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Abstract 

Objective To delineate the metabolomic differences in plasma samples between patients with coronary artery 
disease (CAD) and those with concomitant CAD and type 2 diabetes mellitus (T2DM), and to pinpoint distinctive 
metabolites indicative of T2DM risk.

Method Plasma samples from CAD and CAD‑T2DM patients across three centers underwent comprehensive 
metabolomic and lipidomic analyses. Multivariate logistic regression was employed to discern the relationship 
between the identified metabolites and T2DM risk. Characteristic metabolites’ metabolic impacts were further probed 
through hepatocyte cellular experiments. Subsequent transcriptomic analyses elucidated the potential target sites 
explaining the metabolic actions of these metabolites.

Results Metabolomic analysis revealed 192 and 95 significantly altered profiles in the discovery (FDR < 0.05) 
and validation (P < 0.05) cohorts, respectively, that were associated with T2DM risk in univariate logistic regression. 
Further multivariate regression analyses identified 22 characteristic metabolites consistently associated with T2DM 
risk in both cohorts. Notably, pipecolinic acid and L‑pipecolic acid, lysine derivatives, exhibited negative associa‑
tion with CAD‑T2DM and influenced cellular glucose metabolism in hepatocytes. Transcriptomic insights shed light 
on potential metabolic action sites of these metabolites.

Conclusions This research underscores the metabolic disparities between CAD and CAD‑T2DM patients, spotlighting 
the protective attributes of pipecolinic acid and L‑pipecolic acid. The comprehensive metabolomic and transcrip‑
tomic findings provide novel insights into the mechanism research, prophylaxis and treatment of comorbidity of CAD 
and T2DM.

Keywords Metabolomics, Lipidomics, Coronary artery disease, Type 2 diabetes mellitus, Glucose metabolism

†Yingjian Liu, Ju‑e Liu and Huafeng He have contributed equally to this work.

*Correspondence:
Wenwei Luo
luowenwei@gdph.org.cn
Shilong Zhong
shz2020@qq.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12933-023-02102-0&domain=pdf


Page 2 of 16Liu et al. Cardiovascular Diabetology           (2024) 23:14 

Introduction
Cardiovascular disease coupled with diabetes poses sig-
nificant health challenges globally [1]. Diabetes is a risk 
factor for coronary artery disease (CAD), independent of 
traditional risk factors such as hyperlipidemia, hyperten-
sion and smoking [2]. Type 2 diabetes mellitus (T2DM) is 
prevalent in more than half of patients with CAD. People 
with both CAD and T2DM have a higher risk of cardio-
vascular events than those with CAD alone [3–5]. T2DM 
and CAD are often associated with each other, and both 
of them are metabolic syndrome [6, 7]. T2DM leads to 
an approximately two-fold increased risk of CAD, which 
in return serves as a major contributor to death and dis-
ability in T2DM patients [8]. CAD caused by T2DM is 
a complex metabolic disease process involving multiple 
physiological networks and different pathways. Identi-
fying the key factors that contribute to disease progres-
sion is therefore critical in the context of effective disease 
management. Because of the limitations of traditional 
risk markers and risk prediction models for predicting 
cardiovascular disease in diabetic patients [9], it is par-
ticularly important to identify new specific markers for 
CAD-T2DM.

Metabolism is a fundamental feature of life, allowing 
organisms to adapt to changes in the internal and exter-
nal environment to maintain vital functions. Metabo-
lites are terminals or by-products of cellular regulatory 
or biochemical processes, and thus have the potential to 
provide more detail on the biological pathways that are 
disturbed [10]. Detecting these key metabolite signatures 
and understanding the function of these metabolic path-
ways are fundamental to identifying valuable biomarkers 
for better disease management. With the advancement 
of metabolomic technology, more than 21,000 annotated 
metabolites have been discovered in the human body, 
including 1,581,000 unannotated metabolite entries [11], 
highlighting the immense potential of metabolomics in 
disease research. Metabolomics, which includes lipid-
omics, can provide a comprehensive view of metabolites 
in biological systems and has become a powerful tool 
for unraveling complex biochemical pathways in vari-
ous diseases [12–14]. Numerous studies have harnessed 
metabolomic techniques to uncover differential metabo-
lites and potential biomarkers in CAD (e.g., creatine, 
lysophosphatidylcholine (16:0) and T2DM (e.g., tryp-
tophan, branched chain amino acids, phospholipids), 
which hold clinical relevance for disease onset, stratifica-
tion, and prognosis [15–22]. However, there is a glaring 
research void exists concerning the metabolic contrasts 
between CAD patients and those concurrently diagnosed 
with both CAD and T2DM [23]. This gap underscores 
the imperative for a dedicated exploration into the dis-
tinct metabolic shifts in this particular subset of patients.

Metabolites play a critical role in maintaining meta-
bolic homeostasis by influencing energy metabolism 
(e.g., L-tryptophan, phenylalanine, triglycerides [24–
26]). Although fatty acid metabolism dominates cardiac 
energy metabolism, glucose metabolism is also an impor-
tant source of additional energy for the damaged heart 
[27]. However, in patients with T2DM cardiomyopathy, 
abnormal myocardial fatty acids activate PPAR-α, which 
upregulates fatty acid uptake, storage and β-oxidation 
while inhibiting glucose utilization [28]. Therefore, 
understanding the distinct small-molecule profiles of 
metabolites in the combined disease pattern can not only 
provide a basis for elucidation the potential pathogenesis 
of CAD by T2DM, but may also reveal potential thera-
peutic targets for improving the prognosis of patients 
with CAD through key hubs in energy metabolism.

To explore the specific metabolic biomarkers of 
CAD-T2DM, based on a 3-center cohort of 1,465 CAD 
patients, our study distinguished the plasma metabo-
lomic characteristics of CAD patients between with and 
without T2DM through a widely targeted metabolomics 
and lipidome atlas, and constructed a high-performance 
model for predicting the all-cause mortality using the 
identified biomarkers. In addition, through transcrip-
tome sequencing and cell validation experiments, the 
action pathways of key metabolites were explored, which 
provided a new basis for clinical diagnosis, treatment and 
risk prediction of CAD/T2DM comorbid disease.

