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Abstract 

Background Higher levels of palmitoyl sphingomyelin (PSM, synonymous with sphingomyelin 16:0) are associated 
with an increased risk of cardiovascular disease (CVD) in people with diabetes. Whether circulating PSM levels can 
practically predict the long-term risk of CVD and all-cause death remains unclear. This study aimed to investigate 
whether circulating PSM is a real predictor of CVD death in Chinese adults with or without diabetes.

Methods A total of 286 and 219 individuals with and without diabetes, respectively, from the original Da Qing Diabe-
tes Study were enrolled. Blood samples collected in 2009 were used as a baseline to assess circulating PSM levels. The 
outcomes of CVD and all-cause death were followed up from 2009 to 2020, and 178 participants died, including 87 
deaths due to CVD. Cox proportional hazards regression was used to estimate HRs and their 95% CIs for the outcomes.

Results Fractional polynomial regression analysis showed a linear association between baseline circulating PSM con-
centration (log-2 transformed) and the risk of all-cause and CVD death (p < 0.001), but not non-CVD death (p > 0.05), 
in all participants after adjustment for confounders. When the participants were stratified by PSM-tertile, the highest 
tertile, regardless of diabetes, had a higher incidence of CVD death (41.5 vs. 14.7 and 22.2 vs. 2.9 per 1000 person-years 
in patients with and without diabetes, respectively, all log-rank p < 0.01). Individuals with diabetes in the highest tertile 
group had a higher risk of CVD death than those in the lowest tertile (HR = 2.73; 95%CI, 1.20–6.22).

Conclusions Elevated PSM levels are significantly associated with a higher 10-year risk of CVD death, but not non-
CVD death, in Chinese adults with diabetes. These findings suggest that PSM is a potentially useful long-term predic-
tor of CVD death in individuals with diabetes.
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Background
The number of people with diabetes and cardiovascu-
lar diseases (CVDs) is predicted to increase [1, 2]. Most 
diabetes-related morbidity and excess mortality is asso-
ciated with vascular complications, even after control 
of blood pressure, glucose, and lipid. Diabetes studies 
therefore aim to prevent and reduce CVD and to iden-
tify people at risk early, especially those at residual high 
risk. Molecular lipidomics analyses of lipid metabolite 
composition and biochemical pathways are particularly 
important because of the role of lipids in CVD patho-
physiology. It is possible to predict disease states more 
accurately using the metabolome, which provides bio-
chemical feedback across all omics layers.

As a component of plasma membranes and mem-
brane microdomains, such as caveolae, lipid rafts, 
and clathrin-coated pits, sphingomyelin (SM) plays a 
critical role in transmembrane signaling and athero-
sclerosis [3, 4]. SM levels are associated with the risk 
of CVD and total death [5] and incident heart failure 
[6]. In addition, the association between SM levels and 
death differs according to the length of the acylated 
saturated fatty acids in participants aged > 65  years in 
the Cardiovascular Health Study [7]. In addition to its 
association with CVDs, lipid metabolism has also been 
associated with an increased risk of developing diabe-
tes and diabetes-related complications. Several circu-
lating metabolites associated with type 2 diabetes risk 
in relatively lean Chinese adults [8]. Compared with 

healthy controls, the serum levels of SM were signifi-
cantly lower in patients with pre-diabetes and diabetes 
[9]. However, the current evidence on the role of SM 
in the development of diabetes-related CVD is limited. 
Circulating phospholipid species are more pronounced 
lower in individuals with diabetes with CVD than that 
in those without CVD [10]. Increased plasma SM lev-
els may be associated with the benefits of empagliflozin 
in patients with type 2 diabetes mellitus at risk of CVD 
[11]. Adults with type 2 diabetes with SM containing a 
very-long-chain saturated fatty acid have a lower CVD 
risk [12].

