Qin et al. Cardiovascular Diabetology (2024) 23:45 Ca rdiovascular Dia betology
https://doi.org/10.1186/512933-023-02074-1

. . ®
The role of mitochondrial DNA copy number s

in cardiometabolic disease: a bidirectional two-
sample mendelian randomization study

Pei Qin', Tianhang Qin?, Lei Liang®, Xinying Li*, Bin Jiang®, Xiaojie Wang®, Jianping Ma>, Fulan Hu®,
Ming Zhang® and Dongsheng Hu"

Abstract

Background This study used a bidirectional 2-sample Mendelian randomization study to investigate the potential
causal links between mtDNA copy number and cardiometabolic disease (obesity, hypertension, hyperlipidaemia, type
2 diabetes [T2DM], coronary artery disease [CAD], stroke, ischemic stroke, and heart failure).

Methods Genetic associations with mtDNA copy number were obtained from a genome-wide association study
(GWAS) summary statistics from the UK biobank (n=395,718) and cardio-metabolic disease were from largest avail-
able GWAS summary statistics. Inverse variance weighting (IVW) was conducted, with weighted median, MR-Egger,
and MR-PRESSO as sensitivity analyses. We repeated this in the opposite direction using instruments for cardio-meta-
bolic disease.

Results Genetically predicted mtDNA copy number was not associated with risk of obesity (P=0.148), hypertension
(P=0.515), dyslipidemia (P=0.684), T2DM (P=0.631), CAD (P=0.199), stroke (P=0.314), ischemic stroke (P=0.633),
and heart failure (P=0.708). Regarding the reverse directions, we only found that genetically predicted dyslipi-
demia was associated with decreased levels of mtDNA copy number in the IVW analysis (3= —0.060, 95% CI —0.044
to —0.076; P=2.416e—14) and there was suggestive of evidence for a potential causal association between CAD

and mtDNA copy number (3= —0.021, 95% Cl —0.003 to —0.039; P=0.025). Sensitivity and replication analyses
showed the stable findings.

Conclusions Findings of this Mendelian randomization study did not support a causal effect of mtDNA copy number
in the development of cardiometabolic disease, but found dyslipidemia and CAD can lead to reduced mtDNA copy
number. These findings have implications for mtDNA copy number as a biomarker of dyslipidemia and CAD in clinical
practice.
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Introduction

Mitochondria play a vital role in the cellular energy
metabolism, cellular differentiation, proliferation, repro-
gramming, and aging. Mitochondrial DNA (mtDNA),
mitochondria’s own genome, encodes 2 ribosomal RNAs,
22 transfer RNAs, and 13 polypeptides of the respiratory
chain [1]. The mitochondrion contains multiple cop-
ies of mtDNA, and cells contain up to 7000 mitochon-
dria per cell [2]. mtDNA copy number, reflecting the
ratio of mitochondrial to nuclear DNA copies, is con-
sidered a surrogate for the number of mitochondria [3]
and mitochondrial dysfunction and can indirectly reflect
mtDNA damage [4]. Cardiometabolic disease is charac-
terized by mitochondrial dysfunction, oxidative stress,
impaired oxidative phosphorylation, and inflammation
[5]. Considering the inexpensiveness and accessibility
of the mitochondrial DNA copy number, it has recently
garnered interest to be used as a biomarker of chronic
diseases.

Cardiometabolic disease is a global health issue with
an increasing disease burden and leading causes of global
death and disability [6]. Some previous cross-sectional,
case—control, and prospective epidemiological studies
as well as meta-analyses have reported an increased risk
of cardiovascular disease associated with decreased lev-
els of mtDNA copy number [7-10]. mtDNA copy num-
ber was also reported to be associated with increased
risk of hypertension [11], obesity [12], and diabetes [13,
14], in the observational studies. A large cross-sectional
study including 408,361 participants of multiple ances-
tries in eight US cohorts from the Trans-Omics for Preci-
sion Medicine and UK Biobank reported the significant
negative associations of whole blood mtDNA copy num-
ber with several cardiometabolic disease traits includ-
ing obesity, hypertension, diabetes, and hyperlipidemia
[15]. However, so far, it remains unclear whether there
is a causal relationship between mtDNA copy number
and these diseases. Moreover, it remains to be addressed
whether there is reverse causality that cardiometabolic
diseases affect mtDNA copy number.

