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Abstract 

Background Metabolic effects of empagliflozin treatment include lowered glucose and insulin concentrations, 
elevated free fatty acids and ketone bodies and have been suggested to contribute to the cardiovascular benefits 
of empagliflozin treatment, possibly through an improved cardiac function. We aimed to evaluate the influence 
of these metabolic changes on cardiac function in patients with T2D.

Methods In a randomized cross-over design, the SGLT2 inhibitor empagliflozin (E) was compared with insulin 
(I) treatment titrated to the same level of glycemic control in 17 patients with type 2 diabetes, BMI of > 28 kg/m2, 
C-peptide > 500 pM. Treatments lasted 5 weeks and were preceded by 3-week washouts (WO). At the end of treat-
ments and washouts, cardiac diastolic function was determined with magnetic resonance imaging from left ventricle 
early peak-filling rate and left atrial passive emptying fraction (primary and key secondary endpoints); systolic function 
from left ventricle ejection fraction (secondary endpoint). Coupling between cardiac function and fatty acid concen-
trations, was studied on a separate day with a second scan after reduction of plasma fatty acids with acipimox. Data 
are Mean ± standard error. Between treatment difference (ΔT: E–I) and treatments effects (ΔE: E-WO or ΔI: I -WO) were 
evaluated using Students’ t-test or Wilcoxon signed rank test as appropriate.

Results Glucose concentrations were similar, fatty acids, ketone bodies and lipid oxidation increased while insulin 
concentrations decreased on empagliflozin compared with insulin treatment. Cardiac diastolic and systolic function 
were unchanged by either treatment. Acipimox decreased fatty acids with 35% at all visits, and this led to reduced 
cardiac diastolic (ΔT: −51 ± 22 ml/s (p < 0.05); ΔE: −33 ± 26 ml/s (ns); ΔI: 37 ± 26 (ns, p < 0.05 vs ΔE)) and systolic function 
(ΔT: -3 ± 1% (p < 0.05); ΔE: −3 ± 1% (p < 0.05): ΔI: 1 ± 2 (ns, ns vs ΔE)) under chronotropic stress during empagliflozin 
compared to insulin treatment.
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Conclusions Despite significant metabolic differences, cardiac function did not differ on empagliflozin compared 
with insulin treatment. Impaired cardiac function during acipimox treatment, could suggest greater cardiac reliance 
on lipid metabolism for proper function during empagliflozin treatment in patients with type 2 diabetes.

Trial registration: EudraCT 2017-002101-35, August 2017.

Keywords Sodium-glucose linked transporter 2 inhibition, Cardiac function, Metabolism, Type 2 diabetes, 
Hyperinsulinemia

Background
The EMPA-REG outcome trial was the first to show that 
the risk of major cardiovascular events was reduced 
in patients with type 2 diabetes when treated with 
sodium-glucose co-transporter-2 inhibitors (SGLT2i) 
[1], but the mechanisms behind this finding are still 
not fully understood. The cardioprotective effects are 
present soon after treatment is initiated and have so 
far been suggested to relate to changes in inflamma-
tory activity [2] or changes in hemodynamics [3] or to 
a changed overall cardiac metabolism that may benefit 
cardiac function [4, 5]. In patients with type 2 diabe-
tes, cardiac function and structure are altered indepen-
dently of myocardial ischemia and hypertension in a 
disease process collectively known as “diabetic cardio-
myopathy” (DCM)[6]. Characterized by left ventricu-
lar hypertrophy and impaired diastolic filling, DCM is 
an early and frequent complication to type 2 diabetes 
and a risk marker of future cardiovascular events [7]. 
The severity of DCM has been coupled to the level of 
whole-body insulin resistance, and an altered car-
diac substrate metabolism more dependent on lipid 
than glucose oxidation as compared to hearts of nor-
mal control subjects [8]. In this context, the suggested 
link between an improved metabolism and cardio-
protection induced by SGLT2i treatment is especially 
interesting, in as much as both systole and diastole are 
energy requiring processes and hence potentially modi-
fiable [9, 10].

Switching metabolism to improve cardiovascular 
outcome in type 2 diabetes has been tried before by 
increasing cardiac glucose utilization with insulin. 
Since glucose oxidation yields more ATP pr unit oxy-
gen than lipid oxidation, this could in theory pose an 
advantage during myocardial stress [11]. However, ini-
tial promise with glucose-insulin infusions immediately 
after myocardial infarction, could not be confirmed 
in later studies [12–14] and an approach with insulin-
treatment may even cause early harm after STEMI [14]. 
Aggressive insulin treatment of hyperglycemia in non-
surgical intensive care unit patients is associated with 
increased mortality, and intensive glycemic control 
with mostly exogenous insulin, insulin secretagogues, 

and metformin does not improve and may even worsen 
cardiovascular risk in individuals with type 2 diabetes 
[15, 16]. Furthermore, hyperinsulinemia is associated 
with increased risk of cardiovascular events [17].

SGLT2 inhibition increases renal glucose excretion, 
lowers plasma glucose and insulin levels and reduces 
tissue glucose uptake and oxidation. It also increases 
glucagon release, hepatic glucose production, lipolysis, 
ketogenesis and lipid oxidation, i.e. metabolic changes 
opposite to those found with insulin treatment [18, 19]. 
The potential for such metabolic changes to affect car-
diac function is illustrated by the finding that acute low-
ering of fatty acids (FA) with acipimox causes impaired 
cardiac contractility in patients with type 2 diabetes 
and that infusion of ketone bodies to physiological lev-
els improves contractility in patients with heart failure 
[20, 21]. The metabolic changes with SGLT2i treatment 
occur early after initiation of therapy to coincide with 
the cardio-protective effects, and echocardiographic 
studies have shown that cardiac diastolic function may 
be improved [22].

