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Abstract 

Background Abnormal lipid metabolism poses a risk for prediabetes. However, research on lipid parameters used 
to predict the risk of prediabetes is scarce, and the significance of traditional and untraditional lipid parameters 
remains unexplored in prediabetes. This study aimed to comprehensively evaluate the association between 12 lipid 
parameters and prediabetes and their diagnostic value.

Methods This cross-sectional study included data from 100,309 Chinese adults with normal baseline blood glucose 
levels. New onset of prediabetes was the outcome of concern. Untraditional lipid parameters were derived from tradi-
tional lipid parameters. Multivariate logistic regression and smooth curve fitting were used to examine the nonlinear 
relationship between lipid parameters and prediabetes. A two-piecewise linear regression model was used to identify 
the critical points of lipid parameters influencing the risk of prediabetes. The areas under the receiver operating char-
acteristic curve estimated the predictive value of the lipid parameters.

Results A total of 12,352 participants (12.31%) were newly diagnosed with prediabetes. Following adjustments 
for confounding covariables, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol 
were negatively correlated with prediabetes risk. Conversely, total cholesterol, triglyceride (TG), lipoprotein combine 
index (LCI), atherogenic index of plasma (AIP), non-HDL-C, atherogenic coefficient, Castelli’s index-I, remnant choles-
terol (RC), and RC/HDL-C ratio displayed positive correlations. In younger adults, females, individuals with a family his-
tory of diabetes, and non-obese individuals, LCI, TG, and AIP exhibited higher predictive values for the onset of predia-
betes compared to other lipid profiles.

Conclusion Nonlinear associations were observed between untraditional lipid parameters and the risk of prediabe-
tes. The predictive value of untraditional lipid parameters for prediabetes surpassed that of traditional lipid param-
eters, with LCI emerging as the most effective predictor for prediabetes.
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Background
Diabetes has emerged as the most prevalent and clinically 
significant metabolic disorder in recent decades, affecting 
over 536.6 million individuals globally in 2021. This wide-
spread impact places a substantial burden on both pub-
lic health and healthcare expenditures [1]. Prediabetes, 
an intermediary state of hyperglycemia between normal 
blood glucose and diabetes, manifests before the onset 
of diabetes. According to the 2018 American Diabetes 
Association (ADA) diagnostic criteria, the prevalence 
of prediabetes among Chinese adults is 35.2% [2]. With-
out prompt management, the annual rate of conversion 
to diabetes is 5% ~ 10% [3]. Moreover, prediabetes serves 
as a pivotal warning sign, indicating a heightened risk 
for future cardiovascular and cerebrovascular disorders, 
microvascular diseases, cancers, dementia, and other 
diseases [4–6]. Hence, timely intervention and effective 
management strategies among populations with predia-
betes are crucial in preventing abnormal progression and 
complications associated with glucose metabolism.

Abnormal lipid metabolism significantly contributes 
to prediabetes. Dyslipidemia-induced lipotoxicity plays 
a crucial role in two primary pathways to prediabetes: 
peripheral insulin resistance (IR) and pancreatic islet β 
cell dysfunction [7]. Excessive cholesterol accumulation 
impairs β cell function, disrupting glucose tolerance and 
insulin secretion. Assessments such as the hyperinsu-
linemic-euglycemic clamp test and homeostatic model 
measure IR and diabetes risk but pose challenges due to 
the time, expense, complexity, and invasiveness [8, 9]. 
Patients with prediabetes often exhibit quantitative lipo-
protein, qualitative lipoprotein, and kinetic abnormali-
ties, fostering a shift to a more atherogenic lipid profile, 
including higher total cholesterol (TC), triglyceride (TG), 
and low-density lipoprotein (LDL) cholesterol (LDL-C) 
levels, and lower high-density lipoprotein cholesterol 
(HDL-C) [10]. Recent studies highlight untraditional 
lipid indicators such as non-HDL-C, remnant choles-
terol (RC), and RC/HDL-C ratio, derived from multiple 
traditional lipid parameters, as alternatives for IR. These 
markers relate closely to diabetes and cardiovascular and 
cerebrovascular diseases [11–13]. Compared to tradi-
tional lipid parameters, these untraditional parameters 
offer richer insights, quantifying risk information and 
balancing atherogenic and anti-atherogenic lipoproteins 
more effectively [14].

However, the relationship between untraditional lipid 
parameters and prediabetes remains unknown. It is 
unclear which of these parameters is most effective in 
detecting prediabetes. Therefore, a comprehensive com-
parative analysis of the relationship between untradi-
tional lipid parameters and the prevalence of prediabetes 
in the Chinese adult population was conducted using 

nationally representative large-scale research data for this 
study.

Methods
Data source and study participants
This study sourced its data from the Dryad public data-
base (https:// datad ryad. org/ stash/ datas et/ doi: 10. 5061% 
2Fdry ad. ft875 0v), originally provided by Chen et  al. 
[15]. This dataset comprised medical data from 211,833 
individuals who underwent health examinations at Rich 
Healthcare Group across 32 sites and 11 cities in China 
from 2010 to 2016. According to the Dryad database 
terms, the dataset can be used for secondary analysis 
to explore new research hypotheses and optimize data 
utilization.