Mendelian randomization (MR) is a method to use
genetic variants randomly allocated during conception
as instrumental variables for exposure to estimate the
causal effect of an exposure on an outcome in observa-
tional data, which is a powerful approach that can avoid
potential bias by confounders and reverse causation [16].
The causal relationship between mtDNA copy number
and risk of diabetes, stroke, and stroke prognosis has
been previously studied via MR design [17, 18]. How-
ever, the association of mtDNA copy number and other
cardiometabolic disease (e.g., obesity, hypertension,
hyperlipidaemia, coronary artery disease [CAD], and
heart failure) has not yet been investigated using the MR
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design. Furthermore, the reverse relationship using MR
design is also lacking except for diabetes and CAD.

Here, in the present study, we performed a bidirec-
tional 2-sample MR analysis to assess the bidirectional
causality between mtDNA copy number and risk of car-
diometabolic outcomes, including obesity, hypertension,
hyperlipidaemia, type 2 diabetes mellitus (T2DM), CAD,
stroke, ischemic stroke (IS), and heart failure.

Methods

Overall study design

We performed bidirectional 2-sample MR analyses based
on the latest summary statistics of genome-wide asso-
ciation studies (GWASs) to investigate the associations
between mtDNA copy number and cardiometabolic dis-
ease as well as to test whether cardiometabolic disease
causes a change in the mtDNA copy number. MR uses
single nucleotide polymorphisms (SNPs) as instrumental
variables to test the causal effect of risk factors with an
outcome, which will not be influenced by reverse causa-
tion bias and any confounding factors as SNPs are ran-
domly allocated at meiosis based on Mendel’s laws. Three
assumptions should be met for MR analysis: (1) the SNPs
are associated with the exposure; (2) the SNPs are inde-
pendent from confounders of the exposure-outcome
relation (the independence assumption); and (3) the
SNPs affect the outcome only through the exposure [19].
The study design of the present MR analysis consisted of
8 cardiometabolic outcomes, including obesity, essen-
tial hypertension, hyperlipidemia, T2DM, CAD, stroke,
IS, and heart failure. All the summary data used in the
study are publicly available, and the detailed information
is shown in Table 1.

This study is reported in accordance with the Strength-
ening the Reporting of Observational Studies in Epidemi-
ology Using Mendelian Randomization (STROBE-MR)
reporting guideline [20]. All studies included in the
GWASs and consortia that were used in the present
study had been approved by a relevant review board and
involved participants had given informed consent.

Data sources

mtDNA copy number

GWAS summary statistics for mtDNA copy number
were derived from 395,718 UK Biobank participants
of various ancestries (mostly European). mtDNA copy
number estimates were ascertained using the AutoMitoC
pipeline developed by Chong et al. [21], which represents
the most comprehensive genetic assessment published to
date than previous investigations for mtDNA copy num-
ber [22, 23]. The GWAS adjusted for age, age?, sex, chip
type, 20 genetic principal components, and blood cell
counts (white blood cell, platelet, and neutrophil counts).
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Table 1 Characteristics of the used genome-wide association study in the study
Phenotypes Study/consortium Cases/ controls Adjusted variables PubMed ID
Mitochondrial DNA copy number UK Biobank 395,718 Age, age2, sex, chip type, 20 genetic principal compo- 35023831
nents, and blood cell counts (white blood cell, platelet,
and neutrophil counts)
Mitochondrial DNA copy number CHARGE and UK Biobank 465,809 Age, sex, principal components, DNA collection site, 34859289
in the replication analysis family structure and cell composition
Obesity FinnGen consortium 18,330/324,070  Age, sex, genotyping batch, 10 principal components -
Hypertension FinnGen consortium 08,683/243,756  Age, sex, genotyping batch, 10 principal components -
Dyslipidemia FinnGen consortium 22,460/296,380  Age, sex, genotyping batch, 10 principal components -
T2DM DIAGRAM 74,124/824,006  BMI 30297,969
CAD CARDIOGRAMPLUSC4D  60,801/123,504  Sex, age, and generation (Original or Offspring Cohort) 26343387
Stroke MEGASTROKE 40,585/406,11 Age, sex 29531354
Ischemic stroke MEGASTROKE 34,217/406,11 Age, sex 29531354
Heart failure HERMES 47,309/930,014  Age, sex, and principal components 31919418