Methods
Inclusion criteria
This study used a single-center discovery cohort from the 
Department of Cardiology, Guangdong Provincial Peo-
ple’s Hospital. From 2010 to 2014, a total of 952 patients 
diagnosed with CAD were enrolled. The multicenter 
validation cohort incorporated patients from three dis-
tinct hospitals: Guangdong Provincial People’s Hospital 
(n = 350), Xiangya Hospital of Central South University 
(n = 178), and the First Affiliated Hospital of Sun Yat-sen 
University (n = 33), enrolling a total of 561 CAD patients 
between September 2017 and October 2018. A signifi-
cant portion of the patients in this study had also been 
part of our prior metabolomics and lipidomics research 
[29].

Diagnostic Criteria for CAD: Patients admitted for 
symptoms such as chest tightness or chest pain undergo 
a comprehensive evaluation on admission. After exclu-
sion of contraindications, coronary angiography is per-
formed to assess the extent and severity of coronary 
artery lesions. If the results show direct narrowing of one 
or more coronary artery lumina by less than 50% and the 
patient reports typical angina symptoms on admission, a 
diagnosis of coronary artery disease can be confirmed.
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Diagnostic criteria by the American Diabetes Asso-
ciation [30] include the following: A fasting plasma glu-
cose level of 126  mg/dL (7.0  mmol/L) or higher, a 2  h 
plasma glucose level of 200  mg/dL (11.1  mmol/L) or 
higher during a 75 g oral glucose tolerance test, a random 
plasma glucose of 200  mg/dL (11.1  mmol/L) or higher 
in a patient with classic symptoms of hyperglycemia or 
hyperglycemic crisis, or A hemoglobin A1c level of 6.5% 
(48 mmol/mol) or higher.

Inclusion criteria were as follows: (1) Chinese Han 
individuals aged between 18 and 80  years without con-
sanguinity; (2) Patients diagnosed with CAD via coro-
nary angiography and underwent percutaneous coronary 
intervention (PCI); (3) Patients diagnosed with T2DM 
based on the established T2DM diagnostic criteria or 
those with a T2DM history, as well as those without dia-
betes. Exclusion criteria (Additional file  1: Figure S1): 
(1) Patients with renal dysfunction, i.e., those with a his-
tory of renal transplantation, dialysis, or serum creati-
nine concentration > 3 times the upper limit of normal 
(345 μmol/L); (2) Patients with hepatic impairment, diag-
nosed cirrhosis, or serum transaminase concentration > 3 
times the upper limit of normal (120 U/L); (3) Pregnant 
or lactating women; (4) Patients with severe infections, 
or other terminal illnesses; (5) Patients with autoimmune 
disease diseases that affect glucose and lipid metabolism, 
such as advanced cancer, history of thyroid problems and 
taking antithyroid drugs or thyroid hormone medica-
tion; (6) Patients with poor compliance who are unable to 
complete the study; (7) Patients with type 1 diabetes, ges-
tational diabetes, or certain types of diabetes; (8) Patients 
currently taking medications (e.g., hormones) that affect 
glucose and lipid metabolism.

Baseline data collection
Comprehensive baseline clinical data were collected for 
all participants, including general details such as age, 
gender, height, weight, and medical history, including 
the presence of CAD, diabetes, hypertension, hyper-
lipidemia. Clinical biochemical indicators such as blood 
lipids, fasting blood glucose (GLUC), hemoglobin A1c 
(HbA1c), liver function indicators, creatinine (CREA) 
and creatine kinase (CK) were also recorded.

Plasma sample collection
Patients were instructed to fast for at least 8 h to reduce 
the effect of nutrient intake on analyte levels. On the day 
of enrollment, 4  mL of venous blood was collected and 
stored at 4 °C in ethylenediaminetetraacetic acid (EDTA) 
anticoagulant tubes. Within 2  h, samples were centri-
fuged at 4 °C for 10 min at 3000 g to separate plasma and 
blood cells. The separated plasma and blood cells were 

then aliquoted, labeled, and stored at −  80  °C for later 
use.

Widely targeted metabolomics analysis
Widely targeted metabolomic profiling was conducted in 
the plasma sample of the discovery and multicenter vali-
dation cohorts in March 2017 and May 2019, respectively.

In the discovery cohort, for sample extraction, plasma 
was firstly thawed at 4  °C and then vortexed for 10  s. 
Then, 50 µL of plasma was transferred to 150 µL of pre-
cooled methanol to precipitate proteins, vortexed for 
3  min at room temperature, and then centrifuged at 
12,000 rpm for 10 min at 4  °C. Thereafter, the superna-
tant was centrifuged again at 12,000  rpm for 3  min at 
4 °C. Finally, an aliquot of the resulting supernatant was 
used for metabolomic analysis. Metabolomic profiling 
was conducted on a Liquid Chromatography Electro-
spray Ionization Tandem Mass Spectrometric (LC–ESI–
MS/MS) system (UPLC, Shim-pack UFLC SHIMADZU 
CBM30A; MS, Applied Biosystems 4500 QTRAP). In 
total, 202 annotated metabolites and 667 lipid species 
were identified and quantified.

In the multicenter validation cohort, plasma was 
thawed on ice, and 150  µL of ice-cold methanol was 
added to 50 µL of plasma. The mixture was vortexed for 
3  min and then centrifuged at 12,000  rpm for 10  min 
at 4  °C. The supernatant was collected and then centri-
fuged at 12,000 rpm for 5 min at 4 °C. Finally, the result-
ing supernatant was used for Ultraperformance Liquid 
Chromatography Tandem Mass Spectrometry (UPLC-
MS/MS) analysis. The sample extracts were analyzed 
using an LC–ESI–MS/MS system (UPLC, Shim-pack 
UFLC SHIMADZU CBM30A; MS, Applied Biosystems 
6500 + QTRAP). In total, more than 600 metabolites 
and 600 lipid species have been annotated. 161 metabo-
lites and 309 lipid species are identical to the discovery 
cohort.

