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Abstract
Background Type 1 diabetes (T1D) is a significant risk factor for a range of cardiovascular diseases. Nonetheless, the 
causal relationship between T1D and non-ischemic cardiomyopathy (NICM) remains to be elucidated. Furthermore, 
the mechanisms responsible for the progression from T1D to NICM have not been definitively characterized.

Objective The aim of this study was to conduct a Mendelian randomization (MR) study to investigate the causal 
effects of T1D and its complications on the development of NICM. Additionally, this study aimed to conduct a 
mediation analysis to identify potential mediators within this correlation.

Methods Genetic variants were used as instrumental variables for T1D. The summary data for T1D were obtained 
from two genome-wide association study datasets. The summary data for T1D with complications and NICM were 
obtained from the Finnish database. Two-sample MR, multivariable MR and mediation MR were conducted in this 
study.

Results The study revealed a causal association between T1D, T1D with complications, and NICM (with odds ratios 
of 1.02, 95% CI 1.01–1.04, p = 1.17e-04 and 1.03, 95% CI 1.01–1.05, p = 3.15e-3). Even after adjusting for confounding 
factors such as body mass index and hypertension, T1D remained statistically significant (with odds ratio of 1.02, 
95% CI 1.01–1.04, p = 1.35e-4). Mediation analysis indicated that monokine induced by gamma interferon may play a 
mediating role in the pathogenesis of T1D-NICM (mediation effect indicated by odds ratio of 1.005, 95% CI 1.001–1.01, 
p = 4.9e-2).

Conclusion The study demonstrates a causal relationship between T1D, its complications, and NICM. Additionally, 
monokine induced by gamma interferon may act as a potential mediator in the pathogenesis of T1D-NICM.
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Introduction
Type 1 diabetes (T1D) is a chronic disease associated 
with poor cardiac outcomes and an increased risk of pre-
mature mortality [1–3]. It accounts for approximately 
5–15% of diabetes cases in high-income countries and 
about 2% in low- and middle-income countries [4]. The 
prevalence of T1D is increasing worldwide, showing vari-
ations across different countries and areas, potentially 
influenced by environmental variables [5–8].

Cardiovascular diseases are the leading cause of mor-
tality in individuals with T1D [9]. Previous cohort stud-
ies have also suggested that T1D can increase the risk of 
cardiovascular diseases [10–12]. For example, a recently 
published Mendelian randomized(MR) study indicated 
that T1D increases the risk of atherosclerosis [13]. Fur-
thermore, Marcus Lind et al. showed that heart failure 
(HF) is a common complication in T1D patients [14]. 
However, there is an ongoing debate regarding the spe-
cific phenotype of HF associated with T1D. Most stud-
ies have suggested that T1D mainly affects the diastolic 
function, while effects on systolic function remain con-
troversial [15–19]. Most cases in these studies were 
accompanied by confounding factors such as coro-
nary artery disease and hypertension. According to the 
research on T1D conducted by Konduracka et al., it was 
found that the occurrence of HF and myocardial dysfunc-
tion was observed only in those who developed hyper-
tension or coronary heart disease [20]. In a recent study, 
no significant differences in echocardiographic findings 
were observed between patients with T1D and healthy 
individuals, despite the presence of microvascular dam-
age [21]. Therefore, the influence of T1D on HF, espe-
cially non-ischemic cardiomyopathy (NICM), remains 
incompletely understood based on human studies. Dia-
betic cardiomyopathy has been proposed as an explana-
tion for the residual risk of HF in diabetic patients after 
accounting for coronary heart disease, hypertension and 

other factors [11]. However, most of the studies on T1D-
induced diabetic cardiomyopathy have focused mainly 
on animal and cellular experiments [22–25]. Although 
diabetic cardiomyopathy is classified as a NICM result-
ing from diabetes mellitus, it is noteworthy that the myo-
cardial pathologic phenotypes of T1D and type 2 diabetes 
(T2D) cardiomyopathy differ. Additionally, conducting 
real-world studies on T1D-induced NICM presents chal-
lenges in controlling for confounding factors. To address 
these gaps, it is essential to assess the causal relationship 
between T1D and NICM by MR method. In addition, 
another noteworthy consideration pertains to iden-
tify factors that mediate T1D-induced NICM. Previous 
observational studies have identified several inflamma-
tory factors, such as interleukin-6, tumor necrosis factor 
α, and C-reactive protein (CRP), that are associated with 
HF [26, 27]. However, conflicting results have also been 
reported in some studies [28, 29]. Additionally, a obser-
vational study has shown that factors like renal disease 
and anemia are associated with the risk of HF [30]. Thus, 
we aim to investigate whether inflammatory cytokines 
and certain diseases have mediating roles in the develop-
ment of T1D-induced NICM.