The present study aims to evaluate the impact of the 
metabolic effects of empagliflozin on cardiac function 
in patients with type 2 diabetes as compared to insulin 
treatment titrated to the same level of glycemic control 
in a randomized cross-over design. We hypothesize 
that the metabolic milieu during treatment with an 
SGLT2i with reduced insulinemia, higher availability of 
fatty acids and ketone bodies and greater lipid oxida-
tion would improve cardiac diastolic and systolic func-
tion as compared with the lower level of fatty acids and 
ketone bodies seen during insulin treatment. Secondly, 
that acute reduction of fatty acids and ketone bodies 
during treatment with acipimox will impair cardiac 
function on empagliflozin treatment.

Methods
Aim
To evaluate the impact of metabolic changes with 
empagliflozin treatment on cardiac function during 
rest and chronotropic stress and compare with insulin 
treatment titrated to the same level of glycemic control.
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Design and setting
This was a prospective, open label, two-arm, cross-over 
study comparing the effects of insulin and empagliflozin 
treatment titrated to the same glucose level on cardiac 
function in patients with type 2 diabetes (Fig. 1). The pro-
tocol has been described in detail elsewhere [23] and has 
been publicly available at https:// www. clini caltr ialsr egist 
er. eu since approval.

Patients were recruited from the Departments of Car-
diology and Endocrinology at the Copenhagen University 
Hospital in Hvidovre, Denmark, and through advertising 
in local newspapers.

Inclusion criteria were age ≥ 18  years, BMI ≥ 28  kg/
m2, a diagnosis of diabetes for more than 3  months, 
HbA1c ≤ 9% (≤ 10% in diet- or metformin-treated only), 
fasting C-peptide ≥ 500  pmol/L, unchanged glycaemic 
treatment for 3  months prior to inclusion. The original 
inclusion criteria of high cardiovascular risk as defined in 
the EMPA-REG study were waived [1, 23], due to inclu-
sion problems and because later studies reported CVD 
benefits of SGLT2i treatment in patients with type 2 dia-
betes with substantially lower cardiovascular risk [24]. 
Exclusion criteria included prior insulin treatment, renal 
insufficiency (eGFR < 45  ml/min/1.73   m2), persistent 
atrial fibrillation, claustrophobia, or contraindications 
to administration of glycopyrrolate. The full list can be 
found in Additional file 1: Table S1.

Once informed consent was obtained and screening 
completed, baseline characterization (including echocar-
diography) was performed. Participants were then taken 
off all anti-glycemic medications except metformin for an 
initial 2-week washout period. Other medications were 

left unchanged. The first washout period was followed 
by a 2-week empagliflozin run-in period and a second 
3-week washout period. Participants were then rand-
omized to treatment with either empagliflozin or NPH 
insulin first for 5 weeks, followed by a 33-week washout 
period and the final 5-week treatment period with the 
remaining study drug. Participants measured fasting glu-
cose during washouts and fasting and pre-prandial even-
ing blood glucose during run-in and treatment periods 
(Fig. 1).

Empagliflozin was dosed as 25  mg once daily; NPH 
insulin administered morning and evening was titrated 
according to target blood glucose (see Additional file  1 
for titration algorithm). In participants randomized to 
insulin first, the glycemic target was average fasting and 
evening glucose concentrations during the second week 
of empagliflozin run in. In patients randomized to insulin 
second, the glycemic target was average fasting and pre-
prandial evening blood glucose values during week 3 and 
4 of the first (empagliflozin) treatment period.

Participants were studied at the end of the second and 
third washout periods and at the end of each treatment 
period for a total of four study visits (V1-4). Each visit 
consisted of two cardiac MR study days and a metabolic 
study day.

Endpoints
The primary endpoint was cardiac diastolic function 
as determined from left ventricular peak filling rate 
(LVPFR). Key secondary endpoint was left atrial passive 
emptying fraction (LAPEF), another measure of car-
diac diastolic function. The secondary outcome was left 

Fig. 1 Study outline. Participants were included, to undergo a washout period, a run-in period of empagliflozin, and then another washout period 
before being randomized to either empagliflozin or insulin treatment first. After the initial treatment period, participants underwent a third washout 
periode before receiving the remaining drug (empagliflozin or insulin depending on the randomized order of study drugs)

https://www.clinicaltrialsregister.eu
https://www.clinicaltrialsregister.eu
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ventricular ejection fraction (LVEF). Exploratory end-
points included change in central blood volume (CBV), 
left ventricular end-diastolic volume, left ventricular 
mass and  VO2max.

We report the between treatments difference (ΔT: 
empagliflozin—insulin) and the individual treatment 
effects (ΔE or ΔI: treatment—washout).

Procedures
Cardiac MR was done at the Dept. of Cardiology, Rig-
shospitalet, Copenhagen (1.5  T Siemens Aera magnetic 
resonance scanner). Patients met fasting in the morn-
ing, received their morning medication and underwent 
a cardiac MR scanning protocol, as described previously 
[23], but without adenosine perfusion scans, due to logis-
tic constraints, and with halving of gadolinium enhancer 
dose on MR day 1 and omission on MR day 2, due to con-
cerns for CNS accumulation of gadolinium [25].