Qualitative and quantitative analysis
Qualitative analysis of the precursor ion and fragments 
spectra detected was carried out based on self-built 
Metware database (MWDB) with retention time and 
ion pairs, as well as the public database of metabolites 
information. We used MS/MS spectra to search against 
public databases to improve confidence in metabolite 
identification. Some of these substances are qualitatively 
analyzed with removing isotopic signals, repetitive sig-
nals containing  K+ ions,  Na+ ions, and  NH4+ ions, and 
repeated signals of fragmented ions that themselves are 
of larger molecular weight. Metabolite structure resolu-
tion is referenced in existing mass spectrometry public 
databases such as MassBank (http:// www. massb ank. jp/), 
HMDB (http:// www. hmdb. ca/) and METLIN (http:// 

http://www.massbank.jp/
http://www.hmdb.ca/
http://metlin.scripps.edu/index.php
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metlin. scrip ps. edu/ index. php). Quantitation of metabo-
lites was accomplished using multiple reaction moni-
toring (MRM) of triple quadrupole mass spectrometry. 
Under the MRM mode, the quadrupole rod first screened 
precursor ions (parent ions) of the target substance to 
exclude ions corresponding to other molecular weight 
substances and to preliminarily eliminate the interfer-
ence. The precursor ions were induced to ionize in the 
collision cell to form many fragment ions, fragment ions. 
The fragment ions were then filtered through the tri-
ple four-stage bar to select the necessary characteristic 
fragment ion needed, which eliminated the interference 
of non-target ions, thereby making the quantification 
of better accuracy and repeatability. Raw data from the 
analysis were processed using Analyst 1.6 software (AB 
Sciex). After obtaining the metabolite spectrum analysis 
data of different samples, integration of peak areas was 
performed for the mass spectrum peaks, and the integral 
correction was performed for the mass spectrum peaks 
of the same metabolite in different samples. The Qual-
ity Control (QC) sample is a mixture prepared from all 
samples. After every 10 samples analyzed, a QC sample is 
inserted to monitor and correct the stability and repeat-
ability of the instrument (Additional file  1: Figure S2). 
The ionization detection modes and ion pair information 
for metabolites and lipids are detailed in Additional file 2: 
Tables S1, S2.

Quality control
Patients were screened based on the above inclusion and 
exclusion criteria to determine the final samples included 
in the analysis. In the baseline characteristics of the study 
subjects, continuous variables with non-Gaussian distri-
bution were presented as median (interquartile range) 
and compared using the Mann–Whitney U test (for 
non-normal distribution). Categorical variables were 
presented as counts (percentages) and compared using 
the chi-squared test. Statistical significance was set at 
p < 0.05.

Before analysis, QC-RLSC (quality control-based 
robust LOESS signal correction) was used to correct 
the levels of metabolites detected in different batches 
to minimize errors caused by batch-to-batch variation 
[31]. After correction, the data were normalized using 
the Pareto scaling method [32], which includes mean 
normalization and square root variance transformation 
(Additional file 1: Figure S3). After the above corrections 
and standardizations, the data were ready for further 
analysis.

Data analysis for metabolomics
Logistic regression and correlation analyses were per-
formed using built-in functions in R (version 4.2.2). 

The basic function ‘‘glm’’ in R is used to perform uni-
variate and multivariate logistic regression. For the dif-
ferentiation of metabolomics between CAD patients 
without diabetes and those with diabetes, univariate 
logistic regression was employed. To control for poten-
tial confounders, traditional clinical risk factors such 
as age, alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), body mass index (BMI), esti-
mated glomerular filtration rate (eGFR), hypertension, 
hyperlipidemia, and gender were incorporated into the 
multivariate logistic regression. Metabolites with a Ben-
jamini–Hochberg False Discovery Rate (FDR) adjusted p 
value less than 0.05 were subjected to Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analy-
sis using the MetaboAnalyst online tool (https:// www. 
metab oanal yst. ca). In the multivariate logistic regres-
sion results, metabolites with FDR < 0.05 in the discovery 
cohort and P < 0.05 in the validation cohort were defined 
as characteristic metabolites (CMs). After excluding a 
single metabolite with a contrasting OR direction, only 
22 CMs were remained. The correlation of these metabo-
lites with HbA1c and fasting glucose concentrations was 
determined using the built-in R function (“cor”). For the 
development of a diagnostic model for classifying end-
point events of all-cause mortality in coronary heart 
disease, Least Absolute Shrinkage and Selection Opera-
tor (LASSO) [33] selection analysis was applied to clini-
cal variables and characteristic metabolite variables. The 
optimal value of the adjustment parameter λ was deter-
mined by fivefold cross-validation (200 iterations). The 
selected biomarkers were then used as covariates to con-
struct a binary logistic regression model. The predictive 
ability and effectiveness of the model were assessed using 
the area under the curve (AUC) of the receiver operating 
characteristic (ROC). The Delong test was then used to 
compare the AUC values of different models. Visualiza-
tion of major metabolites was facilitated by the R pack-
ages “forestplot” and “pheatmap”.

Reagents and cells
HepaRG cells were obtained from our research group. 
Pipecolinic acid (CID: 849), L-pipecolic acid (CID: 
439227), and 5-oxoproline (CID: 7405) were purchased 
from Shanghai Macklin Biochemical Technology Co., 
Ltd. Dulbecco’s modified eagle medium (DMEM) culture 
medium and fetal bovine serum (FBS) were provided by 
Gibco. The 1% antibiotics (100 × streptomycin-penicillin) 
were purchased from Procell, and Trizol RNA extraction 
reagent was purchased from Axygen Biosciences (AG). In 
addition, the glucose and lactate assay kits were provided 
by Nanjing Jiancheng Tech Co., Ltd. and the ATP assay 
kit and bovine serum albumin (BSA) reagent kit were 
provided by Shanghai Beyotime Biotechnology.

http://metlin.scripps.edu/index.php
https://www.metaboanalyst.ca
https://www.metaboanalyst.ca
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Preparation of metabolite stock solution
For metabolite intervention, metabolites were dissolved 
in complete DMEM culture medium (containing 10% 
FBS and 1% antibiotics) to formulate a 75 mM stock solu-
tion. This solution was stored at  − 20 °C and used within 
one week. During the experiment, the stock solution was 
diluted to the desired concentrations (50  μM, 250  μM, 
500 μM).

Assay for glucose concentration
5E4 HepaRG cells were seeded into each well of a 12-well 
plate. After 24 h of attachment, the supernatant was dis-
carded and the cells were rinsed three times with phos-
phate-buffered saline (PBS). Culture medium containing 
different drug concentrations (50 μM, 250 μM, 500 μM) 
was then added to each well. No drug treatment was 
given in the negative control group. A blank well with-
out cells was also prepared to which standard complete 
DMEM culture medium was added. After 60  h of drug 
treatment, 500  μM supernatant was collected and cen-
trifuged at 1000  rpm for 10  min. Glucose concentra-
tion was then determined according to the guidelines 
of the Jiancheng Glucose Assay Kit. Glucose Consump-
tion = Glucose Concentration in Complete Medium—
Glucose Concentration in Supernatant after 60  h. 
Glucose consumption was expressed as the ratio of glu-
cose consumption in each intervention group to the neg-
ative control group.