BMI body mass index, CAD coronary artery disease, CARDIoGRAMplusC44D Coronary Artery Disease Genome wide Replication and Meta-analysis (CARDIOGRAM)
plus the Coronary Artery Disease (C4D) Genetics consortium, CHARGE Heart and Aging Research in Genomic Epidemiology, DIAGRAM Consortium DIAbetes Genetics
Replication and Meta-analysis Consortium, HERMES the Heart Failure Molecular Epidemiology for Therapeutic Targets Consortium, T2DM type 2 diabetes mellitus

In the validation study, GWAS summary statistics associ-
ated with mtDNA copy number in 465,809 White indi-
viduals from the Cohorts for Heart and Aging Research
in Genomic Epidemiology (CHARGE) consortium and
the UK Biobank (UKB) by Longchamps et al. 2022 was
used [22].

Cardiometabolic diseases

We used summary statistics from the largest available
published GWAS of cardiometabolic disease of interest.
Relevant information on the GWAS summary statistics
is presented in Table 1. GWAS Summary statistics for
obesity (18,330 cases and 324,070 controls), hyperten-
sion (98,683 cases and 243,756 controls), and dyslipidae-
mia (22,460 cases and 296,380 controls) were derived the
FinnGen consortium released in 2021 (https://r8.finngen.
fi/). In terms of T2DM, we used the genome-wide data
from a meta-analysis conducted by the DIAbetes Genet-
ics Replication And Meta-analysis (DIAGRAM) consor-
tium, which included 74,124 T2DM cases and 824,006
controls from 32 European-ancestry studies [24]. We
extracted the GWAS summary statistics of CAD from the
Coronary Artery Disease Genome-wide Replication and
Meta-analysis Plus the Coronary Artery Disease Genet-
ics (CARDIoGRAMplusC4D) (http://www.cardiogram
plusc4d.org/data-downloads/), which is a meta-analysis
of 48 studies with 60,801 CAD cases and 123,504 con-
trols of European (77%), South Asian (13%), East Asian
(6%), and Hispanic and African Americans ancestry (4%)
[25]. The diagnosis of CAD included myocardial infarc-
tion, acute coronary syndrome, chronic stable angina, or
coronary artery stenosis of at least 50%. For the summary
statistics of stroke and IS, we used a recent large-scale

meta-analysis of GWAS (MEGASTROKE) confined to
European populations which included 446,696 individu-
als of European ancestry (406,111 noncases and 40,585
cases of any stroke); the number of IS cases were 34,217
overall [26]. Summary statistics for heart failure were
obtained from 25 meta-analysis of 26 European-ancestry
GWASs with 47,309 heart failure cases and 930,014 con-
trols by Shah et al. [27].