Surface- and spine coils were used with patients lay-
ing supine on their back. Following scout images, cardiac 
2 chamber cine images and cardiac short-axis steady-
state free precession cine images were obtained. Images 
were acquired during end-expiratory breath-holds (slice 
thickness 8  mm (no gap), TE 1.16–1.25  ms, TR 46.24–
49.98 ms, matrix 2010–208, FoV 258 × 320–485 × 481, 25 
phases). Short-axis images were repeated 10 min after an 
intravenous bolus injection of the chronotropic stressor 
glycopyrrolate (4 µg/kg;  Robinul®, Mylan, Denmark), that 
has previously been shown to demask diastolic dysfunc-
tion [26].

The procedure was repeated on a subsequent study day 
(MR day 2), where participants were instructed to take 
250 mg p.o. acipimox approximately three hours prior to 
the planned scan to lower FAs by suppressing hormone 
sensitive lipase activity in adipose tissue [27]. Acipimox 
administration was repeated before the MR scan to main-
tain suppression of FAs.

Cardiac diastolic function was determined from the left 
ventricular peak filling rate (LVPFR) and the left atrial 
passive emptying fraction (LAPEF). Cardiac systolic 
function was reported as left ventricular ejection frac-
tion (LVEF). Details on exploratory endpoints are found 
elsewhere [23] and in the Additional file 1. At each visit, 
cardiac rhythm was monitored for 48  h (SCOTTCARE, 
CHROMA, model RZ153C, Cleveland, OH) and ambula-
tory blood pressure was determined for 24 h (ScottCare, 
ABP 320, Cleveland, OH).

Metabolic characterization was done by sampling 
venous blood in the fasting state before and after each 
cardiac MRI. Additional blood sampling for fasting 
glucagon measurements, indirect calorimetry (Vyaire, 
 Vyntus® CPX, Chicago, IL, USA) and  VO2, max testing 
(Lode, Corival cpet, Groningen, NL) was performed at 

the separate metabolic study day [23].  VO2, max testing 
was modified as described in the Additional file 1.

Sample collection and biochemical analyses
Arterialized venous blood for analyses of glucose, 
β-hydroxy butyrate, and Pro Atrial Natriuretic Peptide 
(ANP)/Brain Natriuretic Peptide (BNP) were collected 
into pre-chilled EDTA tubes. Blood for analyses of insu-
lin and FA was collected in clot activator tubes. Sampling 
for aldosterone and renin was done after the participant 
had rested for 30  min in the supine position. All sam-
ples were centrifuged immediately. Plasma glucose was 
analyzed bedside with the glucose oxidase technique 
(YSI 2300 STAT Plus, YSI, Yellow Springs, OH, USA). 
All other samples were centrifuged at 4 °C for 10 min at 
4000 rpm, before being aliquoted and frozen at −80  °C. 
Insulin, FAs and Pro BNP were analyzed on COBAS ana-
lyzer (Roche Diagostics GmbH, Mannheim, Germany). 
β-hydroxy-butyrate was measured using an enzymatic 
colorimetric assay (Sigma Aldrich, Merck KGaA, Darm-
stadt, Germany). Glucagon was measured as previously 
described [28]. Aldosterone and renin were measured 
using chemiluminescent immunoassays (iSYS, Immu-
nodiagnostic Systems Holdings Ltd., UK). Pro-ANP was 
quantified using a processing-independent assay requir-
ing proteolytic treatment prior to measurement [29].

Statistical analysis
Continuous variables are presented as Mean ± standard 
error of the mean (SEM) unless otherwise noted. Treat-
ment effects and between treatment differences were 
tested using the Student´s t-test or Mann–Whitney 
U test as appropriate. Categorical variables were pre-
sented as counts or proportions and compared using 
Chi-squared test or Fisher’s exact test as appropriate. A 
two-sided p < 0.05 was considered statistically significant. 
To test for carry-over effects of treatments, the effects 
of empagliflozin and insulin on primary and secondary 
as well as metabolic outcomes were compared between 
those randomized to insulin and those randomized to 
empagliflozin first. Statistical analysis was performed 
with R studio version 1.2.1093 (R Development Core 
Team). Power calculations have been reported previously 
[23] and are also available in the Additional file 1.

Power calculation
Measures of myocardial function may be determined 
with a coefficients of variation are in the range of 3–5% 
using cardiac MRI [30]. Based on data from a previous 
study using the same Cardiac MRI protocol to determine 
cardiac function in young elderly healthy subjects [4], we 
assumed that T2DM patients had LVPFR correspond-
ing to healthy elderly subjects and that empagliflozin 
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treatment would improve LVPFR by 30  ml/s compared 
to insulin treatment. Estimating SD of between treat-
ment differences of ΔLVPFR at 30  ml/s, a sample size 
of 16 would be adequate to determine a 30  ml/s differ-
ence between the two treatments with a power of 93% 
and a two-sided significance level of 0.01, when evaluat-
ing data with the paired Student’s t-test. We planned to 
randomize 20 participants, expecting a 20% drop-out rate 
[23].