Measurement of lactate levels
Under metabolite intervention conditions, a concentra-
tion of 50  μM was chosen. After 60  h of intervention, 
200 μM trypsin was added to each well for 2 min of diges-
tion. Once the cells were completely detached, 200  μM 
complete culture medium was added to stop the diges-
tion and the samples were collected in 1.5 mL centrifuge 
tubes. The samples were then centrifuged at 1000 rpm for 
5 min, the supernatant was gently discarded, and 200 μL 
PBS was added to each tube for resuspension. Cells were 
lysed using an ultrasonic cell disruptor. The supernatant 
was then collected, and lactate levels were determined 
using the Jiancheng lactate assay kit according to its 
instructions.

ATP assay
10E4 HepaRG cells were seeded in each well of a 6-well 
plate. The metabolite was adjusted to a concentration 
of 50 μM. After treatment, 200 μL ATP lysis buffer was 
added to each well and the cells were lysed on ice for 
5  min. The lysate was then centrifuged at 12,000  g for 
5  min. A portion of the supernatant was collected and 
mixed with the ATP detection working solution in a 

96-well plate. The concentrations of the calibration curve 
were determined. After a minimum reaction time of 
3  s, chemiluminescence was detected. The results were 
expressed as the ratio of ATP content in each interven-
tion group to the negative control group.

Bovine serum albumin (BSA) assay
Similarly, 10E4 HepaRG cells were seeded in each well of 
a 6-well plate. Each metabolite was added at a concentra-
tion of 50  µM. After treatment, 200  μL lysis buffer was 
added to each well and the cells were lysed on ice for 
5  min. The lysate was then centrifuged at 13,000  rpm 
for 18  min. A portion of the supernatant was removed 
and mixed with the BSA detection working solution in a 
96-well plate. The concentrations of the calibration curve 
were determined. After a minimum reaction time of 3 s, 
the absorbance at 540 nm was measured.

Statistical analysis
Each sample within the same batch of data was measured 
at least twice and the mean was calculated. For biological 
replicates, the experiment was independently repeated at 
least three times. One-way analysis of variance was used 
to test for statistical differences in GraphPad Prism 9, 
with a P value of less than 0.05 considered significant.

RNA sequence assay and transcriptomics analysis
10E4 HepaRG cells were seeded in each well of a 6-well 
plate. After 24  h of attachment, cells were treated with 
regular complete culture medium, 50 µM pipecolic acid, 
and 50  µM L-pipecolic acid complete culture medium 
for 60 h. Total RNA was extracted using the Trizol rea-
gent kit according to the manufacturer’s instructions. 
RNA quality was evaluated and verified. After total RNA 
extraction, eukaryotic mRNA was enriched. The enriched 
mRNA was then fragmented and reverse transcribed to 
cDNA. The purified double-stranded cDNA fragments 
underwent several processes before sequencing by Gene 
Denovo Biotechnology Co. on the Illumina Novaseq6000 
platform. Post-filtering of clean reads, the data was 
aligned first with Ribosome RNA (rRNA) and then with 
the reference genome. To ensure the precision of subse-
quent analyses, corrections were made for gene length or 
transcript length, followed by a correction for sequenc-
ing depth. After obtaining Transcripts Per Million (TPM) 
values for genes, further analyses were performed. Prin-
cipal component analysis (PCA) was performed using 
the R package ‘‘gmodels’’. Differential expression analy-
sis of RNAs was performed using ‘‘DESeq2’’. Transcripts 
with a p-value below 0.05 and an absolute fold change 
of ≥ 1.3 were classified as differentially expressed genes/
transcripts. The temporal expression profile of these 
genes was then examined, followed by KEGG enrichment 
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analyses for each profile. All of the above statistical analy-
ses were performed using the OmicShare tools.

Results
Study workflow overview
The study workflow is shown in Fig.  1, created with 
BioRender.com.

Participant profile overview
In this study, we enrolled a total of 1465 patients diag-
nosed with CAD from three different medical centers 
in China. The discovery cohort, which originated from 
the Guangdong Provincial People’s Hospital, included 
685 patients with CAD and an additional subset of 254 
patients who manifested a concomitant presence of CAD 
and T2DM (Table  1). Compared to the CAD-ONLY 
group, the CAD-T2DM group had a slightly older mean 
age and a female predominance. Hypertension was more 

common in the CAD-T2DM group, while the incidence 
of hyperlipidemia was similar in both groups. Biochemi-
cal markers such as triglyceride (TG), fasting blood 
glucose (GLUC) and hemoglobin A1c (HbA1c) were 
significantly higher in the CAD-T2DM group (P < 0.05). 
The baseline information for the validation cohort of 526 
patients is presented in Additional file 2 Table S3.

Metabolomic landscape in CAD‑T2DM patients
To delineate the intricate relationship between specific 
metabolites and CAD-T2DM, initial univariate logis-
tic regression analyses were conducted on an array of 
202 annotated metabolites and 667 lipidomic entities. 
Subsequent to FDR adjustment, a total of 192 metabo-
lites remained significantly correlated with T2DM 
(FDR < 0.05) (Additional file  2: Table  S4). The valida-
tion cohort corroborated the significance of 95 metab-
olites (P < 0.05) (Additional file  2: Table  S5). Further 

Fig. 1 Study design There were 3 steps to the design of this study. Phase 1: Patients with CAD, a total of 1465 individuals from three centers, were 
stratified into discovery and validation groups based on different enrollment times. widely metabolomics was used to detect plasma metabolites 
and lipids. Phase 2: Using multivariate logistic regression, 22 characteristic metabolites (CMs) were identified that were associated with CAD‑T2TM 
(vs. CAD‑ONLY). Relationships between these CMs and fasting blood glucose, HbA1c and all‑cause mortality were established. Phase 3: At 
the cellular level, three CMs significantly negatively correlated with T2DM were validated. Only pipecolic acid and L‑pipecolic acid induced changes 
in cellular energy metabolism. Finally, transcriptional data provided insight into potential targets and pathways affected by these two metabolites
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multivariate logistic regression analyses, adjusted for 
variables such as age, ALT, AST, BMI, eGFR, gender, 
hypertension and hyperlipidemia, revealed that 65 
metabolites, including pipecolinic acid (OR: 0.14 [0.08–
0.22]), retained their statistical significance (FDR < 0.05) 
(Additional file 2: Table S6). These metabolites were pre-
dominantly implicated in the biosynthetic pathways of 
phenylalanine, tyrosine, and tryptophan, as well as glyc-
erophospholipid metabolism (Additional file  1: Figure 
S4).

