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Abstract 

Background The risk of cardiovascular disease (CVD) depended on the magnitude and exposure duration of insulin 
resistance (IR). This study aimed to investigate the associations of cumulative metabolic score for IR (cumMETS-IR) 
with incident CVD, and to further explore the modulated effects of time course of METS-IR accumulation.

Methods We enrolled 47,270 participants without CVD and underwent three examinations during 2006–2010 
from the Kailuan study. CumMETS-IR from 2006 to 2010 were calculated as the mean values of METS-IR between con-
secutive examinations multiplying by time intervals between visits. Time course of METS-IR accumulation was cal-
culated as the slope of METS-IR versus time. Hazard ratios (HRs) and 95% confidence intervals (CIs) for CVD risk were 
calculated with multivariable-adjusted Cox regressions.

Results During a median follow-up of 10.99 years, we identified 3184 cases of incident CVD. The risk of incident CVD 
increased with increasing cumMETS-IR (HR, 1.77; 95% CI 1.58–1.98 for the Q4 versus Q1 group), exposure duration (HR, 
1.60; 95% CI 1.45–1.77 for 6 years versus 0 years), and cumulative burden (HR, 1.49; 95% CI 1.37–1.61 for burden ≥ 0 
versus < 0). A positive slope was associated with 14% higher risk of CVD (HR, 1.14; 95% CI 1.07–1.22). When combining 
cumMETS-IR and slope, those with cumMETS-IR ≥ median (142.78) and slope ≥ 0 had the highest risk of CVD (HR,1.38; 
95% CI 1.25–1.53).

Conclusions The risk of CVD increased with elevated cumMETS-IR and an increasing trend over time, emphasizing 
the importance of maintaining optimal METS-IR levels across life span.
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Introduction
Insulin resistance (IR), which refers to the diminished 
or impaired insulin sensitivity of target organs or tis-
sues shown as impairments in absorbing and oxidizing 
the glucose [1, 2], has been confirmed as an impor-
tant predisposing factor in many chronic diseases 
[3–6]. Although the gold-standard method for assess-
ing IR was the hyperinsulinemic-euglycemic clamp, it 
may be a great challenge for daily clinical application 
of this index due to the complex, time-consuming, 
and resource-consuming shortcomings [7]. Recently, 
several alternative non-insulin-based measures of IR 
combined simple routine biochemical indicators, such 
as the ratio of triglyceride to high-density lipoprotein 
cholesterol (TG/HDL) and triglyceride glucose index 
(TyG), have been developed [8, 9]. Whereas, these 
indices ignore the role of nutritional status in insu-
lin sensitivity. Giving the limitations, the metabolic 
score for insulin resistance (METS-IR) index has been 
emerged as another alternative measure of IR, which 
represented nutritional status and showed a higher 
concordance with the gold-standard in assessing IR. 
Additionally, the METS-IR has been reported to have 
better diagnostic efficacy than the TG/HDL and TyG 
index  [10].

Considering the practicality of its measurements 
and the pathophysiological correlations with compo-
nents of metabolic syndrome and IR, a predictive role 
of METS-IR has also been highlighted in endothelial 
dysfunction and inflammatory [11, 12]. Moreover, 
accumulative evidence suggested that METS-IR was 
related to cardiometabolic disorders and cardiovascu-
lar diseases (CVDs) [13–18]. Nevertheless, an inherent 
limitation of these previous studies is that the METS-
IR was evaluated at a single time point. To our knowl-
edge, the components of the METS-IR were affected 
by many biological and environmental factors, a sin-
gle measurement of a high METS-IR does not indicate 
that the body state has experienced a high METS-IR 
for a long time, which may lead to misclassification of 
risk assessment of CVD. Capturing both the exposure 
intensity and the duration, and incorporating cumula-
tive exposure and the time course of the accumulation 
may provide additional information for the risk assess-
ment of CVD.

Therefore, based on a large cohort study, we aimed 
to quantify the association of (1) cumulative METS-
IR (cumMETS-IR); (2) exposure duration of high 
METS-IR; (3) cumulative burden of METS-IR with the 
risk of CVD, and further to assess whether the asso-
ciations were modulated by time course of METS-IR 
accumulation.