In contrast, higher levels of palmitoyl SM (PSM, synon-
ymous with SM [16:0]) are associated with an increased 
risk of CVD in individuals with diabetes through untar-
geted metabolomics analysis in a discovery dataset and 
targeted analysis in a verified dataset [13]. However, it 
remains unclear whether circulating PSM levels can prac-
tically predict the long-term risk of CVD and all-cause 
mortality. In this study, based on the Da Qing Diabetes 
Study cohort and its long-term follow-up data, we aimed 
to investigate the predictive effect of the plasma levels of 
PSM on the 10-year risk of death among Chinese adults 
aged 45–86 years.

Methods
Study design and participant enrolment
All the participants in this study were from a prospective 
cohort of the Da Qing Diabetes Study. Detailed enrolment 
has been reported previously [14]. Briefly, in 1985, 3956 
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individuals with 2-h plasma glucose level ≥ 6.7  mmol/L 
after standard breakfast accepted a 75-g standard oral 
glucose tolerance test  (OGTT). Among these individu-
als, 630 were newly diagnosed with diabetes according to 
the WHO criteria 1985 for type 2 diabetes [15], and 519 
were identified as having normal glucose tolerance. In a 
follow-up study in 2009, 505 participants (286 with dia-
betes and 219 without diabetes) with plasma PSM levels 
were included in this study (Additional file 1: Fig. S1), and 
the data were used as the baseline. The clinical outcomes 
of all-cause, CVD, and non-CVD deaths were traced up 
to 31 December 2020.

Data collection and outcome assessment
Medical records and death certificates were reviewed to 
verify the data collected from proxy informants using 
standardized questionnaires. Data collection has been 
described previously [14, 16, 17]. In brief, all partici-
pants were from the Da Qing Diabetes Study, the base-
line information of age, sex, smoking status, and the use 
of alcohol were collected through face-to-face interview 
in 2009. The data of height, weight, and blood pres-
sure were collected by physical examination, the level of 
 HbA1c, lipid, and creatinine were measured in Da Qing 
First Hospital based on a standard protocol. Diabe-
tes status was assessed through OGTT results for non-
diabetic individuals and through medical record review, 
laboratory examination, and records of receiving glu-
cose-lowering medications. CVD events were defined as 
non-fatal or fatal myocardial infarction or sudden death, 
hospital admission for heart failure, or non-fatal or fatal 
stroke. CVD deaths were defined as death due to myo-
cardial infarction, sudden death, heart failure, or stroke. 
The information of all-cause death was first collected by 
proxy informants using standardized questionnaires, 
then confirmed by medical records review and/or death 
certificate. Causes of death were determined from review 
of medical records and death certificates. The CVD 
death also confirmed by medical records (including the 
data of clinical symptoms, electrocardiogram, coronary 
revascularization, enzyme, or X‐ray examinations) and/
or death certificate if available. The earliest date of out-
come recognition was defined as onset. Outcomes were 
independently evaluated by two physicians, and a third 
senior physician resolved disagreements. This study was 
approved by the Ethics Committee of the Fuwai Hospital. 
Written informed consent was obtained from all partici-
pants or representatives of deceased participants.

Palmitoyl sphingomyelin level measurement
Fasting EDTA plasma samples were used to measure 
PSM levels, as reported in previous studies[6, 7, 18] 
because EDTA inhibits sphingomyelinases and ensures 

stable PSM levels. All samples were collected in 2009, 
immediately separated, frozen at −  80  °C and thawed 
for analysis. Ultra-high-performance liquid chroma-
tography-tandem mass spectrometry (UPLC-MS/MS) 
analysis was used to determine plasma PSM concentra-
tions. UPLC-MS/MS analysis was performed on a Waters 
ACQUITY Ultra Performance LC System (Waters Cor-
poration, Milford, MA) equipped with a BEH C18 col-
umn (100  mm × 2.1  mm, 1.7  µm). Quantitative analysis 
was performed using a chromatographic reference com-
pound, PSM (Y0852; CAS 6254-89-3; A.V.T. Pharmaceu-
tical Co., Ltd.).