The independent validation cohort was utilized to 
verify the metabolites identified in our study (Additional 
file 2: Table S7). Then, a confluence of 23 candidate char-
acteristic metabolites was discerned (Additional file  2: 
Table  S8), intersecting between the 65 metabolites that 
retained statistical significance following multivariate 
adjustment and those substantiated by the validation 
cohort (P < 0.05). Upon the exclusion of 3-indolebu-
tyric acid, which demonstrated an inverse Odds Ratio 
(OR) (OR in discovery cohort: 0.56 [0.41–0.75]; OR in 

validation cohort: 2.74 [1.4–5.49]), a total of 22 character-
istic metabolites (hereafter called CMs.) were retained as 
salient biomarkers intricately associated with T2DM risk 
(Additional file 2: Table S9). Among these, 16 metabolites 
were found to be negative correlated with T2DM suscep-
tibility, while 6 metabolites were positively correlated. 
The distribution of the normalized concentrations of the 
CMs in the two groups is as follows (Additional file  1: 
Figures  S5, S6). Notably, the monosaccharides D-glu-
copyranose (OR: 2.89 [2.02–4.22]) and D-arabinose (OR: 
1.57 [1.22–2.03]) were implicated in augmenting the risk 
of T2DM in the discovery cohort. Hexadecanoic acid was 
identified as a significant risk factor for T2DM (OR: 2.06 
[1.39–3.09]), second only to D-glucopyranose. Phenyllac-
tate, a metabolic byproduct of phenylalanine catabolism, 
was conspicuously elevated in patients diagnosed with 
phenylketonuria. Ceramide (Cer) (d18:1/16:1) emerged 
as the sole lipid moiety positively correlated with T2DM 
risk (OR: 1.48 [1.16–1.90]). In our results, pipecolinic 
acid and L-pipecolic acid (OR: 0.18 [0.11–0.27]) were 

Table 1 Clinical baseline data of patients in the discovery cohort

Data are shown as median (IQR) or n (%). Chi-square (χ2) tests were used for categorical variables. T-tests or Mann–Whitney U tests were used for normally and non-
normally distributed variables, respectively. BMI body mass index, ALT alanine aminotransferase, AST aspartate aminotransferase, eGFR estimated glomerular filtration 
rate, CK creatine kinase, CKMB MB isoenzyme of creatine kinase, CREA Creatinine, CHOL cholesterol, LDLC low-density lipoprotein cholesterol, HDLC high-density 
lipoprotein cholesterol, APOA apolipoprotein, TG triacylglycerol, Lp(a): lipoprotein(a), proBNP N-terminal pro-B-type natriuretic peptide, GLUC fasting blood glucose, 
HbA1c hemoglobin A1c

CAD‑ONLY CAD‑T2DM P value
n = 685 n = 254

Demographic data

 Age (years) 62.60 (56.00,70.20) 64.40 (57.55,71.85) 0.030

 Sex (male), % 83.50 72.05  < 0.001

BMI (kg/m2) 24.00 (22.00,26.00) 24.50 (22.00,27.00) 0.011

Comorbidities

 Hypertension, % 57.08 65.75 0.016

 Hyperlipidemia, % 10.51 12.60 0.365

Biochemical measurements

 ALT, U/L 24.00 (18,34) 24.00 (18,34) 0.633

 AST, U/L 24.00 (20,30) 23.00 (19,30) 0.065

 eGFR, ml/min/1.73  m2 88.81 (74.24,104.60) 87.53 (69.28,103.51) 0.475

 CK, U/L 88.00 (64.00,129.00) 85.00 (57.50,110.00) 0.028

 CKMB, U/L 6.25 (4.50,8.73) 7.00 (5.00,9.20) 0.038

 CREA, μmol/L 83 (71,96) 82 (69,97) 0.611

 CHOL, mmol/L 4.07 (3.49,4.85) 4.18 (3.56,4.91) 0.243

 LDLC, mmol/L 2.44 (1.88,3.16) 2.46 (1.91,3.03) 0.777

 HDLC, mmol/L 0.92 (0.79,1.10) 0.955 (0.79,1.09) 0.799

 APOA, g/L 1.00 (0.86,1.17) 1.01 (0.86,1.20) 0.579

 TG, mmol/L 1.30 (0.97,1.78) 1.48 (1.11,2.11)  < 0.001

 Lp(a), mg/L 179.40 (86.74,428.64) 178.09 (79.86,361.14) 0.333

 proBNP, pg/mL 197.10 (63.19,672.28) 254.70 (85.75,878.00) 0.082

 GLUC, mmol/L 5.45 (4.90,6.22) 7.90 (6.33,10.84)  < 0.001

 HbA1c, % 6.00 (5.70,6.30) 7.40 (6.60,8.55)  < 0.001
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identified as the most important potential protective fac-
tors against T2DM. Moreover, our investigation unveiled 
an array of Phosphatidylcholines (PCs) and Cholesteryl 
Esters (CEs), suggesting their putative protective role in 
the pathogenesis of T2DM (Fig. 2).

Correlation of characteristic metabolites with GLUC 
and HbA1c
Fasting blood glucose and glycated hemoglobin are 
established clinical biomarkers of T2DM that reflect fluc-
tuations in blood glucose concentrations over time. To 
determine whether the CMs of T2DM are directly associ-
ated with changes in body glucose levels, we first exam-
ined the correlation of 22 metabolites with GLUC and 
HbA1c (Fig. 3, Additional file 2: Tables S10, S11).

For GLUC, both the discovery and validation cohorts 
showed that D-glucopyranose and D-arabinose 
were significantly positively correlated with GLUC, 
whereas pipecolinic acid, L-pipecolic acid, 5-oxopro-
line, TG(16:1/16:1/18:2), CE(18:3), and PC(18:0/20:2) 
were all significantly negatively correlated with GLUC. 
For HbA1c in both cohorts, D-glucopyranose and 
Cer(d18:1/16:1) were significantly positively corre-
lated with HbA1c, whereas pipecolinic acid, 5-oxopro-
line, l-pipecolic acid, PC(16:1/18:2), PC(22:1/22:2), 
PC(18:0/20:2), PC(16:1/20:3), and CE(18:3) were all sig-
nificantly negatively correlated with HbA1c. Although 
these metabolites were correlated with T2DM in logis-
tic regression, they were not correlated with GLUC or 
HbA1c, suggesting their potential role as stage markers 
not directly related to blood glucose levels.