Results
From December 1st 2017 until June 12th 2020, forty-one 
subjects were screened, twenty-two were randomized 
and seventeen completed the study (Additional file  1: 
Figure S1). The final study population (Table 1) was 2/3 

male, with an average age of 58  years, a diabetes dura-
tion of 8.5  years, a mean HbA1c of 52  mmol/mol, and 
an average urine albumin/creatinine ratio in the micro-
albuminuric range. Seven participants had a history of 
macrovascular disease. Patients had normal left ventric-
ular systolic and moderately impaired diastolic function 
as determined from LV peak filling rates. Anti-glycemic 
and antihypertensive treatments for each participant are 
listed in Additional file 1: Table S2.

Interventions
Participants underwent pre-empagliflozin (PE) washout 
for 22 ± 2 days with mean fasting finger stick blood glu-
cose concentrations stabilizing at 8.9 ± 0.4 mmol/L for the 
last 2 weeks. Pre-insulin (PI) washout lasted 21 ± 2 days 
with mean fasting blood glucose of 8.7 ± 0.3  mmol/L. 
Empagliflozin (E) and insulin (I) treatment lasted 39 ± 2 
and 38 ± 1 days respectively. On empagliflozin treatment, 
mean fasting and pre-dinner blood glucose decreased to 
8.0 ± 0.3 and 8.3 ± 0.3 mmol/L during the final 2 weeks of 
treatment. Corresponding values on insulin-treatment 
were 7.9 ± 0.3 and 8.2 ± 0.3  mmol/L. Final insulin dose 
was 10 ± 1 IU in the morning and 10 ± 1 IU in the evening. 
Three serious adverse events were recorded in the entire 
study. All were deemed unrelated to the study interven-
tion (Additional file 1: Table S3).

Metabolic and anthropometric data
Metabolic data are shown in Table  2 and in Fig.  2. 
Empagliflozin and insulin treatment reduced fasting 
glucose similarly compared to washout, from 8.7  mM 
to 7.6  mM, on the first cardiac MRI day of each treat-
ment visit (Table  2, Fig.  2A, B). Peripheral insulin con-
centrations decreased on empagliflozin treatment and 

Table 1 Patient characteristics at screening, data are 
Mean ± SEM or median [range]

N 17

Sex (female/male) 4/13

Age (years) 59 [27–74]

BMI (kg/m2) 33 ± 0.7

Diabetes duration (years) 9 [2–25]

Blood pressure (mmHg) 144 ± 4/87 ± 2

History of cardiovascular disease (N) 7

HbA1c (mmol/mol) 52 ± 3

Fasting blood glucose (mmol/L) 8.8 ± 0.4

Fasting C-peptide (pmol/L) 1417 ± 107

eGFR (ml/min/1.73  m2) 83 ± 3

Urine albumine creatinine ratio (mg/g) 42 ± 19

Pro-BNP (pmol/L) 11 ± 3

E/E’ 7.4 ± 2

Table 2 Metabolic outcomes

Data are presented as Mean ± SEM

PE Pre-Empagliflozin, E Empagliflozin, PI Pre-Insulin, I Insulin, ΔE E-PE, ΔI I-PI, ΔT E-I
* p < 0.05; **p < 0.01; †p < 0.05; ††p < 0.01 vs ΔE. ‡p < 0.05 vs MR Day 1. ‡‡p < 0.01 vs MR Day 1

PE E ΔE PI I ΔI ΔT

MR day 1

 Glucose (mmol/L) 8.7 ± 0.5 7.6 ± 0.3 −1.1 ± 0.2** 8.7 ± 0.5 7.6 ± 0.3 −1.1 ± 0.4* −0.0 ± 0.3

 FAs (mmol/L) 0.55 ± 0.03 0.60 ± 0.03 0.05 ± 0.04 0.56 ± 0.04 0.50 ± 0.05 −0.06 ± 0.05 0.10 ± 0.04*

 β-OH butyrate (mmol/L) 0.25 ± 0.02 0.29 ± 0.03 0.05 ± 0.02* 0.26 ± 0.02 0.24 ± 0.02 −0.02 ± 0.01†† 0.05 ± 0.02 *

 Insulin (pmol/L) 127 ± 17 103 ± 14 −24 ± 11 127 ± 17 141 ± 16 14 ± 10† −38 ± 12**

 Respiratory quotient 0.80 ± 0.01 0.75 ± 0.03 −0.04 ± 0.04 0.84 ± 0.02 0.84 ± 0.02 0.00 ± 0.02 −0.09 ± 0.03*

MR day 2—acipimox

 Glucose (mmol/L) 8.7 ± 0.5 7.6 ± 0.3 −1.1 ± 0.4** 8.1 ± 0.3 7.6 ± 0.3 −0.6 ± 0.2* −0.1 ± 0.2

 FAs (mmol/L) 0.33 ± 0.04‡‡ 0.41 ± 0.04‡‡ 0.08 ± 0.05 0.34 ± 0.03‡‡ 0.32 ± 0.04‡‡ −0.02 ± 0.04 0.10 ± 0.05

 Ketone bodies (umol/L) 0.23 ± 0.01 0.25 ± 0.02 0.02 ± 0.01 0.23 ± 0.02‡ 0.22 ± 0.02‡ −0.01 ± 0.02 0.04 ± 0.02*