For hierarchical analysis, the participants were 
stratified into three groups based on the PSM level 
tertile: Group 1, PSM ≤ 7.51 µg/ml; Group 2, PSM = 7.51–
11.05 µg/ml; and Group 3, PSM > 11.05 µg/ml. PSM lev-
els were ≤ 8.78, 8.78–12.61, and > 12.61 µg/ml in Groups 
1, 2, and 3, respectively, in individuals with diabetes. In 
those without diabetes, the corresponding PSM levels 
were ≤ 6.85, 6.85–9.21, and > 9.21  µg/ml in Groups 1, 2, 
and 3, respectively.

Statistical analyses
For continuous variables, univariate analysis was used 
to determine the distribution. Normally distributed 
continuous variables are presented as the mean ± stand-
ard deviation and compared among the groups using a 
t-test. Right-skewed distributed variables are reported 
as median (interquartile range, 25–75th percentiles) and 
compared using the Wilcoxon rank-sum test. Categori-
cal variables are presented as numbers and percentages 
(%) and analyzed using chi-squared or Fisher’s exact 
tests, as appropriate. PSM was analyzed as continuous 
(log-2 transformed) and grouped (tertiles) variables. The 
homoeostatic model assessment for insulin resistance 
(HOMA_IR) was calculated using the following formula: 
HOMA_IR = (fasting glucose [mmol/L] × fasting insulin 
[mU/L]/22.5) [19].

Log-minus-log plots were used to assess the propor-
tional hazards assumption. The time-to-event survival 
curve for death was created using the cumulative inci-
dence method and compared among groups using log-
rank tests. Cox proportional hazards regression was 
used to estimate hazard ratios (HRs) and 95% confidence 
intervals (CIs) for each outcome, with adjustment for 
confounders, including age, sex, smoking status, systolic 
blood pressure (SBP), hemoglobin A1c  (HbA1c) level, and 
low-density lipoprotein cholesterol (LDL-c) level, cre-
atinine level, prevalent CVD, and the use of alcohol and 
statins. A fractional polynomial regression model was 
used to evaluate the log-linear association between PSM 
levels and death, with adjustment for the covariables. 
Cox regression models were used to calculate HRs [20]. 
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To compare the influence of PSM levels on death with 
the traditional risk factor, age increased per 10 years and 
SBP increased by 10 mmHg were used in the Cox model. 
Missing data points (< 0.01% of the data) were mean-sub-
stituted [21].

All statistical analyses were performed using SAS ver-
sion 9.4 (SAS, Cary, NC, USA) and Stata SE version 16.0 
(StataCorp) software. Two-sided p < 0.05 was considered 
statistically significant.

Results
Baseline characteristics
The basic clinical characteristics of the study participants 
are shown in Table  1. A total of 505 participants were 
included in this study. The average age was > 60  years 
(64.9 ± 7.6  years) in all participants, of whom 222 (44%) 
were male and 175 (35%) were smokers. The average 
duration of diabetes was 18.5  years (18.5 ± 8.3  years) 
in individuals with diabetes. The plasma levels of PSM 
in individuals with diabetes were higher than that in 
those without diabetes (10.34 [7.51–24.08] vs. 8.03 

[6.07–10.14] µg/ml, p < 0.001). Participants with diabe-
tes had higher SBP and triglyceride levels (147.9 ± 22.5 
vs. 138.1 ± 20.0 mmHg and 2.0 ± 1.4 vs. 1.8 ± 1.0 mmol/L, 
respectively; all p < 0.05) and higher insulin resistance 
than those without diabetes (HOMA_IR, 3.13 [1.80–
7.23] vs. 1.24 [1.02–2.20]; p < 0.01). Diabetes group also 
had higher creatinine level (66.4 [54.7–80.5] vs. 61.5 
[53.2–75.9] µmol/L, p = 0.023) and higher frequency of 
prevalent CVD (79 [27.6%] vs. 43 [19.6%], p = 0.038) than 
non-diabetes group.