Conventional observational studies are susceptible to 
confounding factors and reverse causation bias. To over-
come these limitations, MR utilizes genetic variants as 
instrumental variables (IVs) to infer causal relationships 
[31]. MR can not only overcome the limitations of obser-
vational studies by mimicking a randomized controlled 
trial but also provide evidence beyond clinical studies to 
establish the causal association between T1D and NICM. 
In this study, we performed two-sample MR analyses 
and multivariable MR (MVMR) to investigate the inde-
pendent causal effect of T1D and its complications on 
NCIM. Furthermore, we conducted mediation analysis 
to explore the mediators in the association between T1D 
and NICM.

Key points
Question: 1 Does type 1 diabetes(T1D) have an independent causal relationship with non-ischemic 
cardiomyopathy (NICM)?

2 Which inflammatory factors or diseases mediate the development of NICM in T1D?
The following findings were identified in a Mendelian randomization study:
Primary findings: 1 There is an independent causal relationship between T1D and NICM. Additionally, the causal 
relationship between T1D with complications and NICM is demonstrated. 2 Monokine induced by IFN-γ (MIG) 
mediates the progression from T1D to NICM.
Secondary findings: BMI, hypertension, glomerular diseases, and MIG are causally associated with NICM.
Meaning: All the findings are first-time discoveries in Mendelian randomization studies. The study confirms 
the causal relationship between T1D and NICM, while accounting for confounding factors. The MIG serves as a 
potential target for new preventive measure and therapy.

Keywords Type 1 diabetes, Type 1 diabetes with complication, Non-ischemic cardiomyopathy, Mendelian 
randomization, Mediation analysis
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Methods
Two sample MR and MVMR
Figure 1 presents the study design. We used two-sample 
MR to investigate the causal effects of T1D and its com-
plications on NICM [32]. To obtain the necessary data, 
we collected summary statistics from publicly available 
databases, as outlined in Table  1. Our single nucleo-
tide polymorphisms (SNPs) selection process focused 
on SNPs strongly associated with T1D and randomly 
allocated at conception, ensuring minimal influence 
from environmental factors [33]. We followed three 
assumptions for MR analysis: (1) the selected IVs must 
be strongly associated with T1D; (2) the selected IVs 
should not be associated with potential confounders; (3) 
the selected IVs could only influence the NICM through 
T1D, but not other pathways. In the primary analysis, we 
conducted MR analysis using data from two T1D datasets 
and used the conventional random effect inverse variance 
weighted (IVW) method to estimate the causal effect 
of T1D on NICM. In addition, we also performed four 
complementary methods, including the weighted median 
method, the weighted mode method, simple mode, MR 
Egger. To ensure the robustness of the outcomes, we 
performed a meta-analysis of the results from two T1D 
datasets. We also conducted MVMR to mitigate potential 
pleiotropy by accounting for confounding factors such as 
body mass index (BMI) and hypertension. The analytic 
process adhered to the STROBE-MR guidelines [34].

Mediation MR/Two-step MR analysis
In the mediation analysis, we included glomerular dis-
ease, anemia, BMI, and hypertension. Furthermore, we 
included glycated hemoglobin, HOMA-IR, fasting insu-
lin, blood lipids, CRP, and 41 other inflammatory fac-
tors in the mediation analysis. The three-step method 
provides evidence of a mediating role for a variable in 
the exposure-outcome effect. The indirect effect of each 
mediator was derived using the two-step MR method 
[35]. In the first step, we estimated the causal impact 
of T1D on a hypothesized mediator using IVs for T1D. 
In the second step, we established the causal impact of 
the mediators on NICM using IVs for the mediator. For 
all mediators individually, we quantified the propor-
tion mediated by dividing the indirect effect by the total 
effect. Confidence intervals were estimated using the 
delta method [31].