 Insulin (pmol/L) 139 ± 24 87 ± 9 −52 ± 19* 106 ± 13 149 ± 23 43 ± 14**†† −62 ± 17**
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increased on insulin treatment, resulting in significantly 
lower insulin concentrations on empagliflozin com-
pared to insulin treatment (Table 2, Fig. 2G, H). FA and 

β-hydroxybutyrate concentrations on the other hand 
were higher on empagliflozin than on insulin treatment 
(Table 2 and Fig.  2B–D). Glucagon concentrations were 

Fig. 2 Glucose (panel A), fatty acids (panel C), β-OH butyrate (panel E) and insulin (panel G) plasma concentrations before (PE and PI) 
and during treatments (E and I). Change in metabolite concentrations (panels B, D, F, H) between treatments (ΔT) or between treatment 
and washout (ΔE and ΔI). Data are Mean ± SEM. *p < 0.05; **p < 0.01
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unchanged at all visits (Table 4), but the glucagon/insu-
lin ratio (PE: 0.19 ± 0.02, E: 0.26 ± 0.04, PI: 0.20 ± 0.03, I: 
0.17 ± 0.02) was increased on empagliflozin treatment 
compared to washout (ΔE: 0.07 ± 0.02, p < 0.01) and 
insulin treatment (ΔT: 0.09 ± 0.03, p < 0.01). The res-
piratory quotient was lower during empagliflozin com-
pared with insulin (Table  2) and body weight reduced 
(ΔE: −1.5 ± 0.4  kg (p = 0.04); ΔI: 1.7 ± 0.3 (p < 0.01), ΔT: 
−2.2 ± 0.6  kg (p < 0.01)) during empagliflozin treatment 
compared with washout and insulin.

Cardiac diastolic and systolic function
During rest, empagliflozin treatment resulted in lower 
LVPFR but not a lower LAPEF directly compared to 
insulin, but neither empagliflozin nor insulin treatment 
changed cardiac diastolic function as measured by LVPFR 
or LAPEF in the resting state as compared to washout 
(Table  3). Chronotropic stress eliminated any difference 
in LVPFR and LAPEF between treatments. Cardiac sys-
tolic function (LVEF) did not differ significantly between 
treatments at any visits during rest or stress (Table 3).

Metabolic effects of acipimox
To evaluate the importance of lipid metabolism in car-
diac function, cardiac MRI was repeated on a separate 
day at each visit after acute lowering of plasma FAs for 
at least 3  h with acipimox. After acipimox administra-
tion, glucose and insulin concentrations were unaffected 
at all visits compared to the first cardiac MRI day, while 
FAs were reduced about 35% independently of treat-
ments. β-hydroxy butyrate was only numerically reduced 
(9–12%) during acipimox administration (Table 2).

Cardiac effects of acipimox
Resting cardiac diastolic function (LVPFR and LAPEF) 
was unchanged by acute reduction of FAs with acipimox 
administration, whereas resting LVEF was reduced at all 
visits compared to the previous cardiac MRI day with 
higher FAs (Table  3). Chronotropic stress in combina-
tion with acipimox resulted in reduced LVPFR on empa-
gliflozin treatment as compared with insulin (Fig. 3A, B). 
Empagliflozin treatment was associated with numeri-
cally impaired and insulin treatment with numerically 
improved LVPFR compared with washout, and these 
responses to treatments during chronotropic stress and 

Table 3 Cardiac outcomes

Data are presented as Mean ± SEM

PE Pre-Empagliflozin, E Empagliflozin, PI Pre-Insulin, I Insulin, ΔE E-PE, ΔI I-PI, ΔT E-I
* p < 0.05; **p < 0.01. †p < 0.05 vs ΔE. ‡‡p < 0.01 vs MR Day 1