The original study recruited 685,277 Chinese 
adults over 20 years old, with at least two visits from 2010 
to 2016. Exclusion criteria were as follows: (1) missing 
height and weight data (n = 103,946); (2) unknown gen-
der (n = 1); (3) extreme body mass index (BMI), defined 
as a BMI of < 15 kg/m2 or > 55 kg/m2 (n = 152); (4) missing 
baseline fasting plasma glucose (FPG) data (n = 31,370); 
(5) baseline diabetes (n = 7112); (6) unknown diabe-
tes status during follow-up (n = 6630); (7) had a follow-
up period of less than 2  years (n = 324,233). Ultimately, 
211,833 participants were enrolled in the original study. 
This study, following Chen et  al., endeavors to further 
investigate the relationship between untraditional lipid 
parameters and prediabetes. Additional exclusion criteria 
based on the ADA’s prediabetes diagnostic criteria: (1) no 
data on TC, TG, HDL-C, or LDL-C (n = 95,172); (2) base-
line FPG ≥ 5.6  mmol/L (n = 15,541); (3) diabetes diag-
nosis during follow-up (n = 790); (4) FPG > 6.9  mmol/L 
during follow-up (n = 21). Finally, 100,309 participants 
were included in the current research (Fig. 1). This study 
received an ethical exemption from the Ethics Commit-
tee of Southeast University Affiliated Zhongda Hospital, 
complying with Dryad’s publication criteria.

Data collection
Investigators obtained sociodemographic data from par-
ticipants using standardized questionnaires, covering 
age, gender, smoking and drinking habits, and family his-
tory of diabetes. Blood pressure was measured by trained 
personnel using a mercury sphygmomanometer at rest. 
Smoking and drinking status were classified into four cat-
egories based on the baseline visit time: never, once, cur-
rent, and unrecorded. Height and weight were measured 
by staff without shoes and heavy clothing. BMI was cal-
culated as weight (kg)/height2  (m2).

Professional healthcare workers obtained fasting 
venous blood samples from participants after a mini-
mum 10-h fast every visit. TC, TG, LDL-C, HDL-C, 
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alanine aminotransferase (ALT), aspartate aminotrans-
ferase (AST), FPG, serum creatinine (Scr), and blood 
urea nitrogen (BUN) levels were measured using an auto-
mated analyzer (Beckman Coulter AU5800, Brea, CA, 
USA); The glucose oxidase method was used to measure 
FPG levels.

The metabolic score for IR (METS-IR), a novel index 
for insulin sensitivity, predicts visceral adiposity and inci-
dent diabetes [16]. The formula for calculating METS-IR 
was: ln [(2 × FPG) + TG] × BMI/[ln (HDL-C)]. Moreover, 
the Chinese diabetes risk score (CDRS), established by Ji 
et al. in 2013, is an effective non-invasive tool for predia-
betes screening. The prediabetes screening strategy using 
CDRS gained expert consensus in 2023 [17]. The scoring 
rules of CDRS are presented in Additional file 1: Table S1.

The untraditional lipid parameters were calculated as 
follows:

Lipoprotein combine index (LCI) = TC × TG × LDL-C/
HDL-C [18];

Atherogenic index of plasma (AIP) = lg (TG/HDL-C) 
[19];

Non-HDL-C = TC − HDL-C [20];
Atherogenic coefficient (AC) = non-HDL-C/HDL-C 

[14];
Castelli’s index-I (CRI-I) = TC/HDL-C [21];
Castelli’s index-II (CRI-II) = LDL-C/HDL-C [21];
RC = TC − HDL-C − LDL-C [22];
RC/HDL-C ratio = RC/HDL-C.

Definitions
According to the 2018 ADA diagnostic criteria, prediabe-
tes was defined as patients who did not develop diabetes 
throughout the follow-up period but had an FPG level 
between 5.6 and 6.9 mmol/L [23].

Fig. 1 Flow diagram of the participants selection
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Statistics analysis
Data analysis was performed using R version 4.2.0 (R 
Foundation), EmpowerStats (http:// www. empow ersta ts. 
com, X&Y Solutions, Inc., Boston, MA), and GraphPad 
Prism (version 9.1.1 for macOS, GraphPad Software, 
LLC). Normally distributed continuous variables are 
expressed as the mean ± standard deviation, while skewed 
continuous variables are expressed as the median (25th 
to 75th interquartile range). Between-group differences 
were compared using t-tests or rank sum tests. Categori-
cal variables are presented as frequencies with percent-
ages, and comparisons were made using chi-square or 
Fisher’s exact test. The research hypothesis was tested 
through a series of analytical steps.

Initially, missing values in the dataset were addressed 
using specific methods. For continuous variables such as 
ALT, AST, Scr, systolic blood pressure (SBP), and dias-
tolic blood pressure (DBP), mean or median imputation 
was applied. Smoking and drinking status, categorized as 
group-based variables, treated their missing values col-
lectively (labelled as unrecorded).