The data source and the selection of instrumental variables
We extracted summary-level data for the associations 
of SNPs with T1D from two Genome-Wide Associa-
tion Studies (GWASs). One is a meta-analysis including 
9,266 T1D cases and 15,574 non-cases from 12 European 
cohorts [36]. The other dataset is derived from the Finn-
ish database and UKB data, consisting of 6,447 cases and 
451,248 controls [37]. T1D with complications dataset 
obtained from Finnish database [38]. The NICM data-
set comes from a Finnish database and contains 11,400 
cases and 175,752 controls. For inflammatory cytokines, 

Fig. 1 Study design
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the data was from the study providing genome variant 
associations with 41 cytokines and growth factors in 
8,293 individuals. This study combined the results from 
The Cardiovascular Risk in Young Finns Study (YFS) and 
FINRISK surveys [39]. The average participant ages are 
37 years for YFS study and 60 years for FINRISK survey. 
Diseases in the Finnish database were diagnosed using 
ICD coding. The age distribution of patients and the 
inclusion process in the Finnish database can be accessed 
online through the link https://r9.risteys.finngen.fi/
endpoints/+ID, such as ID E4_DM1PERIPH. Detailed 
information about the data sources can be found in 
Table 1 and Table S1. Table S1 includes information on all 
datasets and the available diagnostic codes.

We used strict selection criteria to select valid and reli-
able IVs for T1D. First, we searched for the largest GWAS 
summary statistics for the genetic proxies of T1D. We 
extracted SNPs strongly associated with T1D as can-
didate IVs (p < 5e-8). Second, we eliminated SNPs that 
were in linkage disequilibrium (r2 < 0.01) or palindromic 
with intermediate allele frequencies. Third, we excluded 
SNPs that were not available in the outcome GWAS or 
had proxy SNPs. In this study, we identified BMI and 

hypertension as confounding factors for NICM. We cal-
culated the F statistics to measure the strength between 
IVs and T1D. We only considered SNPs with an F sta-
tistic > 10 as valid and reliable IVs for T1D. Finally, we 
included the 50 qualified SNPs as IVs to conduct the MR 
analysis. We extracted IVs of complications of T1D using 
the same method. Detailed information on those IVs is 
shown in Supplementary Excel 1. Since only few SNPs 
were identified for part of mediators when they were 
as the exposure, a higher cutoff (p < 5e-6) was chosen 
(p < 5e-6, Supplementary Excel 2).

Statistical analysis
The MR estimates were represented by odds ratios (OR) 
with 95% confidence intervals (CIs). We performed the 
MR-Egger regression method, the leave-one-out method, 
and the MR-PRESSO method as sensitivity analysis. We 
used the MR-egger regression and MR-PRESSO method 
to test and correct the potential horizontal pleiotropy of 
the selected IVs. The MR-egger intercept and zero dif-
ference could indicate directional pleiotropy. The MR-
PRESSO could detect and remove outliers in the IVs. 
We employed Cochrane’s Q statistic to evaluate the 

Table 1 Information on data included in the study
Phenotypes/ID Data source Study information/PMID Cases/controls Author/

Year
T1D:
ebi-a-GCST010681

12 cohorts# European /32,005,708 9266/15,574 Forgetta 
V/2020

T1D:
ebi-a-GCST90018925

UKB, Finnish 
database

European/34,594,039 6447/451,248 NA/2022

T1D with complications:
DM1NASCOMP

Finnish database European 6234/308,280 NA/2022

T1D without complications:
E4_DM1NOCOMP

Finnish database European 4918/183,185 NA/2021

T1D with renal complications:
E4_DM1REN

Finnish database European 1579/308,280 NA/2022

T1D with ketoacidosis:
E4_DM1KETO

Finnish database European 2102/308,280 NA/2022

T1D with coma:
E4_DM1COMA

Finnish database European 2050/308,280 NA/2022

T1D with neurological complications:
E4_DM1NEU

Finnish database European 1077/308,280 NA/2022

T1D with peripheral circulatory complications:
E4_DM1PERIPH

Finnish database European 669/308,280 NA/2022

T1D with ophthalmic complications:
E4_DM1OPTH

Finnish database European 5202/308,280 NA/2022

Non-ischemic cardiomyopathy: 
finn-b-I9_NONISCHCARDMYOP

Finnish database European 11,400/175,752 NA/2022

Hypertension:
ukb-b-12,493

UKB European 54,358/408,652 2018/Ben 
Elsworth

Body mass index:
ukb-b-19,953

UKB European 461,460 2018/Ben 
Elsworth

Monokine Induced by Gamma Interferon YFS and FINRISK 
1997 and 2002

European/33,491,305 8293 2020/
Vanessa 
Tan

#, See Table S1 for more details. UKB (UK BioBank), YFS (Young Finns Study), FINRISK (Finland’s National FINRISK Study)