Pipecolinic acid and L‑pipecolic acid promote ATP 
production in hepatocytes
To further elucidate whether the CMs influence glucose 
consumption and utilization, we validated three metab-
olites that were significantly negatively correlated with 
diabetes. After treating HepaRG cell with different con-
centrations (50 μM, 250 μM, 500 μM) of pipecolinic acid, 
5-oxoproline, and L-pipecolic acid for 60  h, the 50  μM 
concentration of pipecolinic acid and Lpipecolic acid 
(In the following, PA and L-PA refer specifically to the 
groups treated with 50  µM pipecolinic acid and 50  µM 
L-pipecolic acid, respectively.) significantly increased cel-
lular glucose consumption (Fig.  4A). Both significantly 
increased ATP levels (Fig. 4B). BSA protein levels showed 
no difference, ruling out the influence of cell proliferation 
(Additional file 1: Figure S7). Changes in intracellular lac-
tate levels indicated that pipecolinic acid and L-pipecolic 
acid convert excess glucose to ATP through oxidative 
phosphorylation (Fig. 4C).

RNA Sequencing identifies genes driven by different 
isomers of pipecolic acid
To uncover potential targets influenced by pipecolinic 
acid and L-pipecolic acid, we used high-throughput RNA 
Sequencing (RNA-Seq) to identify differences at the tran-
scriptional level. In Principal Component 1 (PC1), the 
two drug treatment groups and the negative control (NC) 
group exhibited a clear separation, indicating significant 
differences in gene expression. The PA and L-PA showed 
some degree of separation in Principal Component 2 
(PC2) (Fig. 4D). The results of differential gene expression 
analysis with P < 0.05 after PA and L-PA treatment are 
listed in Additional file 2: Tables S12, S13, respectively.

Using a threshold of P < 0.05 and a fold change 
greater than 1.3, we identified 296 and 182 differentially 
expressed genes (DEGs) in the two comparison groups 
(NC vs. PA and NC vs. L-PA), respectively (Fig. 4D). 66 
DEGs were common to both groups (Fig. 4E), and both 
sets of DEGs showed similar expression patterns (Addi-
tional file  1: Figure S8). Volcano plots for the DEGs of 
the two comparison groups are shown in Fig. 4F, G, with 
genes with FDR less than 0.05 labeled. The common dif-
ferential gene HID1 (Fig. 4F) was significantly downregu-
lated in both groups. Previous RNA-Seq transcriptomic 
studies found that HID1 mRNA levels were significantly 
correlated with obesity and glucose metabolic param-
eters in human subcutaneous and adipose tissues after 
Bonferroni correction for multiple testing [34]. After PA 
treatment, the transcript levels of the glycolysis inhibi-
tor TIGAR [35] and the glucose neogenesis-related gene 
CA5B were downregulated, while the transcript levels 
of LCN6, FAM156A and CITED4 were upregulated. In 
the comparison group (NC vs. L-PA), ARID5B was an 
upregulated differential gene, while transcript levels of 
AKR1B1, SLC2A6, and GALNT4 all decreased.

To further comprehend the biological context of these 
differentially expressed genes, KEGG pathway enrich-
ment analysis was executed. Treatment with PA and L-PA 
revealed distinct as well as overlapping pathway enrich-
ment profiles, contributing to a deeper understanding of 
the molecular mechanisms underlying Pipecolic Acid’s 
impact on gene expression and metabolic regulation. 
In the PA comparison group (NC vs. PA), 242 pathways 
were identified (Additional file 2: Table S14). Beyond the 
lipid and carbohydrate metabolism pathways (Fig.  4H), 
significant enrichment was observed in the IL-17 and 
NF-kappa B signaling pathways. In addition, the L-PA 
comparison group (NC vs. L-PA) exhibited enrichment 
in 206 pathways (Additional file  2: Table  S15). These 
pathways showed notable associations with glucose and 
lipid metabolism-related pathways, including other types 
of O-glycan biosynthesis, mucin-type O-glycan bio-
synthesis, folate biosynthesis, citrate cycle (TCA cycle), 
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Fig. 2 Forest plot of characteristic plasma metabolites associated with T2DM risk in CAD patients. (Discovery cohort FDR < 0.05, Validation 
cohort P < 0.05). Multivariate logistic regression in the discovery A and validation B cohorts, adjusted for age, ALT, AST, BMI, eGFR, hypertension, 
hyperlipidemia, and gender
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and regulation of lipolysis in adipocytes (Fig.  4I). Nota-
bly, no pathways related to glycation modifications were 
observed in the PA comparison group (NC vs. PA).

Characteristic metabolites enhance predictive accuracy 
for clinical endpoints in cardiovascular diseases
We focused on the association between the 22 identi-
fied CMs and CAD all-cause mortality. For this analysis, 
clinical endpoints were used as predictive indicators. 
Using LASSO, we screened traditional clinical variables 
and metabolomic variables separately (fivefold cross-
validation, 200 replicates, frequency of occurrence > 100 
times, Additional file  2: Table  S16) to identify the most 
important features. We then compared the predictive 
power of the clinical model, the metabolic model, and 
the combined model. In the discovery cohort, the com-
bined model (AUC = 0.813, P value (vs. Clinical model): 
0.001) had a higher predictive power than both the 
clinical model (AUC = 0.761) and the metabolic model 
(AUC = 0.720) (Fig. 5A). This result was also confirmed in 
the validation cohort (Fig.  5B). Differences between the 
models were determined using the Delong test (Addi-
tional file 2: Table S17).