Next, the correlation between lipid parameters, METS-
IR, and CDRS was evaluated using Pearson or Spearman’s 
rank correlation coefficient analyses. Collinearity analysis 
was performed to calculate the covariate’s variance infla-
tion factor (VIF). Covariates exhibiting a VIF of > 5 were 
considered collinear and consequently excluded from 
subsequent multivariate logistic regression models.

Next, a univariate logistic regression model was uti-
lized to assess each variable’s influence on prediabetes 
risk, recording the odds ratio (OR) and corresponding 
95% confidence interval (CI). Following guidelines from 
the Strengthening the Reporting of Observational Studies 
in Epidemiology statement, three epidemiological-based 
multivariate logistic regression models were constructed. 
Model 1 was adjusted for baseline age and gender, while 
Model 2 additionally considered a family history of dia-
betes, BMI, SBP, and DBP in addition to Model 1. Model 
3 encompassed all noncollinear variables. Lipid param-
eters were transformed into quartiles, forming the basis 
for the final model to ensure result reliability. This model 
evaluated the relationship between the quartiles and 
prediabetes, taking the lowest quartile as the reference. 
Furthermore, a generalized additive model with a fit-
ting smoothness was employed to delineate the dose–
response relationship between lipid parameters and 
prediabetes risk. Additionally, a two-piecewise logistic 
regression model was constructed to uncover potential 
hidden nonlinear relationships by analyzing data on both 
sides of the inflexion point. The log-likelihood ratio aided 
in selecting the most appropriate model characterizing 
the relationship between lipid parameters and prediabe-
tes risk.

Additionally, stratified analyses were conducted based 
on Model 3 to investigate other factors influencing the 
relationship between lipid parameters and the onset 
of prediabetes. Stratification occurred according to 
age (< 60  years, ≥ 60  years), gender (male, female), BMI 
(< 24  kg/m2, ≥ 24  kg/m2), and family history of diabetes 
(yes, no).

Subsequently, receiver operating characteristic (ROC) 
curves were constructed to estimate each lipid param-
eter’s predictive ability and accuracy for prediabetes risk 
and determine the optimal cut-off values. These analyses 
were further refined based on the stratification above, 
calculating the area under the ROC curve (AUC) for each 
subgroup to identify the most effective lipid parameter 
in predicting prediabetes. All tests were two-tailed, and 
P < 0.05 was considered statistically significant.

Results
Baseline characteristics of participants
In this study, 100,309 participants without prediabe-
tes at baseline had an average age of 42.91 ± 12.45 years, 
with males comprising 51.97% of the cohort. Among 
them, 12,352 participants (12.31%) developed prediabe-
tes during an average observation period of 37.4 months. 
Table 1 delineates the baseline characteristics of the study 
population, categorized by prediabetes diagnosis. Par-
ticipants in the prediabetes group were more likely to be 
older, males, current smokers, and current drinkers, with 
a higher prevalence of family history of diabetes. Moreo-
ver, compared to those without prediabetes, individuals 
with prediabetes exhibited elevated BMI, SBP, DBP, FPG, 
ALT, AST, Scr, BUN, TC, TG, LDL-C, LCI, AIP, non-
HDL- C, AC, CRI-I, CRI-II, RC, RC/HDL-C ratio, METS-
IR, and CDRS levels, alongside lower HDL-C levels (all 
P < 0.05).

The correlation between baseline lipid parameters, 
METS‑IR, and CDRS
Table 2 displays Spearman and Pearson correlation anal-
yses, illustrating associations between traditional and 
untraditional lipid parameters with METS-IR and CDRS. 
AIP exhibited stronger linear correlations with METS-IR 
compared to other lipid parameters (r = 0.728 for AIP; 
r = 0.143 for TC; r = 0.638 for TG; r = -0.569 for HDL-C; 
r = 0.150 for LDL-C; r = 0.644 for LCI; r = 0.348 for non-
HDL-C; r = 0.604 for AC; r = 0.604 for CRI-I; r = 0.517 for 
CRI-II; r = 0.467 for RC; r = 0.555 for RC/HDL-C ratio). 
Conversely, LCI demonstrated a more robust linear cor-
relation with CDRS relative to other lipid parameters 
(r = 0.449 for LCI; r = 0.284 for TC; r = 0.415 for TG; 
r = -0.141 for HDL-C; r = 0.256 for LDL-C; r = 0.398 for 
AIP; r = 0.360 for non-HDL-C; r = 0.311 for AC; r = 0.311 

http://www.empowerstats.com
http://www.empowerstats.com
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for CRI-I; r = 0.280 for CRI-II; r = 0.312 for RC; r = 0.305 
for RC/HDL-C ratio).