Outcomes
A total of 178 (35.2%) patients had all-cause death dur-
ing follow-up, of whom 87 (48.9%) died of CVD (Table 1 
and Additional file 1: Fig. S1). Patients with diabetes had 
higher death rates, including all-cause, CVD, and non-
CVD death, than those without diabetes (all p < 0.05).

PSM levels associated with outcomes
Multivariable fractional polynomial (MFP) regression 
analysis showed a linear association between the risk of 

Table 1 Clinical characteristics at baseline and outcomes over 10 years (2009–2020)

Data are presented as mean ± standard deviation or median (interquartile range, 25th–75th percentiles), except for qualitative variables, which are expressed as n (%). 
CVD cardiovascular disease, SBP systolic blood pressure, HbA1c glycated hemoglobin, TG triglyceride, LDL-c low-density lipoprotein cholesterol, DM diabetes mellitus, 
PSM palmitoyl sphingomyelin

All participants Individuals without 
diabetes

Individuals with diabetes P value

n 505 219 286

At baseline (2009)

Age, years 64.9 ± 7.6 64.2 ± 8.0 65.5 ± 7.3 0.071

Male, n (%) 222 (44) 103 (47) 119 (42) 0.240

Smoking, n (%) 175 (35) 85 (39) 90 (31) 0.090

BMI, kg/m2 25.5 ± 3.6 25.4 ± 3.7 25.6 ± 3.5 0.536

SBP, mmHg 143.5 ± 22.0 138.1 ± 20.0 147.9 ± 22.5  < 0.001

HbA1c, % 7.1 ± 1.6 5.9 ± 0.5 8.0 ± 1.7  < 0.001

TG, mmol/L 1.9 ± 1.2 1.8 ± 1.0 2.0 ± 1.4 0.013

LDL-c, mmol/L 3.0 ± 0.9 3.0 ± 0.8 3.1 ± 1.0 0.167

Uric acid, mmol/L 318.9 ± 87.8 323.2 ± 85.9 315.3 ± 89.4 0.319

Creatinine, µmol/L 64.6 (54.1–77.1) 61.5 (53.2–75.9) 66.4 (54.7–80.5) 0.023

HOMA_IR 2.11 (1.18–4.52) 1.24 (1.02–2.20) 3.13 (1.80–7.23)  < 0.001

DM duration, years – – 18.5 ± 8.3 –

Prevalent CVD, n (%) 122 (24.2) 43 (19.6) 79 (27.6) 0.038

Alcohol use, n (%) 79 (15.6) 44 (20.0) 35 (12.2) 0.017

PSM, µg/ml 9.04 (6.69–13.22) 8.03 (6.07–10.14) 10.34 (7.51–24.08)  < 0.001

Follow-up (2009–2020)

Anti-hypertensives, n (%) 331 (65.5) 123 (56.2) 208 (72.7)  < 0.001

Lipid-lowering agents, n (%) 268 (53.1) 97 (44.3) 171 (59.8) 0.001

Statins, n (%) 218 (43.2) 81 (37.0) 137 (47.9) 0.014

All-cause death, n (%) 178 (35.2) 49 (22.4) 129 (45.1)  < 0.001

CVD death, n (%) 87 (17.2) 20 (9.1) 67 (23.4)  < 0.001

Non-CVD death, n (%) 91 (18.0) 29 (13.2) 62 (21.7) 0.015
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each outcome (log HR) and circulating PSM concentra-
tion (log-2 transformed) (Additional file 1: Fig. S2). In all 
participants, a progressively higher risks of all-cause and 
CVD death was associated with PSM levels after adjust-
ment for confounders (p < 0.05), but not non-CVD death. 
In the subgroups, the linear association between PSM 
levels and all-cause and CVD death persisted in diabetes 
group (p < 0.05, Additional file 1: Fig. S2d and e). The lin-
ear association between PSM levels and non-CVD death 
was not significant (p > 0.05, Additional file 1: Fig. S2c, f 
and i).