Methods
Study population
The participants were recruited from the Kailuan study, 
which was an ongoing prospective cohort study con-
ducted in Tangshan, China. Details of the study design 
and procedure have been described previously [19–21]. 
From June 2006 to October 2007, a total of 101,510 par-
ticipants aged 18–98 years were enrolled in the baseline 
survey. They underwent questionnaire assessments, 
physical examinations, laboratory tests, and then were 
followed up biennially until 31 December 2021. In the 
present study, cumMETS-IR was developed during 
2006–2010 to predict incident CVD risk from 2010 to 
2021 (Fig. 1A). We excluded participants with less than 
three physical examinations, with missing data on com-
ponents of METS-IR, and a history of CVD or who died 
in or prior to 2010. Terminally, a total of 47,270 partici-
pants were enrolled (Fig. 1B). The study was performed 
according to the guidelines of the Declaration of Hel-
sinki and was approved by the Ethics Committee of 
Kailuan General Hospital (approval number: 2006–05). 
All participants provided written informed consent.

Data collection
Information on demographic characteristics, lifestyle, 
and medical history was collected though face-to-face 
interview via a standard questionnaire. Height, weight, 
and blood pressure were measured by professionally 
trained doctors. Body mass index (BMI) was calculated 
as weight divided by height squared (kg/m2). Fasting 
blood samples were collected in the morning after an 
8- to 12 h overnight fast. All the.

plasma samples were assessed using an auto-analyzer 
(Hitachi 747, Tokyo, Japan) at the central laboratory 
of Kailuan Hospital, including fasting blood glucose 
(FBG), lipid profiles (total cholesterol, triglyceride 
[TG], low-density lipoprotein cholesterol, and high-
density lipoprotein cholesterol [HDL-C]), serum creati-
nine, and high sensitivity C reactive protein (hs-CRP). 
Estimated glomerular filtration rate (eGFR) was calcu-
lated using Chronic Kidney Disease Epidemiology Col-
laboration creatinine Eq. 22

Cumulative METS‑IR and its time course
The equation for METS-IR calculation was as follows 
[10]:

CumMETS-IR was defined as the summed average 
METS-IR for each pair of consecutive examinations 

METS− IR = (Ln(2*FBG + TG) * BMI
/

(Ln (HDL - C)
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multiplied by the time between these two consecutive 
visits in years:

Where METS-IR 2006, METS-IR 2008, METS-IR 2010 
indicated METS-IR at baseline, the second examinations 
(2008), and the third examination (2010),  time2006-2008 
and  time2008-2010 indicated the participant-specific time 
interval between consecutive examinations in years 
(Fig. 1C). High METS-IR exposure duration was defined 
as the times of visits with a high METS-IR (over the cutoff 
mentioned in the Statistical analysis) among the 3 visits, 
quantified as 0 year, 2 years, 4 years, and 6 years. Cumu-
lative burden of METS-IR was calculated as [(METS-IR 
2006 + METS-IR 2008)/2–cutoff] ×  time2006-2008 + [(METS-
IR 2008 + METS-IR 2010)/2-cutoff] ×  time2008-2010. If the 
values of cumulative burden were less than 0, this value 
would be considered as 0.

Time course of cumMETS-IR accumulation was calcu-
lated as a slope of METS-IR over time from 2006 to 2010 
using the linear regression and the least-squares princi-
ple, where METS-IR was taken as the dependent variable, 
and time from 2006 to 2010 as the independent variable, 
with a positive or negative slope indicating an increase or 

cumMETS− IR = [(METS− IR2006 +METS− IR2008)
/

2×time2006−2008]

+ [(METS− IR2008 +METS− IR2010)
/

2 × time2008−2010]

decrease in METS-IR over time (Fig.  1C). Change pat-
terns of METS-IR at the three time points were classified 

into decrease-decrease, decrease-increase, increase–
decrease, and increase-increase.