Relationship between baseline lipid parameters 
and prediabetes
Table  3 summarizes the univariate logistic regression 
results, aiding in covariate selection for subsequent mul-
tivariate regression analysis. BMI, SBP, DBP, FPG, ALT, 

AST, Scr, BUN, TC, TG, LDL-C, LCI, AIP, non-HDL-C, 
AC, CRI-I, CRI-II, RC, and RC/HDL-C ratio were risk 
factors for prediabetes. Among these parameters, AIP 
presented as the most significant risk factor associated 
with prediabetes (OR 3.452, 95% CI 3.242–3.678). Then, 
collinearity analysis (Additional file  2: Table  S2) identi-
fied high collinearity degrees for the smoking and drink-
ing status, indicated by VIF values of 8.393 and 8.433, 

Table 1 Baseline characteristics of participants with and without prediabetes

BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, FPG fasting plasma glucose, ALT alanine aminotransferase, AST aspartate 
aminotransferase, Scr serum creatinine, BUN blood urea nitrogen, TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density 
lipoprotein cholesterol, LCI lipoprotein combine index, AIP atherogenic index of plasma, AC atherogenic coefficient, CRI-I Castelli’s index-I, CRI-II Castelli’s index-II, RC 
remnant cholesterol, METS-IR metabolic score for insulin resistance, CDRS Chinese diabetes risk score

Variables Overall Non‑prediabetes Prediabetes P value

Participants 100,309 87,957 12,352

Age, years 42.91 ± 12.45 42.05 ± 12.04 49.00 ± 13.59  < 0.001

Male, n (%) 52,130 (51.97) 44,395 (50.47) 7735 (62.62)  < 0.001

Smoking status, n (%)  < 0.001

Current 5349 (5.33) 4509 (5.13) 840 (6.80)

Once 1090 (1.09) 935 (1.06) 155 (1.25)

Never 21,199 (21.13) 18,877 (21.46) 2322 (18.80)

Not recorded 72,671 (72.45) 63,636 (72.35) 9035 (73.15)

Drinking status, n (%)  < 0.001

Current 639 (0.64) 539 (0.61) 100 (0.81)

Once 4548 (4.53) 3944 (4.48) 604 (4.89)

Never 22,451 (22.38) 19,838 (22.55) 2613 (21.15)

Not recorded 72,671 (72.45) 63,636 (72.35) 9035 (73.15)

Family history of diabetes, n (%) 2208 (2.20) 1898 (2.16) 310 (2.51) 0.013

BMI, kg/m2 23.10 ± 3.22 22.91 ± 3.17 24.38 ± 3.25  < 0.001

SBP, mmHg 118.08 ± 16.08 117.08 ± 15.61 125.17 ± 17.51  < 0.001

DBP, mmHg 73.76 ± 10.77 73.21 ± 10.57 77.61 ± 11.38  < 0.001

FPG, mmol/L 4.79 ± 0.47 4.75 ± 0.47 5.03 ± 0.40  < 0.001

ALT, U/L 17.80 (12.80,26.50) 17.20 (12.50,26.00) 21.00 (14.70,31.00)  < 0.001

AST, U/L 23.71 (23.00,23.71) 23.71 (23.00,23.71) 23.71 (23.00,23.71)  < 0.001

Scr, umol/L 69.90 ± 15.64 69.44 ± 15.60 73.17 ± 15.52  < 0.001

BUN, mmol/L 4.63 ± 1.15 4.61 ± 1.14 4.84 ± 1.15  < 0.001

TC, mmol/L 4.75 ± 0.88 4.72 ± 0.88 4.92 ± 0.90  < 0.001

TG, mmol/L 1.06 (0.74,1.58) 1.02 (0.72,1.52) 1.30 (0.90,1.94)  < 0.001

HDL-C, mmol/L 1.38 ± 0.30 1.39 ± 0.31 1.34 ± 0.29  < 0.001

LDL-C, mmol/L 2.74 ± 0.67 2.73 ± 0.67 2.84 ± 0.67  < 0.001

LCI 9.72 (5.45,18.28) 9.28 (5.27,17.40) 13.62 (7.44,24.44)  < 0.001

AIP -0.11(-0.30,0.10) −0.12(−0.31,0.08) −0.003(−0.20,0.20)  < 0.001

Non-HDL- C 3.37 ± 0.86 3.34 ± 0.85 3.58 ± 0.87  < 0.001

AC 2.58 ± 0.99 2.55 ± 0.98 2.81 ± 1.02  < 0.001

CRI-I 3.58 ± 0.99 3.55 ± 0.98 3.81 ± 1.02  < 0.001

CRI-II 2.08 ± 0.70 2.06 ± 0.70 2.21 ± 0.71  < 0.001

RC 0.56 (0.35,0.84) 0.55 (0.34,0.82) 0.67 (0.44,0.96)  < 0.001

RC/HDL-C ratio 0.41 (0.24,0.67) 0.40 (0.23,0.65) 0.50 (0.31,0.78)  < 0.001

METS-IR 33.20 ± 6.37 32.81 ± 6.26 35.92 ± 6.41  < 0.001

CDRS 14 (9,19) 13 (9,18) 19 (14,24)  < 0.001
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respectively. Consequently, these variables were excluded 
as covariates in multivariate logistic regression analysis.