PSM levels predicted the risks of all‑cause and CVD death
Table  2 shows the association between circulating PSM 
levels (log-2 transformed) and the outcomes. In all par-
ticipants, per doubling in PSM (µg/ml) level was associ-
ated with all-cause death (HR = 1.37; 95% CI, 1.12–1.68; 
p = 0.002) after adjustment for age, sex, smoking status, 
 HbA1c level, SBP, LDL-c level, creatinine level, prevalent 
CVD, and the use of statins and alcohol. The risk of CVD 
death increased by 50% (HR = 1.50; 95% CI, 1.12–2.00; 
p = 0.006) per twofold increase in PSM (µg/ml) levels. 
In patients with diabetes, the risks of all-cause and CVD 
death increased by 47% and 53%, respectively, per two-
fold increase in PSM (µg/ml) level (p < 0.05). The HRs 
were 1.18 (95% CI, 0.73–1.92) for all-cause death and 
1.31 (95% CI, 0.65–2.63) for CVD death in individu-
als without diabetes. PSM levels were not associated 
with the risk of non-CVD death in either the diabetes 

or non-diabetes group (HR = 1.39; 95% CI, 0.98–1.96; 
p = 0.06 and HR = 1.01; 95% CI, 0.51–2.00; p = 0.98, 
respectively), consistent with the results of the MFP 
regression analysis.

To compare the cumulative incidence of CVD death, 
participants were grouped according to the tertile of 
PSM levels (Table 3). In all participants, PSM levels were 
5.98 (5.02–6.68), 9.06 (8.35–10.04), and 25.74 (13.41–
36.83) µg/ml in Groups 1, 2, and 3, respectively. The dif-
ference in PSM concentration between Group1 and 3 
differed according to diabetes status. In participants with 
diabetes, the PSM levels were more than 5 times higher 
in Group3 than in Group1 (33.85 [24.08–44.03] vs. 6.23 
[5.11–7.53] µg/ml), whereas in those without diabetes, it 
was less than 3 times (14.02 [10.14–25.33] vs. 5.23 [4.39–
6.07] µg/ml). In individuals with diabetes, the incidence 
rate of CVD death in Group 3 was significantly higher 
than that in Group 1 (41.5 vs. 14.7 per 1000 person-years, 
p < 0.001). The same trend of difference in the incidence 
rate of CVD death was observed in individuals without 
diabetes (22.2 vs. 2.9 per 1000 person-year, p < 0.001).

Figure  1 shows the Kaplan–Meier failure estimate 
according to the tertile of PSM levels. In all participants, 
the Kaplan–Meier curves of the tertile groups separated 
after 1 year of follow-up, and the risk of CVD death was 
twofold higher in Group 3 than in Group 1 (Fig. 1A). In 
participants with diabetes, the Kaplan–Meier curves of 
the tertile groups were separated from the 4-year follow-
up (log-rank p < 0.01). The risk of CVD death in Group 3 

Table 2 The association between circulating PSM (log-2 transformed) levels and outcomes

Model 1: Adjusted for age (per 10 years) and sex; Model 2: plus adjusting for smoking status, SBP (per 10 mmHg),  HbA1c level, and LDL-c level; Model 3: plus adjusting 
for creatinine level, prevalent CVD, and the use of statins and alcohol

PSM palmitoyl sphingomyelin, CVD cardiovascular disease, HR hazard ratio, CI confidence interval, HbA1c glycated hemoglobin, SBP systolic blood pressure, LDL-c low-
density lipoprotein cholesterol

All participants (n = 505) P value Individuals with 
diabetes (n = 286)

p value Individuals without 
diabetes (n = 219)

p value

All-cause death, n (%) 178 (35.2) 129 (45.1) 49 (22.4)

 Crude HR (95% CI) 1.69 (1.48–1.93)  < 0.001 1.52 (1.30–1.76)  < 0.001 1.82 (1.34–2.47)  < 0.001

