLS: global longitudinal strain; LVH: left ventricular hypertrophy

NT-proBNP ARIC HF

AUC (95% CI)  > 125 pg/mL (Recommended 
cut-off)

 > 21 pg/mL (optimal cut-off) AUC (95%CI)  > 8% (optimal cut-off)

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

SBHF 0.55 (0.43–0.66) 14.75% 85.25% 85.25% 9.68% 0.67 (0.56–0.79) 71.88% 66.67%

DD 0.52 (0.40–0.63) 9.76% 87.80% 87.80% 13.73% 0.61 (0.50–0.73) 72.09% 51.85%

Reduced GLS 0.52 (0.41–0.64) 10.87% 84.78% 84.78% 10.87% 0.69 (0.58–0.80) 77.55% 60.42%

LVH 0.66 (0.21–0.98) 60% 80.00% 80.00% 12.64% 0.45 (0.22–0.67) 60% 41.30%

Fig. 2 Receiver operating characteristics curve for ewECG models developed to identify Stage B Heart Failure and its components. Similar 
levels of discrimination were obtained for Stage B Heart Failure, diastolic dysfunction and reduced global longitudinal strain. The curve for left 
ventricular hypertrophy should be interpreted with caution, because of sparse numbers with this manifestation. ewECG: Electrocardiographic 
with signal-processed via continuous wavelet transform
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Fig. 3 Comparison of screening methods to identify Stage B Heart Failure and its components. This infographic compares the prediction 
and exclusion of SBHF with ewECG and NT-proBNP. CWT-ECG: Electrocardiographic with signal-processed via continuous wavelet transform; 
NT-proBNP: N-terminal pro-B-type natriuretic peptide; SBHF: Stage B Heart Failure; GLS: global longitudinal strain; LVH: left ventricular hypertrophy
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of the participants, compared to 48% using NT-proBNP. 
The ARIC HF risk score performed slightly better than 
NT-proBNP in screening for reduced GLS (AUC = 0.69, 
95%CI 0.58–0.80).

Only 5 participants in the validation dataset (5.2%) had 
LVH. The AUC of the ewECG model was 0.90 (95%CI 
0.88–0.89), with a sensitivity of 100% and specificity of 
98%. The AUC for NT-proBNP and the ARIC HF risk 
score were 0.66 (95%CI 0.21–0.98) and 0.45 (95%CI 
0.22–0.67) respectively.

Discussion
Our study demonstrates that machine learning models 
developed using ewECG features may provide a screen-
ing tool to provide clinical guidance for patients with 
T2DM who may benefit from echocardiography. The 
ewECG models for SBHF and other abnormalities (DD, 
reduced GLS and LVH) differed in the features selected, 
analogous to previous experience in people at risk of HF 
[14]. The ewECG model for SBHF had an accuracy of 
83% in reflecting those who required further echocardi-
ographic screening, compared to 60% with NT-proBNP 
and 69% with the ARIC HF risk score. These results sug-
gest that ECG measures may be superior to current con-
ventional tool for SBHF screening and that the ewECG 
could be routinely implemented and monitored among 
T2DM patients.

Importance of SBHF diagnoses in the prevention of HF 
progression
SBHF is relatively common in T2DM, especially in 
older individuals, those with long-standing diabetes and 
patients with poor glycemic control [3–5]. SBHF is an 
independent risk factor for incident HF—the cumulative 
probability of developing HF within 5 years is 37%—and 
increases with increasing SBHF severity [25]. Patients 
with T2DM typically develop HFpEF, and compared to 
people without T2DM, have a greater degree of LVH, 
higher circulating markers of oxidative stress, inflam-
mation and fibrosis, and a greater risk of hospitalization 
[26]. Identification of SBHF among people with T2DM 
would provide an opportunity to initiate cardioprotective 
strategies, provide more intense follow-up, and facilitate 
treatment adherence. Despite being a precursor for sub-
sequent HF incidence, SBHF is still underdiagnosed in 
T2DM [27]. Not all patients with T2DM are at equal risk, 
so a clinical score or biomarker would be helpful to iden-
tify the patients who need attention.

CVD screening using ECG assessment
A number of studies have reported the feasibility of 
applying advanced artificial intelligence (AI) methods to 

ECG assessment for predicting CVD [27]. AI algorithms 
such as convolutional neural networks require a train-
ing database of ECG interpretation to mimic human-like 
interpretation of the ECG [29]. ECG interpretation using 
this approach has been shown to predict low LV ejection 
fraction (≤ 35%) [30], atrial fibrillation [31], hypertrophic 
cardiomyopathy [32] and myocardial infarction [33]. Uti-
lizing AI tools to guide clinicians in ECG interpretation 
can improve patient care by increasing the accuracy of 
identifying asymptomatic patients who may require fur-
ther attention. In the context of left ventricular systolic 
dysfunction, previous study has shown that clinicians 
who adopted AI-ECG algorithm were twice as likely to 
diagnose patients with low ejection fraction as those who 
do not [34]. In addition, the implementation of AI-ECG 
in systolic dysfunction screening was reported to have an 
AUC of up to 0.93 [35], which would be highly cost-effec-
tive as a guideline for echocardiogram referral if such 
result is transferable in clinical setting. Nonetheless, AI-
ECG approaches perform best in the type of population 
on which they have been trained, and potential issues 
with reproducibility may occur due to differences in pop-
ulation characteristics, including racial differences [28].