Based on epidemiology, three multivariate logistic 
regression models were employed to evaluate the rela-
tionship between baseline lipid parameters and predia-
betes risk (Table  4). The demographic-adjusted model 
(Model 1) demonstrated associations between all lipid 
parameters and prediabetes risk. However, upon fur-
ther adjustment for family history of diabetes, BMI, SBP, 
and DBP (Model 2), the association between LDL-C and 
CRI-II with prediabetes risk became non-significant. 
After adjusting for all noncollinear variables except lipid 
parameters (Model 3), the association between TC (OR 
1.016, 95% CI 0.993–1.040) and prediabetes in tradi-
tional lipid parameters disappeared. An increase in TG 
(OR 1.062, 95% CI 1.042–1.082) exhibited a positive cor-
relation with prediabetes risk. Conversely, HDL-C (OR 
0.892, 95% CI 0.831–0.958) and LDL-C (OR 0.953, 95% 
CI 0.925–0.982) seemed to potentially act as protective 
factors against prediabetes. All untraditional lipid param-
eters, except CRI-II, exhibited associations with predia-
betes risk. Importantly, AIP continued to demonstrate 
the highest risk factor association with prediabetes (OR 
1.326, 95% CI 1.227–1.433), followed by RC (OR 1.257, 
95% CI 1.201–1.315).

Untraditional lipid parameters were categorized based 
on quartiles of lipid parameters to verify the robustness 

of the results and reintroduced into Model 3 to evalu-
ate their relationship with prediabetes (Fig.  2). Relative 
to the lowest quartile, ORs for prediabetes consistently 
rose across Q2, Q3, and Q4 of LCI, AIP, non-HDL-C, and 
RC, exhibiting a progressive increase. Notably, Q3 of AC, 
CRI-I, CRI-II, and RC/HDL-C ratio exhibited the high-
est OR values. Fig. 3 illustrates the nonlinear relationship 

Table 2 The correlation between baseline lipid parameters, 
METS-IR, and CDRS

TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, 
LDL-C low-density lipoprotein cholesterol, LCI lipoprotein combine index, AIP 
atherogenic index of plasma, AC atherogenic coefficient, CRI-I Castelli’s index-I, 
CRI-II Castelli’s index-II, RC remnant cholesterol

Variables METS‑IR CDRS

Correlation 
coefficient 
(r)

P value Correlation 
coefficient 
(r)

P value

Traditional lipid 
parameters

 TC 0.143  < 0.001 0.284  < 0.001

 TG 0.638  < 0.001 0.415  < 0.001

 HDL-C −0.569  < 0.001 −0.141  < 0.001

 LDL-C 0.150  < 0.001 0.256  < 0.001

Untraditional lipid parameters

 LCI 0.644  < 0.001 0.449  < 0.001

 AIP 0.728  < 0.001 0.398  < 0.001

 Non-HDL- C 0.348  < 0.001 0.360  < 0.001

 AC 0.604  < 0.001 0.311  < 0.001

 CRI-I 0.604  < 0.001 0.311  < 0.001

 CRI-II 0.517  < 0.001 0.280  < 0.001

 RC 0.467  < 0.001 0.312  < 0.001

 RC/HDL-C ratio 0.555  < 0.001 0.305  < 0.001

Table 3 Univariate logistic analysis for predicting prediabetes

BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, 
FPG fasting plasma glucose, ALT alanine aminotransferase, AST aspartate 
aminotransferase, Scr serum creatinine, BUN blood urea nitrogen, TC total 
cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, 
LDL-C low-density lipoprotein cholesterol, LCI lipoprotein combine index, AIP 
atherogenic index of plasma, AC atherogenic coefficient, CRI-I Castelli’s index-I, 
CRI-II Castelli’s index-II, RC remnant cholesterol, OR odds ratio, CI confidence 
interval

Variables Univariate analysis

OR 95%CI P value

Age 1.041 1.039–1.042  < 0.001

Male 1.644 1.581–1.709  < 0.001

Smoking status

 Current Reference

  Once 1.312 1.215–1.417  < 0.001

  Never 1.168 0.984–1.386 0.076

  Not recorded 0.866 0.825–0.909  < 0.001

Drinking status

 Current Reference

  Once 1.307 1.054–1.619 0.015

  Never 1.079 0.987–1.178 0.093

  Not recorded 0.928 0.886–0.972 0.002

  Family history of diabetes 1.167 1.034–1.318 0.013

  BMI 1.143 1.137–1.149  < 0.001

  SBP 1.029 1.028–1.030  < 0.001

  DBP 1.036 1.035–1.038  < 0.001

  FPG 4.784 4.547–5.034  < 0.001

  ALT 1.007 1.007–1.008  < 0.001

  AST 1.011 1.008–1.013  < 0.001

  Scr 1.015 1.014–1.016  < 0.001

  BUN 1.182 1.163–1.200  < 0.001

  TC 1.273 1.247–1.299  < 0.001

  TG 1.313 1.291–1.335  < 0.001

  HDL-C 0.603 0.565–0.642  < 0.001

  LDL-C 1.267 1.233–1.302  < 0.001

  LCI 1.014 1.013–1.015  < 0.001

  AIP 3.452 3.242–3.678  < 0.001

  Non-HDL- C 1.359 1.331–1.387  < 0.001

  AC 1.272 1.251–1.295  < 0.001

  CRI-I 1.272 1.251–1.295  < 0.001

  CRI-II 1.312 1.280–1.345  < 0.001

  RC 1.943 1.865–2.024  < 0.001

  RC/HDL-C ratio 1.763 1.694–1.835  < 0.001
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between lipid parameters and prediabetes, except for TC, 
evident after fitting with smoothing splines (P for non-
linearity < 0.05). Saturation effect points were computed 
for each parameter to assess the dose–response relation-
ship between lipid parameters and prediabetes risk. Par-
ticularly, when AIP was ≤ 0.524, a substantial increase 
in prediabetes risk was observed with increasing AIP. 
Conversely, when CRI-II was > 2.059, a gradual decrease 
in prediabetes risk was observed with increasing CRI-II 
(Additional file 3: Table S3).