Definition of cardiometabolic diseases

Obesity (E66), hypertension (I10 to 113, 115, 1674), and
dyslipidaemia (E780) were defined according to the ICD-
10 (https://www.finngen.fi/en/researchers/clinical-endpo
ints). T2DM in the selected GWAS was defined by diag-
nostic fasting glucose, casual glucose, 2 h plasma glucose
or HbA1c levels; use of glucose-lowering medication (by
Anatomical Therapeutic Chemical code or self-report);
or T2DM history from medical records or self-report
[24]. CAD was defined by an inclusive CAD diagnosis
including myocardial infarction (MI), acute coronary
syndrome, chronic stable angina, or coronary steno-
sis>50% [25]. Stroke was defined by rapidly developing
signs of focal (or global) disturbance of cerebral function,
lasting>24 h or leading to death due to vascular origin
without apparent other causes according to the World
Health Organization. IS was defined based on clinical
and imaging criteria [26]. The study-specific stroke and
IS ascertainment are described in the published study
[26]. HF cases were defined as those with a clinical diag-
nosis of HF of any actinology with no inclusion criteria
based on left ventricular ejection function [27]. Defini-
tions of HF status within each study in the meta-analysis
were described in detail in the study [27].
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Instruments selection

Strict selection criteria were used to select qualified
instrumental variables. We included all SNPs at the
genome-wide significance level (P<5x107%) and pruned
all SNPs with the stringent pairwise linkage disequili-
brum (LD) *<0.001 and clumping distance > 10,000 kb.
We then applied the PhenoScanner V2 [28] (http://
www.phenoscanner.medschl.cam.ac.uk/phenoscann
er, accessed on 31 May 2023) to evaluate whether the
genetic instruments were associated with other phe-
notypes. Steiger filtering was used to remove SNPs that
were correlated with outcomes stronger than expo-
sures [29]. Instrumental strength for the SNP-exposure
association was measured by averaging SNP-specific
F-statistics which was calculated by the square of the
beta divided by the variance for the SNP—exposure asso-
ciation. A weak instrumental variable was defined as an
F-statistic less than 10, and all weak instrumental vari-
ables were excluded [30].

Statistical analyses

A generalized inverse variance-weighted (IVW) approach
MR (IVW MR) under a multiplicative random-effects
model was applied as the principal analysis. Cochrane’s
Q was used to assess the heterogeneity of estimates of
SNPs, and a P<0.05 was considered significant in the test
for heterogeneity. The weighted median [31], MR-Egger
[32], Mendelian Randomization Pleiotropy RESidual
Sum and Outlier (MR-PRESSO) [33] were used in the
sensitivity analyses to examine the consistency of asso-
ciations and detect and correct for horizontal pleiotropy.
The weighted median method was used to check inva-
lid instrument bias. This method provides a consistent
estimate if over 50% of the weight in the meta-analysis
has been derived from valid SNPs. MR-Egger was used
to identify potential directional pleiotropy. The P-value
for intercept in MR-Egger analysis was used to assess
the horizontal pleiotropy (P<0.05). MR-PRESSO analy-
sis was conducted to discern and correct for the poten-
tial horizontal pleiotropic outliers. The leave-one-out
method was implemented by sequentially excluding each
SNP to determine whether the estimates were driven by
any single SNP.

Results were reported as odds ratio (OR) with corre-
sponding 95% ClIs or B (SE). The statistical analyses were
performed with R packages MendelianRandomization,
MRPRESSO, TwoSampleMR package using the statisti-
cal software R (version 4.1.2; R Foundation for Statistical
Computing). To account for the high number of com-
parisons being made between mtDNA copy number and
cardiometabolic disease (and vice versa) (n=16 tests),
we used a Bonferroni adjustment to all P-value thresh-
olds, with the threshold of statistical significance of 0.003
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(0.05/16). P<0.05 but not reaching the Bonferroni cor-
rected significance threshold was suggestive of evidence
for a potential causal association.

Results
The flowchart of the bi-directional MR analysis is shown
in Fig. 1.

Association of genetically predicted mtDNA copy number
with cardiometabolic disease

A total of 6694 SNPs associated with mtDNA copy num-
ber at genome-wide significance (P<5x107%) were
obtained. After further dropping 6628 SNPs due to link-
age disequilibrium reference panel or high linkage dis-
equilibrium (+*>0.001), 66 remained in the main analysis.
The F statistics for the associations of genetic instruments
with mtDNA copy number was 93.31 (range from 29.54 to
473.58). After removing rs4841132 associated with fasting
blood glucose and insulin, rs7896518 associated with BMI,
rs6511720 associated with low-density lipoprotein and
CAD, rs8176645 associated with lipids profile, 62 SNPs
for mtDNA copy number were contained in the associa-
tion between mtDNA copy number and cardiometabolic
disease (Additional file 1: Table S1). The SNPs explained
29.8% of the variance in the mtDNA copy number.