https://r9.risteys.finngen.fi/endpoints/+ID
https://r9.risteys.finngen.fi/endpoints/+ID
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variability of SNPs estimates within each MR associa-
tion. We used the p-value of the intercept test from MR-
Egger regression to assess the horizontal pleiotropy [40]. 
By using MVMR analysis to adjust for confounding risk 
factors, we reduced the impact of confounding factors on 
the causal relationship. We performed all tests using the 
Two Sample MR [41], MR-PRESSO [42] and Mendelian 
Randomization [43] packages in the R software (version 
4.0.2).

Result
Univariable MR analysis supported a causal role for 
liability to T1D in the development of NICM. (IVW: 
GCST010681: OR 1.02; 95% CI 1.01–1.04; p = 1.17e-4; 
GCST90018925: OR 1.06; 95% CI 1.03–1.09; p = 0.02; 
Meta-analysis: OR 1.03; 95% CI 1.01–1.04; p<1e-4). Addi-
tionally, under sensitivity analyses, the other three meth-
ods, including MR-Egger, weighted median, and weighted 
mode, also revealed significant associations between T1D 
and NICM in GCST010681 and meta-analysis. Only the 
simple mode was attenuated (GCST010681: OR 1.02; 
95% CI 0.99–1.06; p = 0.17; GCST90018925: OR 0.99; 95% 
CI 0.92–1.06; p = 0.68; Meta-analysis: OR 1.02; 95% CI 
0.99–1.05; p = 0.29).

No heterogeneity or pleiotropy was observed in the 
associations between T1D (GCST010681) and NICM (p 
for heterogeneity = 0.35, p for pleiotropy = 0.28, respec-
tively). For GCST90018925, heterogeneity exists but 
there is no evidence of pleiotropy (p for heterogene-
ity = 0.01, p for pleiotropy = 0.34, respectively). The results 
were robust in the leave-one-out and MR-PRESSO tests. 
To further rule out the influence of confounding factor 
level pleiotropy, we conducted MVMR. After matching 
for BMI, hypertension or both, statistical significance 
remained between T1D and NICM (Fig.  3). For addi-
tional information and visual representations of the data 
analysis, please refer to Supplementary Fig.  1, which 
includes scatter plots for the pleiotropy analysis, forest 
plots using the leave-one-out method, and funnel plots.

To understand the relationship between different sub-
groups of T1D and NICM, we analyzed data from the 
Finnish database, which is the most comprehensive for 
T1D complications. Both T1D without complications 
and T1D with complications showed causal correlations 
with NICM (IVW: OR 1.02; 95% CI 1.004–1.04; p = 1.42e-
02; OR 1.03; 95% CI 1.01–1.05; p = 3.15e-3, respectively). 
T1D with complications encompasses a range of dis-
eases. These subgroup analyses also revealed significant 
causal correlations with NICM. The ORs of NICM were 
1.02 (95% CI 1.01–1.03; p = 7.90e-03) for T1D with renal 
complications, 1.01 (95% CI 1.00-1.02; p = 8.75e-02) for 
T1D with ketoacidosis, 1.02 (95% CI 1.02–1.03; p = 4.17e-
03) for T1D with coma, 1.03 (95% CI 1.01–1.05; p = 1.39e-
02) for T1D with ophthalmic complications, 1.03 (95% CI 

1.01–1.05; p = 5.19e-03) for T1D with peripheral circula-
tory complications, 1.02 (95% CI 1.01–1.04; p = 9.61e-03) 
for T1D with coma. Except for the analysis for T1D with-
out complications, where heterogeneity was observed, all 
other subgroup analyses showed no significant hetero-
geneity or pleiotropy (Fig. 2). The results were robust in 
the leave-one-out and MR-PRESSO tests. We also con-
ducted MVMR for T1D with complications. After match-
ing for BMI, statistical significance remained (OR1.03, 
95% CI 1.002–1.06, p = 3.66e-02) (Fig. 3). However, after 
adjusting for hypertension, the statistical correlation 
disappeared. In the subgroup analysis, the exposure and 
outcome datasets were from the same database. There-
fore, there is a significant overlap in the control group. 
We used https://sb452.shinyapps.io/overlap to estimate 
the potential for Type I errors. After evaluation, even if 
the samples completely overlapped, the type I errors rate 
still be maintained at 0.05 in all subgroup analyses.