The potential number of ewECG features is huge, pro-
ducing a highly-dimensional database for the ewECG 
assessment process. The sample size required to train the 
model is significantly smaller than the AI-approach. The 
predictive performance was generalizable when training 
and cross-validating these models on LEAVE-DM and 
independently validating them on the Vic-ELF cohorts. 
This is highlighted by only a small reduction in predictive 
performance, based on AUC, sensitivity and specificity, 
from cross-validation on the training dataset to the vali-
dation data.

The introduction of machine learning models based on 
ewECG as a screening tool provides a new alternative to 
the echocardiography selection process and yet requires 
no additional training to conduct the assessment as the 
acquisition is like a standard ECG. The implementation 
of a SBHF screening model based on ewECG features 
would improve selection for echocardiographic testing, 
while missing a few patients with SBHF.

Our study focuses on patients with T2DM because of 
a variety of reasons. First and foremost, hyperinsulinae-
mia-induced hypoglycemia can prolong the QTc interval 
and decrease T-wave area and amplitude, even among 
healthy individuals [36]. Furthermore, ECG alterations 
such as QT dispersion, changes in heart rate variabil-
ity and ST-T changes may be observed even early in the 
course of DM [37]. Hence, given that the ECG interpre-
tation would differ among diabetic patients, it raises the 
need to investigate if the accuracy is similar to what was 
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previously reported of AI-ECG in screening for systolic 
dysfunction is [35].

Natriuretic peptides, the ARIC HF risk score, and ewECG 
in SBHF screening
The feasibility of NT-proBNP makes this an attractive 
option for annual testing [6]. However, while NT-proBNP 
is valuable for the recognition of unrecognized HF, it 
may be less sensitive in the recognition of LV dysfunc-
tion that is insufficiently advanced to increase myocardial 
wall stress [10]. A threshold of 125  pg/mL NT-proBNP 
is widely used in the diagnosis of acute HF [38], albeit 
as a “rule-out” test [39]. However, the use of this cut-off 
for the detection of subclinical HF yields a poor accuracy 
with high specificity but low sensitivity. In this study, 
we used the training set to identify a threshold for NT-
proBNP (21 pg/mL) that provided a sensitive test. How-
ever, this change was at the cost of low specificity, and 
more patients with normal cardiac function were being 
falsely deemed as being at risk of SBHF. The result would 
inflate the numbers of unnecessary echocardiograms 
[40]. These results confirm our previous observations 
that question the use of NT-proBNP in the detection of 
LV dysfunction in T2DM.

In contrast, the ARIC HF risk score showed a slightly 
better discriminative performance than NT-proBNP. This 
is presumably due to its multifactorial nature as a screen-
ing tool which incorporated key risk factors including 
but not limited to age, sex, comorbidities and medica-
tion history [11]. However, it is important to note that 
the difficulty of identifying patients with SBHF lies on the 
condition being asymptomatic, which may result in cli-
nicians overlooking the underlying risk factors presented 
by the patients. With the optimal cut-off value of 8% for 
SBHF screening, it may contribute further to clinicians’ 
inability to identify those who have or are at risk of devel-
oping SBHF.

Among patients with T2DM, the accuracy of ewECG 
model in SBHF screening was shown to be significantly 
higher than both NT-proBNP and the ARIC HF risk 
score in this study. The ewECG model for SBHF screen-
ing was shown to reduce the number of echocardiogra-
phy performed on patients with regular cardiac function 
by 64%, compared to NT-proBNP at the cut-off value of 
21  pg/mL. In contrast, ewECG may be a sensitive first 
step to select those who require echocardiography and 
could ultimately improve the cost-effectiveness of echo-
cardiographic screening for SBHF in T2DM. In addi-
tion, the ECG provides a widely-available biomarker that 
has the potential of identifying myocardial disease at an 
early stage. Regular ewECG assessment may be a feasible 
alternative to BNP among patients with T2DM who are 
already at higher risk of HF.

Study limitations
Our study has a few limitations. First, this is a cross-
sectional study which does not capture the develop-
ment of SBHF over time. The progressive nature of 
SBHF may impact the discriminative ability of ewECG, 
especially among patients in the early stage of SBHF. 
Second, the sample size for this study is relatively low 
for machine learning. Further studies with a larger and 
more diverse patient population are required to define 
broader implications in clinical settings. Lastly, the 
number of patients with LVH was very limited in the 
validation dataset, which is likely to have resulted in 
the overestimation of the ewECG performance in LVH 
screening.

Conclusions
Screening for SBHF, followed by the initiation of car-
dioprotective treatment, may prevent or delay HF 
occurrence among high-risk patients with T2DM. 
Nonetheless, clinical guidelines for referring patients 
to echocardiographic screening are lacking [2]. As ECG 
assessment is a routine clinical procedure, the appli-
cation of ewECG is feasible and could act as a tool to 
identify asymptomatic T2DM patients who require 
echocardiography for SBHF diagnosis. Future studies 
should look into whether the findings from our study 
is consistent in a larger cohort of T2DM patients and 
investigate the cost-effectiveness of integrating ewECG 
in clinical settings for SBHF screening.
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