 Model 1 HR (95% CI) 1.61 (1.41–1.83)  < 0.001 1.46 (1.25–1.69)  < 0.001 1.86 (1.34–4.51)  < 0.001

 Model 2 HR (95% CI) 1.47 (1.28–1.73)  < 0.001 1.42 (1.21–1.67)  < 0.001 1.67 (1.17–2.36) 0.004

 Model 3 HR (95% CI) 1.37 (1.12–1.68) 0.002 1.47 (1.16–1.87) 0.002 1.18 (0.73–1.92) 0.50

CVD death, n (%) 87 (17.2) 67 (23.4) 20 (9.1)

 Crude HR (95% CI) 2.04 (1.69–2.45)  < 0.001 1.73 (1.40–2.13)  < 0.001 2.73 (1.74–4.28)  < 0.001

 Model 1 HR (95% CI) 1.91 (1.58–2.30)  < 0.001 1.63 (1.32–2.01)  < 0.001 2.82 (1.75–4.56)  < 0.001

 Model 2 HR (95% CI) 1.75 (1.43–2.14)  < 0.001 1.58 (1.27–1.98)  < 0.001 2.31 (1.39–3.83) 0.001

 Model 3 HR (95% CI) 1.50 (1.12–2.00) 0.006 1.53 (1.10–2.14) 0.012 1.31 (0.65–2.63) 0.44

Non-CVD death, n (%) 91 (18.0) 62 (21.7) 29 (13.2)

 Crude HR (95% CI) 1.38 (1.13–1.68) 0.001 1.30 (1.04–1.62) 0.023 1.30 (0.83–2.01) 0.25

 Model 1 HR (95% CI) 1.33 (1.09–1.61) 0.004 1.26 (1.01–1.58) 0.04 1.29 (0.81–2.06) 0.29

 Model 2 HR (95% CI) 1.23 (1.00–1.51) 0.046 1.24 (0.98–1.57) 0.069 1.22 (0.73–2.02) 0.45

 Model 3 HR (95% CI) 1.24 (0.93–1.66) 0.15 1.39 (0.98–1.96) 0.062 1.01 (0.51–2.00) 0.98
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Table 3 Incidence of cardiovascular disease death among tertile groups with different circulating PSM levels

PSM palmitoyl sphingomyelin, CI confidence interval

Group 1 Group 2 Group 3 P value

All participants, n 170 168 167

 PSM, µg/ml 5.98 (5.02–6.68) 9.06 (8.35–10.04) 25.74 (13.41–36.83) < 0.001

 Incidence per 1000 person-years (95% CI) 7.8 (4.6–13.2) 13.7 (9.0–21.1) 38.7 (29.5–50.8)  < 0.001

Individuals with diabetes, n 95 95 96

 PSM, µg/ml 6.23 (5.11–7.53) 10.35 (9.56–11.11) 33.85 (24.08–44.03) < 0.001

 Incidence per 1000 person-years (95% CI) 14.7 (8.8–24.0) 24.8 (16.5–36.3) 41.5 (31.6–53.2)  < 0.001

Individuals without diabetes, n 73 73 73

 PSM, µg/ml 5.23 (4.39–6.07) 8.03 (7.29–8.68) 14.02 (10.14–25.33)  < 0.001

 Incidence per 1000 person-years (95% CI) 2.9 (0.7–11.0) 4.2 (1.4–12.4) 22.2 (14.0–34.2)  < 0.001

Fig. 1 Kaplan–Meier failure estimate according to tertile group of PSM cardiovascular disease death in A all participants, B individuals with diabetes, 
and C individuals without diabetes. HR hazard ratio, CI confidence interval. HR calculated after adjustment for age, sex, smoking status, SBP,  HbA1c 
level, LDL-c level, creatinine level, prevalent CVD, and the use of statins and alcohol
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was more than 2 times higher than that in Group 1 after 
adjustment for traditional risk factors (HR = 2.73; 95% 
CI, 1.02–6.22; p = 0.017; Fig. 1B). In individuals without 
diabetes, the cumulative incidence rate of CVD death 
in Group 3 was higher than that in Group 1 (22.2% vs. 
2.9%, log-rank p < 0.001, Fig. 1C). The HR of CVD death 
in Group 3 had a relatively broad 95% CI, possibly owing 
to the limited number of deaths.