Performance of lipid parameters in predicting prediabetes
ROC curve analysis compared the accuracy of lipid 
parameters in identifying prediabetes (Fig.  4, Table  5). 
Remarkably, the AUC for all 12 lipid parameters exceeded 
0.5, indicating their utility in prediabetes identification. 
Relatively, the recognition ability of untraditional lipid 
parameters for prediabetes surpassed that of TC, HDL-C, 
and LDL-C. Among the untraditional lipid parameters, 
LCI exhibited superior recognition ability for prediabe-
tes, exhibiting an optimal critical value of 10.656 and an 
AUC was 0.612 (0.607–0.617), with a specificity of 0.560 
and sensitivity of 0.608.

Stratified analyses
A stratified analysis by age, gender, BMI, and family his-
tory of diabetes was conducted to evaluate lipid param-
eters’ ability to discern various populations (Fig.  5). In 
populations with individuals aged < 60  years, females, 
those with a BMI of < 24  kg/m2, and individuals with a 

family history of diabetes, stronger associations between 
lipid parameters and prediabetes risk were observed. Fur-
thermore, the predictive efficacy of untraditional lipid 
parameters for prediabetes risk slightly surpassed that of 
traditional lipid parameters. Notably, among the untradi-
tional lipid parameters, LCI emerged as the most reliable 
predictor for prediabetes. Across diverse stratified analy-
ses, AUCs of all lipid parameters remained within a sta-
ble fluctuation range, indicating consistent performance 
across different population subsets.

Discussion
This study comprehensively evaluated the correlation 
and diagnostic significance of 12 lipid parameters con-
cerning prediabetes. The main findings are as follows: 
(1) Individuals with prediabetes exhibited significantly 
higher lipid parameter levels compared to those with-
out prediabetes. (2) Lipid parameters demonstrated 
close associations with METS-IR and CDRS. (3) Fol-
lowing adjustment for confounding factors, traditional 
lipid parameters highlighted TG as an independent 
prediabetes risk factor, whereas HDL-C and LDL-C 
appeared potentially protective. Conversely, untradi-
tional lipid parameters, excluding CRI-II, emerged as 
independent prediabetes risk factors. Categorizing lipid 
parameters upheld the robustness of these results. (4) 
A nonlinear dose–response relationship between lipid 
parameters and prediabetes risk was observed. (5) In 
general, the predictive efficacy of untraditional lipid 
parameters for prediabetes surpassed that of traditional 

Table 4 Multivariate logistic regression analyses for the associations between lipid parameters with prediabetes

Model 1: adjusted for age and gender at baseline

Model 2: further adjusted for family history of diabetes, BMI, SBP, and DBP based on model 1

Model 3: further adjusted for FPG, ALT, AST, Scr, and BUN based on model 2

TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, LCI lipoprotein combine index, AIP 
atherogenic index of plasma, AC atherogenic coefficient, CRI-I Castelli’s index-I, CRI-II Castelli’s index-II, RC remnant cholesterol, OR odds ratio, CI confidence interval

Model 1 Model 2 Model 3

OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value

TC 1.109 (1.085,1.133)  < 0.001 1.046 (1.023,1.070)  < 0.001 1.016 (0.993,1.040) 0.164

TG 1.187 (1.166,1.207)  < 0.001 1.090 (1.070,1.110)  < 0.001 1.062 (1.042,1.082)  < 0.001

HDL-C 0.735 (0.687,0.787)  < 0.001 0.909 (0.848,0.975) 0.007 0.892 (0.831,0.958) 0.002

LDL-C 1.065 (1.035,1.096)  < 0.001 0.996 (0.967,1.026) 0.793 0.953 (0.925,0.982) 0.002

LCI 1.008 (1.007,1.009)  < 0.001 1.003 (1.002,1.004)  < 0.001 1.002 (1.001,1.003)  < 0.001

AIP 2.214 (2.065,2.374)  < 0.001 1.462 (1.356,1.577)  < 0.001 1.326 (1.227,1.433)  < 0.001

Non-HDL- C 1.154 (1.128,1.179)  < 0.001 1.061 (1.037,1.086)  < 0.001 1.031 (1.006,1.055) 0.013