Genetically predicted mtDNA copy number was not
associated with obesity (OR=0.859, 95% CI 0.699-
1.055; P=0.148), hypertension (OR=0.941, 95% CI
0.782-1.131; P=0.515), dyslipidemia (OR=0.968, 95%
CI 0.828-1.132; P=0.684), T2DM (OR=0.962; 95% CI
0.822-1.127; P=0.631), CAD (OR=0.901; 95% CI 0.768—
1.056; P=0.199), stroke (OR=0.917, 95% CI 0.775-1.086;
P=0.314), ischemic stroke (OR=0.962, 95% CI 0.822—
1.127; P=0.631), and heart failure (OR=1.021; 95% CI
0.917-1.135; P=0.708) using the primary IVW analy-
sis. Scatter plot for the forward analyses and the plots of
“leave-one-out” analyses for each SNP-cardiometabolic
disease association are summarized in the Fig. 2 and
Additional file 1: Fig. S1, respectively.

Sensitivity analyses using a weighted median, MR-
Egger, and MR-PRESSO showed similar null findings,
with exception that the causal association of mtDNA
copy number with obesity approached statistical signifi-
cance in the MR-PRESSO (OR=0.790, 95% CI 0.644—
0.969; P=0.028) after removing 1 outlier SNP. There was
no indication of possible horizontal pleiotropy from the
MR-Egger intercept for all outcomes (Table 2). There was
statistical evidence of pleiotropy for obesity (P<0.001),
T2DM (P=0.001), CAD (P<0.001), stroke (P<0.001),
ischemic stroke (P=0.001), and heart failure (p=0.001),
and no indication of pleiotropy for hypertension and
dyslipidemia, with an I* ranging from 22.86 to 69.09%
(Table 2).
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Forward MR analysis Reverse MR analysis

Selection of genetic instruments

Selection of genetic instruments
GWAS summary statistics for
mitochondrial DNA copy number from cardiometabolic disease:
395,718 UK Biobank participants (62 Obesity (25 SNPs)
SNPs) Hypertension (34 SNPs)
Dyslipidaemia (27 SNPs)
T2DM (149 SNPs)
Coronary artery disease (41 SNPs)
Outcome Stroke (12 SNPs)
GWAS summary statistics for Ischemic stroke (19 SNPs)
cardiometabolic disease: Heart failure (12 SNPs)
Obesity
Hypertension
Dyslipidaemia
T2DM Outcome
Coronary artery disease
Stroke

Ischemic stroke
Heart failure 395,718 UK Biobank participants

$

Two-sample Mendelian randomization analyses
Primary analyses: Inverse Variance Weighted analysis
Sensitivity analyses: Weighted-Median, MR-Egger, MR-PRESSO analyses
Replication analyses: a GWAS associated with mtDNA copy number by Longchamps RJ 2022

GWAS summary statistics for

GWAS summary statistics for
mitochondrial DNA copy number from

Fig. 1 Overview of study design of the bidirectional Mendelian randomization framework used to investigate the causal effect of mitochondrial
DNA copy number on cardiometabolic disease. We performed a total of 16 MR analyses to investigate the bidirectional association