Discussion
A key finding from this prospective study was the predic-
tive effect of circulating levels of PSM on subsequent dec-
ade death. The predictive value of PSM for CVD death 
is more prominent in individuals with diabetes than in 
those without diabetes because they have significantly 
higher PSM levels than those without diabetes. Through 
fractional polynomial Cox analysis (adjusted for age, sex, 
smoking status,  HbA1c level, SBP, LDL-c level, creatinine 
level, and the use of statins and alcohol), PSM levels were 
found to be linearly associated with the risks of all-cause 
and CVD death in all participants and those with dia-
betes. In multivariable Cox model analysis, per twofold 
increase in PSM (µg/ml) level was associated with 50% 
and 37% high risk of CVD and all-cause death, respec-
tively. In the subgroup analysis, the association was per-
sistent in individuals with diabetes. Similarly, the 11-year 
follow-up data showed that the cumulative incidence 
rate of CVD death was higher in individuals in the high-
est PSM tertile than in the lowest, both with and without 
diabetes. Interestingly, the risk of non-CVD death was 
not significantly associated with higher PSM levels.

Even after taking medication for hypertension, dyslipi-
daemia and diabetes, the risk of CVD and all-cause death 
was still higher in people with diabetes than in people 
without diabetes. In addition, some people are at a higher 
risk than others, even though all of them have diabe-
tes. Therefore, our study focused on identifying those at 
higher risk of developing long-term outcomes at an early 
stage. We previously reported that an increased level of 
PSM is associated with a high risk of CVD in patients 
with type 2 diabetes through a cross-sectional data 
analysis [13]. First, using a non-targeted metabolomics 
method, we found that changes in metabolites, including 
lipid and fatty acid contents, were significantly associated 
with cardiovascular risk in patients with diabetes. After 
targeted analysis, a higher level of PSM was associated 
with a higher risk of CVD in individuals with diabetes. 
Then, we validated this finding in a separate population 
and have established a relationship between PSM levels 
and CVD risk with concrete information.

In this study, we firstly assessed the predictive effect 
of PSM levels on the risk of CVD death over a decade 

follow-up. People with diabetes and higher level of PSM 
have a higher risk of CVD and all-cause death. PSM is 
considered one of the most prevalent species of SM 
[22]. Plasma SM levels are positively and independently 
associated with coronary artery disease in a cross-sec-
tional study [23] and can predict myocardial infarction 
and cardiovascular death in patients with acute coro-
nary syndrome [24]. Our results are consistent with 
the results of clinic-based studies of the association 
between plasma SM levels and CVD. Notably, in the 
present study, the association between plasma PSM lev-
els and CVD death persisted even after adjustment for 
LDL-c levels and statins, suggesting the strong predic-
tive power of PSM for CVD death in people with dia-
betes, especially for residual high risk after control of 
blood pressure, blood glucose, and lipids. Mihyun Bae 
et al., reported that SM levels differ by alcohol use sta-
tus for the SM can be hydrolyzed to ceramide by sphin-
gomyelinase under stress [25]. Patients with chronic 
kidney disease had higher levels of plasma Ceramide 
(d18:1/16:0) [26]. Additionally, higher plasma SM (16:0) 
levels mediated the association between reduced eGFR 
and incident heart failure [18] and were significantly 
associated with greater albuminuria [27]. Therefore, in 
the present analysis, creatinine level and alcohol use 
were adjusted, and the significant association between 
higher levels of PSM and CVD death remained.