AC 1.126 (1.105,1.147)  < 0.001 1.039 (1.019,1.060)  < 0.001 1.027 (1.006,1.048) 0.010

CRI-I 1.126 (1.105,1.147)  < 0.001 1.039 (1.019,1.060)  < 0.001 1.027 (1.006,1.048) 0.010

CRI-II 1.113 (1.084,1.143)  < 0.001 1.007 (0.979,1.036) 0.629 0.984 (0.956,1.013) 0.274

RC 1.498 (1.435,1.563)  < 0.001 1.271 (1.215,1.329)  < 0.001 1.257 (1.201,1.315)  < 0.001

RC/HDL-C ratio 1.397 (1.340,1.457)  < 0.001 1.188 (1.138,1.241)  < 0.001 1.186 (1.134,1.239)  < 0.001
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lipid parameters. Notably, LCI emerged as the opti-
mal predictor of prediabetes, irrespective of age, gen-
der, BMI, and family history of diabetes. To sum up, 
our study underscores that elevated lipid parameters, 
especially untraditional lipid parameters, could serve as 
alternative markers of IR and aid in predicting predia-
betes in primary clinical settings.

Indeed, abnormalities in blood lipid levels contrib-
ute to inflammation, endoplasmic reticulum stress, and 
lipid toxicity, all culminating in IR [24, 25]. Extensive 
research has probed the relationship between tradi-
tional lipid parameters—HDL-C, TC, LDL-C, and TG—
and diabetes, with a consensus that elevated TG and 
decreased HDL-C significantly increase diabetes risk 

Fig. 2 Forest plot of multivariate logistic regression analysis based on the quartile of untraditional lipid parameters in Model 3
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[26, 27]. However, research on untraditional lipid param-
eters remains nascent. A recent South Korean national 
health examination study noted a significant association 
between elevated TG/HDL-C ratio and increased risk of 
new-onset diabetes in both sexes [11]. Another nation-
ally representative cross-sectional study highlighted an 
inverse L-shaped association between AIP and IR, as well 
as a J-shaped association with diabetes [28]. However, 
most studies focus solely on individual lipid parameters, 
lacking comprehensive evaluation and comparison. The 
optimal untraditional lipid indicators and their criti-
cal values for identifying prediabetes remain elusive. 
Addressing this gap, the current study comprehensively 
evaluated 12 lipid parameters concerning prediabetes 
occurrence. Our findings corroborate existing research, 
further underscoring the heightened predictive value of 
untraditional lipid parameters, notably LCI, surpassing 
traditional lipid parameters.

Evidence supports hypertriglyceridemia as a prevalent 
dyslipidemia characteristic in patients with prediabetes 
[7]. Elevated TG levels result in increased free fatty acids 
(FFAs), promoting alterations in pancreatic α cell insulin 

signaling and excessive glucagon secretion, leading to 
IR [29]. Conversely, IR exacerbates TG levels by inhibit-
ing TG lipolysis, thereby increasing FFAs in the liver, and 
reducing HDL-C through decreased apolipoprotein A-I 
expression, necessary for HDL-C synthesis [30]. The rela-
tionship between TG and IR forms a causal relationship, 
promoting the "vicious circle" of diabetes development. 
In the current study, TG emerged as the most influential 
factor associated with prediabetes among all traditional 
lipid parameters. Similarly, multiple studies have con-
firmed that fibrates effectively intervene in lipid toxicity 
to alleviate peripheral tissue IR and pancreatic islet β cell 
dysfunction, thereby aiding in mitigating the progression 
of prediabetes [31–33].

While LDL-C is typically viewed as an initiator of 
cardiovascular disease, its impact on diabetes devel-
opment presents a contentious issue. In our study, an 
increase in LDL-C (≥ 2.16  mmol/L) showed a potential 
for reducing prediabetes risk (OR 0.920, 95% CI 0.889–
0.953). This finding, though counterintuitive, aligns 
with emerging evidence suggesting a protective role for 
LDL-C. Reports indicate that individuals with familial 

Fig. 3 Generalized additive model with fitting smoothness for the dose–response relationship between lipid parameters and prediabetes risk
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Fig. 4 ROC curve analysis of the lipid parameters in predicting prediabetes

Table 5 The AUC, best threshold, sensitivity, and specificity of lipid parameters in identifying prediabetes

TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, LCI lipoprotein combine index, AIP 
atherogenic index of plasma, AC atherogenic coefficient, CRI-I Castelli’s index-I, CRI-II Castelli’s index-II, RC remnant cholesterol, AUC  area under the receiver operating 
characteristic curve, CI confidence interval