Assessment of outcomes
Participants were followed up via face-to-face interviews 
at every 2 year routine medical examination until event 
of interest, death, or the end of the follow-up (December 
31, 2021). The primary outcome in the study was incident 
CVD, including incident stroke and myocardial infarc-
tion (MI). We used ICD-10th revision codes to identify 
CVD cases (I21 for MI, I60 to I61, and I63 for stroke). All 
participants were linked to the Municipal Social Insur-
ance Institution and the Hospital Discharge Register for 
incidence of CVD, which cover all of the Kailuan study 
participants and updated annually during the follow-up 
period. To further identify potential CVD events, we 
reviewed the discharge lists from the 11 hospitals during 
2006–2021 and asked for a history of CVD via a ques-
tionnaire during the biennial interview. For all suspected 
CVD events, 3 experienced physician adjudicators who 

Fig. 1 Design of the study A. Time line of the study B. The flowchart of the study C. Illustration of cumulative and time course of METS-IR over time 
BMI body mass index, FBG fasting blood glucose, HDL-C high density lipoprotein cholesterol, METS-IR metabolic score of insulin resistance, TG 
triglyceride
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were blinded to the study design reviewed the medical 
records. The diagnosis of incident stroke was confirmed 
by medical review, using the World Health Organization 
criteria [23]. MI was diagnosed according to the criteria 
of the World Health Organization based on the clinical 
symptoms, changes in the serum concentrations of car-
diac enzymes and biomarkers, and electrocardiographic 
results [24].

Statistical analysis
Participants were classified according to quartiles of 
cumMETS-IR, METS-IR slope (positive or negative), or 
the combination of median cumMETS-IR with slope, 
respectively. The optimal cutoff point for METS-IR asso-
ciated with incident CVD was determined using an out-
come-oriented method to maximized log-rank statistics 
[25].

Baseline characteristics were compared using student t 
test, analysis of variance, Wilcoxon, or the Kruskal–Wal-
lis test according to distribution, and categorical vari-
ables were compared with chi-square test. Kaplan–Meier 
curves were used to estimate the cumulative incidence of 
CVD and the differences in curves were compared with 
the log-rank test.

Multivariable-adjusted Cox proportional hazard 
regressions were used to estimate the hazard ratios 
(HRs) and 95% confidence intervals (CIs) for the risk of 
incident CVD. Three models were constricted progres-
sively. Model 1 was adjusted for age and sex; model 2 was 
further adjusted for education, income, smoking status, 
drinking status, and physical activity; and model 3 was 
further adjusted for history of hypertension, diabetes, 
dyslipidemia, total cholesterol, eGFR, and hs-CRP. The 
proportional hazards assumption was satisfied by check-
ing the Schoenfeld residual plots. Restricted cubic splines 
adjusted for variables in model 3 were performed to cap-
ture the dose–response relationships of cumMETS-IR 
and METS-IR slope with the risk of CVD, with 4 knots 
at the 5th, 35th, 65th, and 95th percentiles of the distri-
bution according to Bayesian information criterion and 
Akaike information criterion.

Several sensitivity analyses were performed to validate 
the robustness of the results. First, the competing risk 
model was performed by considering non-CVD death 
as a competing risk. Second, to minimize the poten-
tial impact of reverse causality, we repeated the pri-
mary analysis using a 1 year lagged period by excluding 
participants who developed CVD cases within the first 
1  years of follow-up. Third, restricted analysis was per-
formed by excluding participants with abnormal BMI 
(≥ 24 kg/m2), FBG (≥ 126 mg/dL), TG (≥ 150 mg/dL), and 
HDL-C (< 38.66 mg/dL). Additionally, subgroup analyses 

stratified by age (< 60 years vs ≥ 60 years), sex (women vs 
men), BMI (< 24  kg/m2 vs ≥ 24  kg/m2), FBG (< 126  mg/
dL vs ≥ 126  mg/dL), TG (< 150  mg/dL vs ≥ 150  mg/dL), 
and HDL-C (< 38.66 mg/dL vs ≥ 38.66 mg/dL) were per-
formed, interaction between subgroups were tested using 
likelihood ratio tests, in which models with and without 
multiplicative interaction terms were compared.

All analyses were performed using SAS version 9.4 
(SAS Institute, Cary, NC, USA). All the statistical tests 
were 2-sided, and P < 0.05 was considered statistical 
significance.

Results
Baseline characteristics
A comparison in baseline characteristics between 
excluded and included participants is presented in 
Additional file  1: Table  S1. The mean age of the 47,270 
enrolled participants was 48.87 ± 11.77 years, and 36,376 
(76.95%) were men. Baseline characteristics according to 
quartiles of cumMETS-IR are presented in Table 1. Com-
pared with participants in the Q1 group, those with a 
higher level of cumMETS-IR were more likely to be older, 
men, less-educated, have a higher prevalence of hyper-
tension, dyslipidemia, more likely to take antihyperten-
sive agents, antidiabetic agents, lipid-lowering agents, 
and have a higher level of BMI, blood pressure, lipid pro-
files, hs-CRP and a lower level of eGFR.