PE E ΔE PI I ΔI ΔT

Cardiac functionṣ—rest

 MR day 1

  LVPFR (ml/s) 400 ± 27 376 ± 28 −38 ± 20 405 ± 33 417 ± 25 8 ± 25 −55 ± 19**

  LAPEF (%) 24 ± 2 27 ± 3 2 ± 3 24 ± 3 26 ± 3 1 ± 2 2 ± 2

  LVEF (%) 61 ± 2 63 ± 3 2 ± 1 62 ± 2 63 ± 2 1 ± 1 −1 ± 2

  Heart Rate  (min−1) 63 ± 2 63 ± 2 −1 ± 1 65 ± 3 64 ± 2 −1 ± 1 0 ± 1

 MR day 2—acipimox

  LVPFR (ml/s) 427 ± 25 367 ± 24 −56 ± 30 391 ± 35 386 ± 21 −5 ± 27 −15 ± 25

  LAPEF (%) 24 ± 2 26 ± 2 2 ± 2 22 ± 2 26 ± 3 4 ± 2 −0 ± 2

  LVEF (%) 59 ± 2 56 ± 2‡‡ −2 ± 2 56 ± 2‡‡ 57 ± 2‡‡ 1 ± 1 −1 ± 2

  Heart Rate  (min−1) 62 ± 2 64 ± 2 2 ± 2 64 ± 2 61 ± 2‡‡ −2 ± 1*,† 3 ± 1*

Cardiac function–chronotropic stress

 MR day 1

  LVPFR (ml/s) 334 ± 30 334 ± 31 −4 ± 44 367 ± 32 361 ± 30 −16 ± 28 −12 ± 47

  LAPEF (%) 20 ± 2 21 ± 3 1 ± 3 21 ± 3 23 ± 3 2 ± 2 −1 ± 1

  LVEF (%) 58 ± 2 59 ± 3 −1 ± 2 57 ± 3 57 ± 2 −1 ± 1 1 ± 1

  Heart Rate  (min−1) 78 ± 2 78 ± 2 0 ± 2 78 ± 3 80 ± 2 1 ± 1 −1 ± 2

 MR day 2—acipimox

  LVPFR (ml/s) 340 ± 28 307 ± 12 −33 ± 26 321 ± 27 358 ± 29 37 ± 26† −51 ± 22*

  LAPEF (%) 22 ± 3 23 ± 3 1 ± 2 21 ± 3 24 ± 3 3 ± 1* −2 ± 3

  LVEF (%) 57 ± 2 54 ± 2‡‡ −3 ± 1* 56 ± 2 57 ± 2 1 ± 2 −3 ± 1*

  Heart rate  (min−1) 78 ± 2 78 ± 2 −1 ± 2 77 ± 3 78 ± 3 1 ± 2 −1 ± 2
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Fig. 3 Cardiac diastolic (panel A, C) and systolic (panel E) cardiac function during pharmacologically induced chronotropic stress and acute 
pharmacological reduction of plasma FAs with acipimox before (PE and PI) and during treatments (E and I). Change in diastolic (panels B, D) 
and systolic (panel F) cardiac function between treatments (ΔT) or between treatment and washout (ΔE and ΔI). Data are Mean ± SEM. *p < 0.05. 
‡‡p < 0.01 vs MR Day 1. LVPFR Left ventricular peak filling rate, LAPEF Left atrial passive emptying fraction, LVEF Left ventricular emptying fraction
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acipimox administration differed significantly (Fig.  3B). 
LAPEF was unchanged on empagliflozin treatment but 
improved on insulin treatment as compared with wash-
out (Fig.  3C, D). During chronotropic stress and acipi-
mox administration LVPFR and LAPEF were unaffected, 
but LVEF was reduced during empagliflozin treatment 
as compared to the first MRI day at the same treat-
ment visit with higher FAs (Table 3 and Fig. 3E). Under 
chronotropic stress and acipimox administration, empa-
gliflozin treatment resulted in lower LVEF than during 
insulin treatment. Compared with washout (PE) LVEF 
was significantly impaired during empagliflozin treat-
ment when FAs were pharmacologically reduced and the 
heart stressed, whereas LVEF numerically increased dur-
ing insulin treatment compared to washout. These dif-
ferences in treatment effects were borderline significant 
(p = 0.05) (Fig. 3E, F).

Cardiac effects stratified according to initial cardiac 
function and metabolic response to empagliflozin
To investigate whether baseline cardiac function influ-
enced treatment response, we stratified participants by 
median into two groups according to cardiac function—
one with “good” (top half of population) and one with 
“poor” (bottom half ) cardiac function. We could not 
demonstrate any systematic differences in the response 
to treatments or indeed between treatments when strati-
fying participants according to “good” or “poor” initial 
diastolic or systolic cardiac function (Additional file  1: 
Table  S4). To evaluate whether the magnitude of the 
metabolic response to empagliflozin treatment deter-
mined any change in cardiac function, we also stratified 

participants according to the glycemic improvement, 
reduction in insulin, increase in FA or β-OH butyrate 
concentrations on empagliflozin treatment, but we could 
not demonstrate any difference in cardiac functional 
response between “good” and “poor” metabolic respond-
ers (Additional file 1: Table S5).

Exploratory cardiac endpoints
Central blood volume, left ventricular end-diastolic vol-
ume and left ventricular myocardial mass were not sig-
nificantly changed by 5 weeks of empagliflozin or insulin 
treatment (Table 4). Cardiac output during chronotropic 
stress was slightly reduced on empagliflozin compared 
with insulin treatment (Table  4), and this finding was 
consistent on MR day 2 with acipimox administration 
(Additional file 1: Table S6). Ambulatory 24 h blood pres-
sure, pulse-pressure product and  VO2 max were essen-
tially similar during washout and treatment periods. 
While aldosterone, renin and pro-BNP were unchanged 
throughout the study (Additional file 1: Table S5), we did 
see a reduction in pro-ANP with empagliflozin treatment 
compared with washout and insulin treatment (Table  4 
and Additional file  1: Table  S6). Treatment effects dif-
fered on both MR days (ΔE v ΔI: MR1 p = 0.056, MR2 
p = 0.029). Holter monitoring did not demonstrate any 
differences in standard measures of cardiac rhythm 
across visits (Additional file 1: Table S7).