between mitochondrial DNA copy number on cardiometabolic disease including obesity, hypertension, dyslipidemia, type 2 diabetes mellitus,
coronary artery disease, stroke, ischaemic stroke, and heart failure. All genetic instruments were single nucleotide polymorphisms (SNPs). T2DM,
type 2 diabetes mellitus
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Detailed information on the SNPs of Longchamps’s
GWAS is presented in Additional file 1: Table S3. The
non-significant associations were confirmed by the valida-
tion sample based on 133 SNPs for mtDNA copy number
from the summary statistics (Additional file 1: Table S4),
except that the association between mtDNA copy num-
ber and CAD (OR=0.842, 95% CI 0.713-0.994, P=0.042)
reached at a nominal P value (P<0.05) but not at Bonfer-
roni-corrected significance (P<0.003) in the IVW analy-
sis. Scatter plot for the forward replication analyses and
the plots of “leave-one-out” analyses for each SNP-car-
diometabolic disease association are summarized in the
Additional file 1: Fig S3 and S4, respectively.

Association of genetically predicted cardiometabolic
disease with mtDNA copy number

In the reverse MR analyses of the association between
cardiometabolic disease and mtDNA copy number, we
included 25 SNPs for obesity, 34 SNPs for hypertension,
27 SNPs for dyslipidemia, 149 SNPs for T2DM, 41 SNPs
for CAD, 12 SNPs for stroke, 19 SNPs for ischemic stroke,
and 12 SNPs for HE. Variance explained by the SNPs for
cardiometabolic disease ranged from 2.5 to 46.6%. The
genetic variants used as instrumental variables for the
cardiometabolic disease in the reverse MR analyses are
presented in Additional file 1: Table S2.

There was no strong evidence for associations of obe-
sity, hypertension, T2DM, stroke, IS, heart failure, or
ischemic stroke with mtDNA copy number, whereas
the causal association of dyslipidemia (f=-0.060,
95% CI —0.044 to —0.076; P=2.416e—14) and CAD
(beta = —0.021; 95% CI = —0.003 to —0.039; P=0.025)
with mtDNA copy number showed suggestive statisti-
cal significance (Table 3). No horizontal pleiotropy was
observed for all cardiometabolic outcomes. The results
in sensitivity analyses showed similar findings (Table 3).
Scatter plot for the reverse analyses and the plots of
“leave-one-out” analyses for each SNP of cardiometa-
bolic disease association on mtDNA copy number were
summarized in Fig. 3 and Additional file 1: Fig. S2. The
replication analyses by using Longchamps’s GWAS for
the reverse association were not performed, due to not
enough number of harmonized data.

Discussion

To our knowledge, this is the first study to use bidi-
rectional two-sample MR to comprehensively investi-
gate the association of genetic predictors determined
mtDNA copy number and cardiometabolic disease.
The study did not find any causal association between
genetic predicted mtDNA copy number and any car-
diometabolic disease including obesity, essential hyper-
tension, hyperlipidemia, T2DM, CAD, stroke, IS, and
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heart failure. A suggestive effect of dyslipidemia and
CAD was found on mtDNA copy number; however,
there was no evidence supporting causal relationships
between other cardiometabolic disease and mtDNA
copy number.