Variables AUC 95%CI low 95%CI up Best threshold Specificity Sensitivity

TC 0.565 0.560 0.571 4.695 0.522 0.576

TG 0.611 0.606 0.617 1.195 0.600 0.575

HDL-C 0.539 0.534 0.545 1.375 0.477 0.578

LDL-C 0.550 0.545 0.555 2.755 0.559 0.514

LCI 0.612 0.607 0.617 10.656 0.560 0.608

AIP 0.608 0.603 0.613 − 0.088 0.550 0.614

Non-HDL- C 0.584 0.578 0.589 3.290 0.527 0.597

AC 0.586 0.581 0.592 2.260 0.451 0.682

CRI-I 0.586 0.581 0.592 3.260 0.451 0.682

CRI-II 0.572 0.566 0.577 1.876 0.455 0.660

RC 0.592 0.587 0.598 0.585 0.539 0.593

RC/HDL-C ratio 0.588 0.583 0.594 0.415 0.519 0.607
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hypercholesterolemia, characterized by high LDL-C 
levels, exhibit a lower diabetes prevalence than unaf-
fected relatives [34, 35]. One hypothesis attributes this 
to mutations in the LDL receptor gene, which decrease 
pancreatic β cell uptake of LDL particles, thereby inhib-
iting cell dysfunction and apoptosis [36]. An open-label 
randomized clinical trial reported that hemoglobin A1c 
(HbA1c) levels increased after treatment with ezetimibe 
[37]. The American Heart Association has also stated 
that statin therapy might elevate the risk of new diabetes 
[38]. Moreover, studies exploring lipid genetics propose 
intricate connections. Swerdlow et al. have proposed that 
LDL-C lowering alleles at 3-hydroxy-3-methylglutaryl-
CoA reductase (HMGCR) are associated with increased 
body weight and diabetes risk, potentially linked to 
HMGCR inhibition [39]. A large meta-analysis of genetic 
association studies assessing the effects of cholesterol-
lowering variants in or near Niemann-Pick C1-like 1, 

HMGCR, and LDL receptor showed an overall increased 
risk of diabetes with an OR of 1.19–2.42 for every 
1  mmol/L reduction in LDL-C [40]. These complexities 
underscore the intricate relationship between mecha-
nisms leading to LDL-C reduction and metabolic risk. 
Further research is needed to determine the relationship 
between LDL-C and prediabetes.

Additionally, our study unveiled a different trend, 
demonstrating that all lipid parameters hold greater 
diagnostic significance in young, non-obese, and 
female individuals experiencing prediabetes onset. 
This implies heterogeneity in the relationship between 
lipid parameters and prediabetes based on gender, 
age, and BMI. Compared to older individuals, younger 
people often adopt unhealthy eating habits and seden-
tary lifestyles, marked by high-fat diets and irregular 
sleep patterns, contributing significantly to IR [41]. 
A lifestyle intervention study for diabetes prevention 

Fig. 5 The AUC of lipid parameters in stratified analysis by age (A), sex (B), family history of diabetes (C) and BMI (D)
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showed a 39% reduction in the risk of progression to 
diabetes during the 30-year follow-up [42]. As age 
advances, the likelihood of various chronic disease 
complications and other influencing factors increases, 
leading to a relatively weaker correlation between lipid 
parameters and prediabetes. Moreover, 61% of newly 
diagnosed women with prediabetes in this study were 
over 45  years old, indicating a predominance of pre-
diabetes occurrence after menopause. Research sug-
gests that decreased ovarian function and imbalanced 
hormone levels in perimenopausal or postmenopausal 
women, with a dominance of male hormones, prompt 
central visceral fat accumulation and abdominal obe-
sity [43–45]. This distinct fat deposition pattern 
adversely affects glucose metabolism, promoting IR in 
non-adipose tissues and organs, significantly increas-
ing prediabetes risk in postmenopausal women [46]. 
In concurrence, studies by Shi et al. echo similar senti-
ments, illustrating a pronounced association between 
higher AIP levels and increased prediabetes and dia-
betes prevalence solely in women, not men [47]. This 
finding emphasizes the need to develop gender-related 
risk management strategies to prevent prediabetes.

Our study has some significant advantages. First, 
data from a large survey encompassing a well-defined 
Chinese national cohort was used. Second, a compre-
hensive comparison of 12 lipid indicators against pre-
diabetes was conducted for the first time, calculating 
the optimal critical value and AUC of these indica-
tors in identifying prediabetes among different popu-
lations. This not only enhances our understanding of 
prediabetes risk factors but also provides new insights 
for precision medicine. Importantly, rigorous statisti-
cal analysis bolsters the reliability of our conclusions.

However, certain limitations warrant acknowledge-
ment. First, due to the observational nature of the 
study, residual confounding factors, albeit adjusted 
for significant confounding variables, might persist, 
requiring cautious interpretation of causal relation-
ships. Second, owing to the prohibitive cost of oral 
glucose tolerance and HbA1c tests for 685,277 adults, 
the definition of prediabetes in this study encom-
passed only impaired fasting glucose, potentially 
underestimating the true prevalence of prediabetes. 
Additionally, the absence of data on hyperlipidemia 
and lipid-lowering therapy hinders stratified analysis 
to assess the impact of lipid-lowering therapy on pre-
diabetes risk. Moreover, the lack of repeated lipid vari-
able measurements precludes the exploration of lipid 
parameter fluctuations over time. Lastly, generalizing 
our findings should be approached cautiously, given 
regional, racial, and dietary habit disparities.

Conclusion
This study determined the nonlinear relationship between 
traditional and untraditional lipid parameters and predia-
betes risk. Specifically, among young individuals, women, 
those with a family history of diabetes, and non-obese 
individuals, LCI, TG, and AIP exhibited superior predic-
tive values for prediabetes compared to other lipid profiles. 
These findings help clinicians to implement more personal-
ized prevention strategies effectively.
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