Discussion
Here we show that 5  weeks treatment with empagli-
flozin and insulin titrated to the same level of glyce-
mic control has opposite effects in terms of insulin 

Table 4 Exploratory outcomes

Data are presented as Mean ± SEM

PE Pre-Empagliflozin, E Empagliflozin, PI Pre-Insulin, I Insulin, ΔE E-PE, ΔI I-PI, ΔT E-I
* p < 0.05; **p < 0.01. †p < 0.05 vs ΔE

PE E ΔE PI I ΔI ΔT

MR day 1

 Central blood volume (L) 1077 ± 58 1026 ± 74 −45 ± 67 1132 ± 67 1094 ± 57 −29 ± 43 −61 ± 60

 Left ventricular end-diastolic volume (mL) 163 ± 10 160 ± 11 −4 ± 6 166 ± 10 164 ± 10 −3 ± 3 −4 ± 5

 Cardiac output Stress (L/min) 6.52 ± 0.38 6.23 ± 0.29 −0.48 ± 0.24 6.24 ± 0.33 6.68 ± 0.29 0.30 ± 0.21 −0.51 ± 0.23*

 LV myocardial mass (g/m2) 65 ± 4 66 ± 4 0 ± 2 65 ± 4 65 ± 4 0 ± 2 0 ± 1

 Pro-ANP (pmol/L) 405 ± 67 340 ± 54 −65 ± 26* 419 ± 65 427 ± 68 8 ± 23 −86 ± 27**

24-h ambulatory blood pressure monitoring

 Systolic BP (mmHg) 130.2 ± 2.8 130.1 ± 1.5 0.9 ± 2.7 130.9 ± 3.6 134.9 ± 3.1 3.9 ± 3.4 −4.7 ± 3.2

 Diastolic BP (mmHg) 76.9 ± 1.8 77.41 ± 1.7 1.8 ± 1.4 78.4 ± 2.5 79.2 ± 1.9 1.0 ± 2.3 −0.9 ± 1.6

 24-h pulse pressure product (mmHg x  min−1) 9679 ± 341 10,032 ± 354 402 ± 235 9810 ± 414 10149 ± 433 482 ± 277 −223 ± 305

Metabolic study day

  VO2max (ml/kg) 14 ± 0.7 14 ± 0.7 0.1 ± 0.5 16 ± 1 14 ± 0.7 −1.7 ± 0.4† 0.0 ± 0.7

 Glucagon (pmol/L) 18 ± 1 19 ± 1 0 ± 1 19 ± 1 19 ± 1 1 ± 1 0 ± 1
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concentrations and concentrations of FAs and ketone 
bodies. Thus, compared to insulin treatment, insulin 
concentrations were ~ 25% lower and FA and β-OH-
butyrate concentrations ~ 20% higher on empagliflozin, 
probably explained by an increased glucagon/insu-
lin ratio on empagliflozin treatment. Based on earlier 
echocardiographic studies [22], we hypothesized that 
cardiac diastolic function would improve with 5 weeks 
of empagliflozin treatment. However, despite clear dif-
ferences in metabolite concentrations, we found only a 
slight reduction in LVPFR during rest on empagliflozin 
treatment compared with insulin. This difference disap-
peared with chronotropic stress, instead of being accen-
tuated as expected [25], and we therefore conclude that 
neither diastolic nor systolic cardiac function is con-
sistently changed on empagliflozin treatment compared 
with insulin treatment. Exploratory data suggest that 
cardiac metabolism may be switched towards greater 
reliance on lipid metabolism, which together with a 
lowered venous return to the heart could contribute to 
the cardiovascular benefits of SGLT2 inhibitors.

Changes in metabolic parameters of type 2 diabe-
tes may influence cardiac function. For instance, in 
severely dysregulated patients with type 2 diabetes, 
12  months of intensified glycemic control was associ-
ated with improved cardiac function, but whether this 
was simply due to improved glycemia or changes in 
other parameters of metabolism cannot be determined 
[31]. The present study was designed to dissect the role 
of the characteristic metabolic aberrations of type 2 
diabetes, hyperglycemia, hyperinsulinemia and hyper-
lipidemia, for cardiac function. Since cardiac function 
did not change on either treatment, we conclude that 
the deleterious effects of mild-to-moderate hyperglyce-
mia, hyperinsulinemia and elevated FAs per se on car-
diac function are negligible, at least when present for 
only 5 weeks.

SGLT2i treatment is associated with hyper-ketonemia, 
and since ketone bodies are easily converted to energy 
they may potentially improve cardiac resilience under 
stressful circumstances [4]. We could not demonstrate 
any positive effect of empagliflozin, negative effect of 
insulin, nor difference between the two treatments with 
respect to cardiac function during chronotropic stress, 
despite ~ 20% higher β-OH butyrate concentrations dur-
ing empagliflozin treatment. Infusion of β-OH butyrate 
improves cardiac contractility in glucose tolerant patients 
with heart failure, but at the same time plasma levels of 
β-OH butyrate are several-fold higher than in the pre-
sent study [21]. The question is whether a physiological 
increase in ketone body concentrations plays any role for 
proper cardiac function, at least in patients with normal 
baseline systolic function as in our cohort.

To further investigate the role of metabolically avail-
able lipids for cardiac function, we repeated cardiac 
functional testing during acute lowering of FAs with 
acipimox. This resulted in a 35% reduction in FAs and 
only minor changes in β-OH butyrate concentrations. 
During chronotropic stress this led to reduced cardiac 
diastolic and systolic function during empagliflozin treat-
ment compared with insulin treatment, indicating a 
greater dependence on lipid oxidation for proper cardiac 
function. At a time when whole body lipid oxidation has 
increased, as on empagliflozin treatment, it is reasonable 
to assume that cardiac metabolism also switches towards 
greater lipid oxidation. A similar dependence on lipid 
availability for normal cardiac function is seen in normal 
glucose tolerant subjects [32]. Cardiac phosphocreatine 
to ATP ratio is reduced in patients with type 2 diabetes 
at lower blood glucose levels [33]. Increased availabil-
ity of FAs and lipid oxidation during glucose lowering 
with empagliflozin treatment, could help counteract this 
energy depletion and improve outcomes after cardiac 
ischemia [5]. Whether this has any clinical implications 
in humans is little investigated, but in the hearts of insu-
lin resistant rats, increasing lipid oxidation improves 
post-ischemic recovery and vice versa, posing an inter-
esting coupling of metabolic and clinical effects of SGLT2 
inhibition [34, 35].