Previous observational studies have explored the rela-
tionship of mtDNA copy number and obesity [12], hyper-
tension [11], hyperlipidemia [15], T2DM [13, 14], CAD
[7-9], stroke [7, 18], and heart failure [10]. Of these stud-
ies, very few studies have focused on the associations of
mtDNA copy number with obesity, hypertension, hyper-
lipidemia, CAD, and heart failure, and controversial find-
ings have been shown for T2DM, CAD, and stroke. For
T2DM, conflicting results were reported by observational
studies, with some studies showing a negative association
[17] and others showing a non-significant association
[14]. No association was also indicated between mtDNA
copy number and CAD [7], although the Atherosclerosis
Risk in Communities (ARIC) study involved 15,792 indi-
viduals and the Cardiovascular Health Study (CHS) study
involved 5201 participants older than 65 years showed
significant association for CAD [7]. One cohort study was
conducted in the American population, which included a
total of 21,870 participants with a mean follow-up of 13.5
years, found that reduced mtDNA copy number signifi-
cantly increased the risk of stroke (Hazard Ratio=1.11,
95% CI=1.06-1.16) [7]. In another cohort study in the
Swedish population including 3,062 middle-aged women
with mean follow-up of 17 years, mtDNA copy number
was not found to be significantly associated with stroke
risk (HR=1.26, 95% CI 0.87-1.84) [8]. As far as we know,
the current study comprehensively estimated the bidirec-
tional causal association of mtDNA copy number and a
series of cardiometabolic disease using the MR design for
the first time except for T2DM and ischemic stroke. A bi-
directional MR analysis by Wang et al. [17] found no evi-
dence for causal associations between blood mtDNA-CN
and T2DM, and blood mtDNA-CN and BMI in either
direction, which was consistent with our findings. Mean-
while, similar to our finding, the study by Leon G. Mar-
tens et al. [34] did not find the causal relation between
mtDNA abundance and ischemic stroke. Recent studies
showed that mtDNA-CN could be a marker of stroke
prognosis [18, 35] and MR study also showed the sig-
nificant association between genetically determined
mtDNA-CN and poststroke prognosis [18], which sug-
gests that mtDNA-CN may be a biomarker of stroke
prognosis but not the early predictor of stroke develop-
ment. Furthermore, we first use MR analysis to explore
the relation between mtDNA copy number and other
cardiometabolic disease including obesity, hypertension,
hyperlipidemia, CAD, and heart failure, while our study
did not find any associations.
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This study is the first to investigate the reverse direction
of mtDNA copy number and cardiometabolic disease.
It is mechanically reasonable that the presence of car-
diometabolic disease involved oxidative stress [36] and
inflammation [37], which may further affect the mtDNA
copy number [38]. In the present study, we found the sig-
nificant association of genetically predicted dyslipidemia
and CAD with decreased levels of mtDNA copy number;
however, significant heterogeneity was found and insig-
nificant association was found in the sensitivity analysis
for CAD. The finding suggests the potential causal effect
of dyslipidemia on mtDNA copy number. Case-control
studies and cross-sectional studies also showed the alter-
ation of mtDNA copy number in patients with hyperlipi-
demia [15, 39].

Our study had several strengths. Firstly, our study
adopted the two-sample MR analyses leveraging SNPs
as instrumental variables to assess the causality for the
associations between mtDNA copy number and cardio-
metabolic diseases, which has the advantage of being less
vulnerable to residual confounders and reverse causation
because of the random allocation of alleles during the
formation of the zygote. Secondly, in addition to confirm-
ing the association of mtDNA copy number and the risk
of cardiometabolic diseases, this is the first systematical
MR study to evaluate the effect of cardiometabolic dis-
eases on mtDNA copy number. Finally, we performed
MR analyses based on large-scale GWAS datasets, which
enabled us to provide a valid appraisal of the causality
for the associations between mtDNA copy number and
cardiometabolic diseases with a high statistical power. A
better understanding of the role of mtDNA copy number
in cardiometabolic diseases not only facilitates a clearer
perception of the underlying pathophysiology of cardio-
metabolic diseases, but also helps to capture the potential
biomarker.

However, our study also suffered from several limi-
tations. First, our study was mainly based on Europe-
ans, which reduced the generalizability to populations
of non-European ancestry. Further studies in different
ethnic populations are needed to confirm our findings.
Second, the phenotypic variance of mtDNA copy num-
ber as explained by the genetic instruments was small,
which may lead to the limited statistical power for the
estimation of the association. Third, given that sleep
pattern is a complex physiological process involving
multiple host and environmental factors, sleep pheno-
types may influence the risk of cardiometabolic diseases
through these factors. Further studies are warranted
to investigate the underlying mechanism, although the
MR-Egger regression indicated that there was little direc-
tional pleiotropy in this MR study. Fourth, although
sensitivity analyses did not show significant evidence of
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heterogeneity, directional pleiotropy, or outlying effects,
bias due to pleiotropy or index event bias cannot be
avoided.

In conclusion, our study suggests that dyslipidemia
and CAD may causally affect mtDNA copy number, but
a causal relationship of mtDNA copy number and cardio-
metabolic disease remains uncertain. More studies are
required to better understand the relationship between
mtDNA copy number and cardiometabolic diseases.