We then performed mediation analysis involving 
potential mediators, including anemia, glomerular dis-
ease, BMI, hypertension, glycated hemoglobin, HOMA-
IR, fasting insulin, low-density lipoprotein cholesterol, 
triglyceride, intermediate-density lipoprotein and very-
low-density lipoprotein. However, none of these fac-
tors demonstrated a mediating effect (Supplementary 
Excel.2). Among analyzed CRP and 41 inflammatory 
cytokines, a causal relationship with NICM was only 
found for Nerve Growth Factor and MIG. As Nerve 
Growth Factor had only 4 SNP instrumental variables, 
thus further analysis was not performed. Conversely, 
MIG mediated the relationship between T1D and NICM 
with an OR of 1.005 (95% CI 1.001–1.01) and accounted 
for 20% of the mediation effect (See Fig. 4). During the 
MR process, multiple tests were performed, hence the 
p-value was adjusted using false discovery rate (FDR) 
correction. The significance of the p-value for MIG disap-
pears after correction (Supplementary Excel. 1).

Discussion
The study provided genetic evidence supporting the 
causal association between NICM and T1D in univari-
able MR and MVMR analyses. Furthermore, the study 
demonstrated the causal relationship between T1D com-
plications and NICM. Notably, there was no significant 
difference in the OR of NICM between T1D alone and 
T1D with complications.

Clinical observational studies have suggested an asso-
ciation between diabetes mellitus and HF [21, 44–46]. 
However, these studies primarily focus on T2D and are 
influenced by numerous confounding factors. For most 
diabetic patients who develop HF, their HF is related to 
coronary artery disease [18]. Therefore, it is necessary 
to elucidate the isolated impact of T1D on NICM. The 
impact of T1D on the myocardium is primarily focused 

https://sb452.shinyapps.io/overlap
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on animal studies. In recent studies, it has been sug-
gested that factors such as oxidative stress, inflammatory 
response, calcium ion imbalance, and energy dysregula-
tion are involved in the impact of diabetes mellitus on the 
myocardium [47, 48]. Our previous study demonstrated 
impaired diastolic function in T1D SD rats [49]. Clinical 
research on the relationship between T1D and NICM is 
limited due to challenges in conducting prospective clini-
cal studies, including cost and confounding biases. To 

address these challenges, we used an MR study to estab-
lish a causal connection between T1D and NICM, pro-
viding valuable evidence.

Anemia and nephropathy are relatively common con-
current diseases in patients with HF. Both of these con-
ditions increase the risk factors for poor prognosis in 
patients with HF [50, 51]. Additionally, iron deficiency 
anemia and chronic kidney disease have been identi-
fied as risk factors for HF [30, 52]. However, it is worth 

Fig. 2 Genetically predicted type 1 diabetes and its complications: associations with the non-ischemic cardiomyopathy. IVW (Inverse Variance Weighted), 
H (Heterogeneity), P (Pleiotropy), CI (Confidence Interval), OR (Odds Ratio), p < 0.05 was considered statistically significant. The FDR-corrected results of the 
p-values (IVW) in each sub-group remained consistent with the uncorrected results
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noting that most research findings in the existing litera-
ture are derived from developed countries and largely 
focus on cases of ischemic cardiomyopathy. In a study 
from a developing country, the authors observed a sig-
nificantly lower prevalence of anemia and nephropathy in 
individuals with NICM compared to studies conducted 
in Western countries [53]. An MR study suggested bidi-
rectional causality between anemia and chronic HF [54]. 
Glomerular disease is a common complication of T1D. 
The correlation between T1D and anemia is unclear, 
but its complication, diabetic nephropathy, can cause 
anemia. The current study confirmed a causal associa-
tion between genetically predicted T1D and genetically 
predicted glomerular disease as well as anemia. How-
ever, the causal relationship between anemia and NICM 
showed pleiotropy in the MR analysis. Although there 

is a causal relationship between glomerular disease and 
NICM, the mediating effect did not reach statistical sig-
nificance. Therefore, further research is needed to ana-
lyze this potential mediating effect.