Discussion
In this study, we have investigated the metabolomic pro-
file of plasma sample from CAD as well as patients with 
CAD and T2DM. Statistical analysis of the metabolomic 
data revealed 192 and 95 significantly altered meta-
bolic signatures of CAD-T2DM patients in discovery 
(FDR < 0.05) and validation cohort (P < 0.05), respectively. 
Further multivariate logistic regression analyses, adjusted 
for variables revealed that 65 metabolites retained their 
statistical significance in discovery cohort. After inter-
section of 65 metabolites in the validation cohort and 

the discovery cohort, 23 candidate CMs were identified. 
Upon the exclusion of 3-indolebutyric acid, which dem-
onstrated an inverse OR, a total of 22 CMs were retained 
as salient biomarkers intricately associated with T2DM 
risk. Among these, 16 metabolites exhibited negative 
correlation with T2DM susceptibility, while 6 metabo-
lites were positively correlated. The positive metabolites 
including D-glucopyranose, hexadecanoic acid, PLA, 
D-arabinose, Cer(d18:1/16:1) and 3-hydroxybutyrate 
were implicated in augmenting the risk of T2DM in the 
two cohorts.

We observed the exclusive accumulation of D-glu-
copyranose and D-arabinose in CAD-T2DM patients. 
D-glucopyranose represents the natural form of glu-
cose, while D-arabinose, a rare pentose, serves as a car-
bon source for bacteria [36]. Previous studies suggest a 
marked growth inhibitory effect of D-arabinose on the 
nematode Caenorhabditis elegans, possibly due to dis-
ruption of D-ribose and D-fructose metabolism [37]. 
Regarding PLA, it is significantly elevated in patients with 
phenylketonuria, and PLA levels show a positive cor-
relation with T2DM in our study. However, in a cohort 
study of 134 individuals (healthy and T2DM), PLA lev-
els decreased significantly in the T2DM group. This sug-
gests that compared to individuals with T2DM alone (vs. 
healthy individuals) [38], our CAD-T2DM may have dif-
ferent PLA metabolite characteristics than CAD-ONLY. 
In addition, there is evidence that treatment activates 
PPAR-γ2, which promotes adipocyte differentiation and 
glucose uptake [39]. Further studies are needed to gain a 
deeper understanding of these differences. 3-Hydroxybu-
tyrate, originating from the increased β-oxidation of free 
fatty acids [40], is found in higher concentrations in the 
plasma of T2DM patients [41] and has been shown to 
ameliorate insulin resistance in T2DM mice through the 

Fig. 3 Spearman correlation heatmap of characteristic metabolites with GLUC and HbA1c levels in CAD patients. The intensity of the color 
in the heatmap represents the strength of the correlation, with deeper colors indicating stronger associations. An asterisk (*) indicates statistical 
significance at P < 0.05
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HCAR2/Ca2+/cAMP/PKA/Raf1/ERK1/2/PPARγ path-
way [42].

Pipecolic acid, a metabolite of lysine found in human 
physiological fluids such as urine, plasma and CSF, 
is an important regulator of immunity in plants and 
humans alike [43]. Normal adults excrete pipecolic acid 
primarily as the D-enantiomer even though it is pre-
sent in the blood stream mainly as the L-enantiomer. 
Despite some studies reporting a significant increase in 
D-pipecolic acid, L-pipecolic acid concentrations in the 
Human Diabetic Corneal Stroma compared to healthy 

individuals [44], other research [45] revealed that 81 
metabolites were significantly changed before T2DM 
onset, and pipecolinic acid was reported to be nega-
tively significantly associated with future T2DM risk. 
Previous studies have reported a reduction in pipecolic 
acid levels in individuals with T2DM [46]. Similarly, our 
study shows that pipecolinic acid and L-pipecolic acid 
have a protective effect in CAD-T2DM. Moreover, our 
results innovatively revealed at the cellular and molecu-
lar level that pipecolinic acid and L-pipecolic acid both 
convert excess glucose to ATP for energy through oxi-
dative phosphorylation in hepatocytes.

Fig. 4 Effects of PA and L‑PA on glucose metabolism and transcriptional changes in hepatocytes. A Glucose consumption in HepaRG 
cells influenced by metabolites at different concentrations over a period of 60 h. B Intracellular ATP levels and C intracellular lactate levels 
under the same conditions. Multiple group comparisons were performed using one‑way analysis of variance (ANOVA). Significance is indicated by * 
for P < 0.05 and ** for P < 0.01. D Principal component analysis (PCA) visually depicts the differences between groups after PA and L‑PA intervention. 
E Venn diagram shows the overlap of differentially expressed genes (DEGs) between the comparison groups (NC vs. PA) and (NC vs. L‑PA). F, G 
Volcano plots show the DEGs for the comparison groups (NC vs. PA) and (NC vs. L‑PA), respectively, with DEGs with FDR < 0.05 labeled. H, I KEGG 
pathway enrichment analysis of DEGs from the comparison groups (NC vs. PA) and (NC vs. L‑PA). The x‑axis indicates the percentage of DEGs relative 
to the total genes in the pathway (expressed in %), with numbers in parentheses representing ‑log10 (p‑value)
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Elevated levels of tryptophan are often accompanied 
by an increased risk of T2DM [47]. However, in patients 
with CAD, elevated Tryptophan levels are associated with 
a reduced mortality rate from coronary artery diseases 
[48]. Metabolites involved in glutathione metabolism, 
including 5-oxoproline, have been previously identi-
fied as markers for diabetes [49]. The first longitudinal 
analysis conducted in SOALS suggests that 5-oxoproline 
is associated with a 50% higher risk of T2DM [50]. The 
alteration in amino acid metabolism may impact the dis-
ease mechanism in CAD patients with T2DM [49]. This 
change implies that some biomarkers effective in healthy 
populations may not be suitable for patients with comor-
bid conditions.

Furthermore, to the best of our knowledge, this is the 
first metabolomic comparison including lipidomics 
between CAD-ONLY and CAD-T2DM. The presence 
of a large number of lipids among the CMs indicates a 
concomitant alteration in lipid metabolism. A portion 
of phosphatidylcholine (PC), cholesteryl ester (CE), and 
triglycerides (TG) are negatively correlated with T2DM, 
whereas hexadecanoic acid(C16:0) and Cer(d18:1/16:1) 
are positively correlated with T2DM. The elevated lev-
els of hexadecanoic acid in individuals with diabetes 
may can be explained by an increase in harmful complex 
lipid synthesis, impairment of cellular organelle func-
tion, and promotion of receptor-mediated inflammation 
[51–54]. In simple terms, intracellular levels of palmitic 
acid rise above the mitochondrial oxidation limit and are 
converted into harmful complex fatty acid-derived lipids 
such as diacylglycerol and Cer. PC, as one of the most 

abundant phospholipids in mitochondria, plays a critical 
role in maintaining mitochondrial function [55]. Exces-
sive lipid supply and reduced mitochondrial oxidative 
capacity can impair β-oxidation, leading to the accumula-
tion of Cer [56].