Abbreviations
ARIC Atherosclerosis Risk in Communities
CAD Coronary artery disease

CARDIOGRAMplusC4D  The Coronary Artery Disease Genome-wide Replica-
tion and Meta-analysis Plus the Coronary Artery Dis-
ease Genetics

CHARGE The Cohorts for Heart and Aging Research in

Genomic Epidemiology
CHS Cardiovascular Health Study

DIAGRAM Diabetes Genetics Replication and Meta-analysis

GWAS Genome-wide association study

IS Ischemic stroke

VW Inverse variance weighting

LD Linkage disequilibrum

mtDNA Mitochondrial DNA

MR Mendelian randomization

MR-PRESSO Mendelian Randomization Pleiotropy RESidual Sum
and Outlier

M Myocardial infarction

OR Odds ratio

SNPs Single nucleotide polymorphisms

STROBE-MR Strengthening the Reporting of Observational
Studies in  Epidemiology  Using Mendelian
Randomization

T2DM Type 2 diabetes

UKB The UK Biobank

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/512933-023-02074-1.

Additional file 1: Table S1. Genetic variants used as instrumental vari-
ables for mitochondrial DNA copy number. Table S2. Genetic variants
used as instrumental variables for the cardiometabolic disease in the
reverse MR analyses. Table S3. Genetic variants used as instrumental
variables for mitochondrial DNA copy number by Longchamps RJ et al.
Table S4. Replication analyses for the MR analyses on the forward associa-
tions of mitochondrial DNA copy number with cardiometabolic diseases
using GWAS summary data of mitochondrial DNA copy number by Long-
champs RJ et al. Figure S1. The forward MR analyses: Plots of“leave-one-
out”analyses for MR analyses of the causal effect of mtDNA copy number
with the risk of cardiometabolic disease. (A) Obesity, (B) hypertension, (C)
dyslipidemia, (D) T2DM, (E) CAD, (F) Stroke, (G) Ischemic stroke, (H) Heart
failure. The horizontal lines in the figure represents beta value and its 95%
confidence interval [Cl] of causal inference, which indicates the genetic
effect of the SNP on cardiometabolic disease. Figure S2. The reverse

MR analyses: Casual effect of cardiometabolic disease on mtDNA copy
number. Plots of “leave-one-out”analyses for MR analyses. (A) Obesity, (B)
hypertension, (C) dyslipidemia, (D) T2DM, (E) CAD, (F) Stroke, (G) Ischemic
stroke, (H) Heart failure. The horizontal lines in the figure represents beta
value and its 95% confidence interval [CI] of causal inference, which
indicates the genetic effect of the SNP on cardiometabolic disease. Figure
S3. The forward MR analyses (validation analysis using mtDNA copy
number by Longchamps): Scatter plot of the association between mtDNA



https://doi.org/10.1186/s12933-023-02074-1
https://doi.org/10.1186/s12933-023-02074-1

Qin et al. Cardiovascular Diabetology (2024) 23:45

copy number and cardiometabolic disease. (A) Obesity, (B) hypertension,
(C) dyslipidemia, (D) T2DM, (E) CAD, (F) Stroke, (G) Ischemic stroke, (H)
Heart failure. The four methods applied in the current manuscript were

all depicted. Lines in black, red, green, and blue represent IVW, MR-Egger,
weighted median, and weight mode methods. Figure S4. The forward MR
analyses (validation analysis using mtDNA copy number by Longchamps).
Plots of “leave-one-out” analyses for MR analyses. (A) Obesity, (B) hyperten-
sion, (C) dyslipidemia, (D) T2DM, (E) CAD, (F) Stroke, (G) Ischemic stroke, (H)
Heart failure. The horizontal lines in the figure represents beta value and
its 95% confidence interval [Cl] of causal inference, which indicates the
genetic effect of the SNP on cardiometabolic disease.
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