Of interest, pro-ANP concentrations decreased with 
empagliflozin treatment. This has been shown before 
[36], and may reflect reduced distention of the atria as a 
result of a lowered venous return to the heart. Support-
ing this idea, cardiac output during empagliflozin treat-
ment was lower during chronotropic stress. However, 
although numerically reduced compared to washout and 
insulin treatment, we could not demonstrate any signifi-
cant changes in central blood volume during empagliflo-
zin treatment, and likewise we did not see any change in 
left ventricular end-diastolic volume. Pro-ANP harbors 
the hormonally active ANP that stimulates lipolysis [37], 
but a reverse relation where elevated FAs could inhibit 
pro-ANP release does not seem to be present, since pro-
ANP levels were unaffected by acipimox administration. 
Hyperinsulinemia and hyperglycemia did not influence 
pro-ANP release in the present study, but in healthy 
athletes pro-ANP concentrations decrease during exog-
enous ketosis [38]. Thus, in combination with reductions 
in circulating volume and a reduced venous return to the 
heart, hyperketonemia could potentially contribute to the 
lower levels of pro-ANP during empagliflozin treatment.

Some studies with longer treatment durations have 
shown improved diastolic function with SGLT2 inhibitor 
treatment in patients with T2D, possibly due to reduced 
left ventricular myocardial mass, whereas others have 
not [39–42]. The aim of this study was to test how the 
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metabolic effects of SGLT2 inhibition influenced cardiac 
function independently of structural changes in the heart 
of patients with T2D. The shorter treatment duration was 
chosen to reduce the risk of developing cardiac struc-
tural changes, while at the same time ensuring robust 
metabolic differences [18]. The fact that we observed 
clear metabolic changes without any change in LV myo-
cardial mass indicates that our results can be ascribed to 
metabolic rather than structural changes in the myocar-
dium. Nevertheless, our findings are in agreement with a 
recently published study, which also used MRI to evalu-
ate cardiac function in patients randomized to either pla-
cebo or dapagliflozin for 6 weeks [43]. In that study, no 
effect on parameters of diastolic or systolic function nor 
on left ventricular myocardial mass were observed either.

A major strength of the present study is the use of 
cardiac MRI, as this is superior to echocardiography 
in terms of reproducibility and accuracy, and there-
fore considered the non-invasive reference standard for 
evaluation of cardiac function [44]. Another strength is 
the use of insulin as comparator. This results in greater 
differences with respect to insulin, FA and ketone body 
concentrations, while at the same time eliminating differ-
ences in glycemia as a contributing factor. The use of the 
cross-over study design provides a high statistical effi-
ciency but does introduce the risk of carry-over effects. 
Testing for carry-over effects, however, was negative with 
respect to both cardiac and metabolic outcomes, reflect-
ing adequate washouts between treatment periods.

A limitation of the study is sample size. We planned to 
include 20 patients, which should enable us to detect a 
between treatment difference (ΔT) on LVPFR of 30 ml/s. 
We based our assumptions on effect sizes and data vari-
ation on a previous study comparing cardiac MRI meas-
ures in healthy young and old people [26]. As it turned 
out, our population was more heterogenous and with a 
wider age span probably explaining the greater data vari-
ation. Never-the-less at the current number of partici-
pants and standard deviations, we still had 80% power 
to detect 56  ml/s difference in the primary outcome 
between treatments with a two-sided p-value of < 0.05.

It may be argued that participants did not have “suffi-
ciently impaired” cardiac function to show any effects of 
SGLT2i. While the clinical benefits of SGLT2i are more 
pronounced in heart failure, this condition is often asso-
ciated with substantial remodeling and fibrosis of the 
left ventricle, which could impair the ability to swiftly 
improve cardiac function in response to metabolic 
changes [45–47]. Our primary aim was to demonstrate 
change in diastolic cardiac function, the earliest meas-
ure of diabetic cardiomyopathy. Indeed, our cohort had 
an E/E’ of7.4 and thus diastolic function was bordering 
on impaired by standard echocardiographic definitions. 

However, when considering LV peak filling rates, our par-
ticipants had lower (~ 25%) values than reported for the 
normal population in a recent meta-analysis [48], leaving 
room for treatments to improve cardiac diastolic func-
tion. Treatment effects were independent of baseline car-
diac function, supporting our conclusions.

Finally, while the design is appropriate for evaluat-
ing early metabolic effects of SGLT2 inhibition on car-
diac function, it does not allow us to conclude anything 
regarding effect of long-term SGLT2i treatment.

Conclusions
We found no evidence of direct effects of SGLT2i induced 
metabolic changes on cardiac function in patients with 
type 2 diabetes and moderately impaired diastolic func-
tion, when compared to insulin treatment. Impaired 
diastolic and systolic function during empagliflozin treat-
ment and acute lowering of FAs could suggest greater 
cardiac reliance on lipid oxidation, which in addition to a 
lowered venous return to the heart may contribute to the 
early cardiac benefits of SGLT2 inhibition.
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