Cumulative exposure of METS‑IR and incident CVD
During a median follow-up of 10.99  years (interquartile 
range, 10.52–11.32 years), a total of 3,184 cases (6.74%) of 
incident CVD occurred, including 2,614 cases (5.53%) of 
stroke and 626 cases (1.32%) of MI. The incidence rate of 
CVD increased substantially with increasing cumMETS-
IR, ranging from 3.91 (95% CI 3.58–4.27) per 1000 per-
son-years in the Q1 group to 9.30 (95% CI 8.77–9.87) 
per 1000 person-years in the Q4 group, which was also 
illustrated in Additional file  1: Figure S1 by Kaplan–
Meier curves (log-rank P < 0.0001). This trend remained 
significant even after adjustment for potential variables, 
the HR for the risk of incident CVD was 1.38 (95% CI 
1.23–1.54), 1.44 (95% CI 1.29–1.61), and 1.77 (95% CI 
1.58–1.98) for the Q2, Q3, and Q4 versus the Q1 group 
of cumMETS-IR (Table 2). Moreover, there was a linear 
relationship between cumMETS-IR and the risk of CVD, 
per 1 standard deviation increase in cumMETS-IR was 
associated with an 8% higher risk of CVD (HR, 1.08; 95% 
CI 1.06–1.10).

Using an outcome-oriented method to maximize log-
rank statistics, the optimal cutoff point of mean METS-
IR associated with CVD was ≥ 33.61 (Fig.  2). With this 
cutoff, the risk of incident CVD increased when the 
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exposure duration of high METS and cumulative bur-
den increased. Participants with the longest exposure 
duration of high METS had a 60% higher risk of CVD 
(adjusted HR, 1.60; 95% CI 1.45–1.77; Table 2 and Fig. 2), 
and those with cumulative burden over 0 had a 49% 
higher risk of CVD (HR, 1.49; 95% CI 1.37–1.61; Table 2), 
compared with their counterparts. The significant asso-
ciations persisted for incident stroke and MI (Additional 
file 1: Tables S2, S3; Figures S2, S3).

Time course of METS‑IR accumulation and incident CVD
Associations of the time course of METS-IR accumula-
tion with the risk of incident CVD were presented in 
Table 3. The risk of incident CVD increased with increas-
ing slope of METS-IR (Fig. 3). Participants with a positive 
slope of METS-IR time course had a 14% higher risk of 
CVD than those with a negative slope (adjusted HR, 1.14; 
95% CI 1.07–1.22). When considering different change 
patterns, decrease-increase (HR, 1.11; 95% CI 1.00–1.24) 

and increase-increase (HR, 1.23; 95% CI 1.09–1.38) pat-
terns were associated with higher risk of CVD. When 
combining cumMETS-IR and slope, participants with 
CumMETS-IR ≥ median, slope ≥ 0 conferred the high-
est risk of CVD (HR, 1.38; 95% CI 1.24–1.53). The results 
were also observed for stroke and MI (Additional file 1: 
Tables S4, S5, Figures S2, S3).

Additional analyses
Sensitivity analysis with competing risk, excluding inci-
dent CVD within 1  year, and restricting participants 
with normal BMI, FBG, TG, and HDL-C yielded simi-
lar results (Additional file  1: Tables S6, S7). Subgroup 
analyses showed that the associations of cumMETS-IR 
and time course of METS-IR accumulation with the risk 
of incident CVD were consistent across the subgroups. 
There was no significant interaction between cumMETS-
IR and time course of METS-IR accumulation and the 
stratified variables (P > 0.05 for interaction; Additional 
file 1: Tables S8, S9).