The association between inflammation and HF is cur-
rently a topic of great interest. An observational study 
conducted in 1990 found that patients with HF had ele-
vated level of pro-inflammatory cytokines compared to 
healthy individuals [55]. Subsequent experimental and 
clinical research has highlighted the activation of the 
innate and adaptive immune systems as important fac-
tors in acute and chronic HF, leading to the exploration 
of potential immunotherapy for HF [56]. However, the 
outcomes of immunotherapy for HF have been less than 
satisfactory [57–59]. The CANTOS trial, a double-blind, 
randomized, placebo-controlled outcomes trial involving 

Fig. 4 Mediation analysis. CI (Confidence Interval), OR (Odds Ratio), p < 0.05 was considered statistically significant. After applying FDR correction, the 
p-value for the correlation between MIG and NICM was determined to be 0.25

 

Fig. 3 Genetically predicted association of T1D and its complications: associations with the non-ischemic cardiomyopathy after adjusting for confound-
ers. CI (Confidence Interval), OR (Odds Ratio), p < 0.05 was considered statistically significant
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10,061 patients with myocardial infarction and inflam-
matory atherosclerosis characterized by high-sensitivity 
CRP levels ≥ 2 mg/l, demonstrated a 15% reduction in the 
risk of the composite endpoint of non-fatal myocardial 
infarction, non-fatal stroke, or cardiovascular death com-
pared to placebo [60]. Further exploration of this study 
revealed that patients with evidence of clonal hemato-
poiesis of indeterminate potential owing to mutations in 
TET2 had an improved response to canakinumab treat-
ment compared with patients without the mutations [61]. 
This study provides inspiration that immunotherapy may 
not be universally effective for all cases of HF, and thus, 
it is important to explore which specific types of HF may 
respond positively to immunization. In an MR study, it 
was proposed that genetically predicted 10 inflammatory 
biomarkers (not including MIG) did not show a signifi-
cant association with HF [28]. In current study, we inves-
tigated the causal relationship between 42 inflammatory 
biomarkers and discovered that MIG has a suggestive 
causal relationship with NICM and may plays a mediat-
ing role in the process of T1D causing NICM. Previous 
studies have also found that MIG is involved in immune 
checkpoint inhibitor myocarditis and chronic rejection 
after heart transplantation [62, 63]. Further exploration is 
warranted to determine the role of MIG in NICM.

Strengths and limitations
To our knowledge, this is the first study to investigate 
the causal associations between T1D and NICM using 
univariable MR and MVMR analysis. The study fills a 
gap in the current human-level research on the causal 
relationship between T1D and NICM. Additionally, by 
investigating potential mediators, we can improve our 
understanding of the potential mechanisms underlying 
NICM, paving the way toward the development of pre-
ventative and therapeutic solutions. The application of 
the MR method helped to reduce confounding biases and 
derive robust causal effect estimates. Multiple sensitivity 
analyses and IV strength evaluations were conducted to 
ensure the reliability of the results. However, this study 
has certain limitations. Firstly, most of the data used in 
this study comes from individuals of European ances-
try, which may limit the generalizability of our findings. 
Secondly, while subgroup MR analysis of T1D with com-
plications can offer us a comprehensive insight into the 
association between various complications and NICM, 
it is important to acknowledge the considerable sample 
overlap between participants in the exposure and out-
come datasets. In fact, these are single-sample analysis. 
This might increase the risk of type I errors, so caution 
should be exercised when interpreting the results in this 
section. We used https://sb452.shinyapps.io/overlap 
to estimate the potential for Type I errors. After evalu-
ation, even if the samples completely overlapped, the 

type I error rate could be maintained at 0.05 in all sub-
group analyses. Thirdly, even with the assurance of F 
statistic > 10, the explanatory power of IVs on potential 
mediating variables is limited. Therefore, even though 
many inflammatory cytokines have not been found to 
have a mediating effect, further research is still warranted 
in this area. In addition, the correlation p-value of MIG 
becomes non-significant after FDR correction. This sug-
gests that it may play a mediating role, but more evidence 
is needed to confirm this.

Conclusion
In conclusion, the study suggests that genetically pre-
dicted T1D and its complications play an independent 
causal role in the development of NICM. MIG may medi-
ate the progression from T1D to NICM.
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