In our investigation, comprehensive high-throughput 
RNA-Seq analysis identified 296 and 182 differentially 
expressed genes in the two comparison groups (NC vs. 
PA and NC vs. L-PA), respectively, with 66 DEGs being 
common to both groups and showing similar trends. For 
example, TIGAR, an intrinsic inhibitor of glycolysis [35, 
57], and ARK1B1, a known activator of the polyol path-
way often associated with long-term diabetic complica-
tions [58], as well as the glucose neogenesis-related gene 
CA5B [59, 60], were all significantly decreased after PA 
and L-PA intervention. Conversely, transcript levels of 
LCN6, which enhances skeletal muscle mitochondrial 
function [61, 62], increased significantly after interven-
tion. KEGG enrichment analysis revealed a primary clus-
tering of alterations in glucose and lipid metabolism and 
inflammatory pathways for both comparison groups (NC 
vs. PA and NC vs. L-PA). Folate biosynthesis emerged as 
a commonly enriched pathway, where chronic folate defi-
ciency leads to disruptions in glucose and lipid metabo-
lism and subsequent cognitive dysfunction in mice [63]. 
In addition, DEGs in L-PA affected the O-glycan biosyn-
thesis and TCA cycle pathways, which may explain the 
increased ATP generation observed in the L-PA group 
compared to the PA group. In contrast, DEGs from the 
NC vs. PA group showed significant enrichment in the 
IL-17 and NF-kappa B pathways [64, 65]. In conclusion, 

Fig. 5 Models for predicting mortality in CAD patients based on characteristic metabolites. A For the discovery cohort and B For the validation 
cohort. Clinical model: The clinical variables selected by LASSO regression are age, AST, CREA, proBNP, and gender. Metabolic model: The 
metabolites selected by LASSO regression are 3‑hydroxybutyrate, CE(16:1), CE(18:3), Cer(d18:1/16:1), D‑arabinose, D‑glucopyranose, hexadecanoic 
acid(C16: 0), L‑pipecolic acid, PC(16:1/18:1), PC(16:1/20:3), PC(18:0/18:3), PC(18:0/20:2), PC(20:1/20:5), PC(22:1/22:2), phenyllactate, pipecolinic acid, 
and TG(16:1/16:1/18:2). Combined Model: This model integrates both clinical and metabolite variables for prediction
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both pipecolinic acid and L-pipecolic acid are capable 
of modifying hepatic glucose utilization, with the tran-
scriptomic data shedding light on the potential target 
sites and pathway differences for the metabolic actions 
of these two metabolites, including their impact on ATP 
production.

Given the enrichment of DEGs in NC vs. PA and NC 
vs. L-PA in diverse pathways, including those related to 
immune and signaling activation, and acknowledging the 
well-documented influence of diabetes on cardiovascu-
lar disease progression. There have been many studies 
on the relationship between diabetes and cardiovascular 
disease [66–68]. Globally, cardiovascular disease affects 
approximately 32.2% of all persons with T2DM, and the 
major cause of death for T2DM patients is cardiovascu-
lar disease [67, 68]. Diabetes mellitus is a risk factor for 
cardiovascular disease and has been associated with 3- 
to fourfold higher mortality [66]. We conducted LASSO 
analysis to value the prediction of metabolites on cardio-
vascular death. the combined model with metabolites is 
more comprehensive than clinical model and the meta-
bolic model.

Our study has several limitations. First, because all 
the patients in this study came from a cohort of CAD 
patients without healthy individuals, the characteristics 
examined in this article are based only on CAD patients, 
and the difference in the metabolic spectrum between 
CAD patients and healthy individuals could not be deter-
mined. Secondly, the differential timeline for enrollment 
(2010–2014 in discovery vs. 2017–2018 for validation) 
and the low participant numbers in the Sun Yat-sen Uni-
versity and the Xiangya Hospital of Central South Uni-
versity may introduce confounding for center-specific 
features. Third, we only recorded the presence of T2DM 
at the time of enrollment and did not follow up the inci-
dence of new-onset diabetes, thereby losing information 
on the time variable. Fourth, the lack of information on 
the use of hypoglycemic agents prevents correction for 
potential bias introduced by such medications. Fifth, 
more than 80% of the patients in this cohort are male. 
Although we corrected for this covariate during the anal-
ysis, our results may still have some gender bias. Sixth, 
the metabolomic data in this study were not collected at 
one time, and with the iterative updating of technology, 
the range of detectable metabolites is different. There-
fore, we only included repeatedly appearing metabolites, 
which undoubtedly lost some metabolite information. In 
addition, multiple testing can lead to batch effects, which 
may still influence the results despite correction. Seventh, 
A triple quadrupole low resolution mass spectrometer 
with sMRM mode was used to establish the database 
information of the three samples of pipecolic acid (pipec-
olinic acid, D-pipecolic acid, and L-pipecolic acid). We 

only verified the effect of pipecolinic acid and L-pipecolic 
acid on glucose metabolism, and the role of D-pipecolic 
acid was neglected in this study, so the role of D-pipec-
olic acid in metabolism needs to be further investigated. 
Finally, the direct addition of metabolites to cells without 
validation in a disease model may not fully elucidate the 
role of these metabolites in disease contexts. Future stud-
ies using a more comprehensive approach, including the 
use of disease models and a diverse patient cohort, are 
essential to validate and extend our findings.

Conclusion
This study is based on a cohort of 1465 CAD patients 
from three centers. Plasma metabolic characteristics were 
differentiated between CAD patients without T2DM and 
those with concomitant T2DM through comprehensive, 
widely targeted metabolomics and lipidomics profiling 
analyses. We identified potential metabolic biomarkers 
and constructed a powerful model using characteris-
tic metabolites to predict all-cause mortality endpoints. 
Moreover, we explored the potential functional pathways 
of characteristic metabolites through transcriptomic 
sequencing and cellular experiments. Intriguingly, pipec-
olic acid and L-pipecolic acid, the key metabolites impact 
on ATP production, may act as the intervention points 
to improve energy metabolism of CAD-T2DM patients. 
In conclusion, our study provides novel insights into the 
further mechanism research, prophylaxis and treatment 
of comorbidity of CAD and T2DM.
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