However, the function of SM differs from the dif-
ferent carbon chains and species and the results were 
inconsistent. Some studies showed the association 
between higher plasma SM-16 levels and increased risk 
of heart failure and higher SM-20, SM-22, and SM-24 
levels and decreased risk of heart failure [6]. SM (16:0) 
was vital for predicting CVD death in a case-cohort 
subset from the Action in Diabetes and Vascular Dis-
ease: Preterax and Diamicron-MR Controlled Evalu-
ation trial [28], whereas another study demonstrated 
that SM (16:0, 16:1) was associated with lower cardiac 
vagal tone in individuals recently diagnosed with type 2 
diabetes [29]. In the present study, we provide clear evi-
dence of the predictive effect of PSM levels containing 
palmitic acid (16:0) on death, particularly CVD death. 
These findings may help to identify people at increased 
risk of long-term outcomes a decade earlier. SM can be 
synthesized from ceramide by synthase and converted 
back to ceramide by sphingomyelinase [3] preserving 
the acylated palmitic acid. Therefore, the direct car-
diotoxic effects of sphingolipids is worthy of attention. 
Foundational basic studies through transgenic mouse 
models, such as mice overexpressing long-chain acyl- 
CoA synthetase in the heart [30] and cardiac-specific 
glycosylphosphatidylinositol-anchored human lipo-
protein lipase [31], have demonstrated that ceramide 
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accumulation in cardiac myocytes significantly contrib-
utes to the development of cardiomyopathy.

We also found that PSM, which contained palmitic acid 
(16:0), was correlated with  HbA1c level and HOMA_IR 
in individuals with diabetes. These results are con-
sistent with those of other studies on the association 
between SM or fatty acid levels and insulin resistance. 
Higher levels of SM (carrying 18:0, 20:0, 22:0, or 24:0) 
were associated with lower fasting insulin levels, and the 
homoeostatic model assessed HOMA_IR and HOMA-B 
among individuals with normal BMI in the Strong Heart 
Family Study cohort study [32]. However, the reduction 
of SM levels in the plasma membranes of liver cells leads 
to an improvement in tissue and whole-body insulin sen-
sitivity in Sptlc2 and sms2 knockout mice [33]. Palmitic 
acid (16:0) (but not stearic acid [18:0]) induces impaired 
ß-cell function and insulin resistance [34], which may be 
caused by abnormal lipid distribution, endoplasmic retic-
ulum expansion, and stress [35]. The elevated hepatic 
PSM content promotes inflammation by altering mem-
brane lipid composition and toll-like receptor-4 sign-
aling [36]. Therefore, another possible explanation for 
the association between PSM levels and CVD death lies 
in the dysfunction of ß-cells and insulin sensitivity and 
inflammation, which are pivotal patterns in the develop-
ment of diabetes-related vascular complications, such as 
atherosclerosis. Changes in plasma PSM levels seem to 
represent a change in systemic inflammation and insulin 
resistance level, and this change may be an early reac-
tion of the body to stress, although the different effects of 
PSM and SM levels remain unknown.

This study has several strengths. First, the participants 
were from a long-term cohort in the Da Qing Diabetes 
Study. Some follow-up data have been reported, and 94% 
of the participants were assessed for outcomes [16]. Sec-
ond, the average age of the participants at recruitment 
was > 60 years, with a high frequency of outcomes. Third, 
the association between PSM levels and CV events was 
identified by untargeted metabolomics, quantitatively 
confirmed by targeted metabolomics, and validated with 
external data. However, the relatively small sample size 
and single ethnicity of the participants limited specula-
tion to other individuals. Alcohol use is complicated in 
China for the use of liquor and rice wine. So, we can only 
define the alcohol use as yes or no in the Cox model. The 
underlying mechanism of the predictive effect of higher 
PSM levels on the increased risk of CVD death requires 
further studies.

Conclusions
This prospective study found that a higher level of PSM 
is associated with a subsequent 10-year higher all-cause 
death, especially CVD death, in older individuals with 

diabetes. These findings suggest that PSM is a potentially 
useful long-term predictor of CVD death. Large-scale 
longitudinal studies are needed to determine the useful-
ness of this metabolite as a predictor of diabetes-related 
complications.
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