Table 1 Baseline characteristic of the participants according to quartiles of cumulative METS-IR

eGFR estimated glomerular filtration rate, LDL low density lipoprotein, HDL high density lipoprotein, hs-CRP high-sensitivity C-reactive protein, METS-IR metabolic 
score for insulin resistance

Characteristics Overall Cumulative METS‑IR P value

Q1 (< 124.84) Q2 (124.84–142.78) Q3 (142.79–163.56) Q4 (≥ 163.57)

No. of participants 47,270 11,817 11,818 11,818 11,817

Age, years 48.87 ± 11.77 45.74 ± 11.58 48.31 ± 11.37 49.84 ± 11.65 51.58 ± 11.71  < 0.0001

Men, n (%) 36,376 (77.00) 8307 (70.30) 9256 (78.32) 9430 (79.79) 9383 (79.40)  < 0.0001

High school or above, n (%) 3461 (7.60) 1035 (9.04) 753 (6.60) 823 (7.24) 850 (7.49)  < 0.0001

Income ≥ 800yuan/month, n (%) 6730 (14.80) 1543 (13.49) 1574 (13.82) 1720 (15.15) 1893 (16.68)  < 0.0001

Current smoker, n (%) 15,767 (34.30) 3979 (34.50) 3948 (34.37) 3999 (34.90) 3841 (33.58) 0.1961

Current alcohol, n (%) 18,113 (39.40) 4423 (38.35) 4484 (39.03) 4610 (40.23) 4596 (40.13) 0.0082

Active physical activity, n (%) 6281 (13.30) 1112 (9.41) 1374 (11.63) 1656 (14.01) 2139 (18.10)  < 0.0001

Hypertension, n (%) 18,454 (39.00) 2917 (24.68) 4349 (36.80) 5136 (43.46) 6052 (51.21)  < 0.0001

Diabetes mellitus, n (%) 3749 (7.90) 331 (2.80) 649 (5.49) 1031 (8.72) 1738 (14.71)  < 0.0001

Dyslipidemia, n (%) 16,073 (34.00) 2082 (17.62) 3251 (27.51) 4582 (38.77) 6158 (52.11)  < 0.0001

Antihypertensive agents, n (%) 3842 (8.10) 342 (2.89) 624 (5.28) 1015 (8.59) 1861 (15.75)  < 0.0001

Hypoglycemic agents, n (%) 856 (1.80) 67 (0.57) 124 (1.05) 206 (1.74) 459 (3.88)  < 0.0001

Lipid-lowering agents, n (%) 344 (0.70) 28 (0.24) 49 (0.41) 93 (0.79) 174 (1.47)  < 0.0001

Body mass index, kg/m2 25.06 ± 3.47 21.98 ± 2.32 24.31 ± 2.43 25.94 ± 2.64 28.03 ± 3.20  < 0.0001

Systolic blood pressure, mmHg 128.30 ± 19.69 121.54 ± 18.13 127.33 ± 19.07 130.31 ± 19.08 133.99 ± 20.29  < 0.0001

Diastolic blood pressure, mmHg 82.62 ± 11.33 78.90 ± 10.66 82.16 ± 10.99 83.81 ± 10.88 85.59 ± 11.69  < 0.0001

Fasting blood glucose, mg/dL 97.06 ± 27.34 90.70 ± 18.03 94.77 ± 23.73 98.34 ± 28.61 104.44 ± 34.37  < 0.0001

Total cholesterol, mg/dL 189.76 ± 43.88 186.68 ± 39.49 188.35 ± 45.24 189.78 ± 46.56 194.21 ± 43.55  < 0.0001

Triglyceride, mg/dL 149.37 ± 121.9 100.98 ± 74.27 133.6 ± 100.94 161.84 ± 121.72 201.08 ± 153.30  < 0.0001

LDL cholesterol, mg/dL 88.92 ± 35.29 85.56 ± 34.86 89.27 ± 34.37 90.71 ± 35.42 90.17 ± 36.27  < 0.0001

HDL cholesterol, mg/dL 59.99 ± 15.25 64.47 ± 15.17 61.27 ± 14.95 58.87 ± 14.98 55.33 ± 14.39  < 0.0001

eGFR, mL/min/1.73m2 84.33 ± 25.12 87.69 ± 28.16 84.15 ± 24.76 82.97 ± 23.92 82.52 ± 23.02  < 0.0001

hs-CRP, mg/L 2.28 ± 6.54 1.95 ± 5.17 2.09 ± 4.99 2.40 ± 8.71 2.69 ± 6.55  < 0.0001
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Discussion
This study showed that the risk of future incident CVD 
was associated with cumMETS-IR exposure and the time 
course of METS-IR accumulation. Notably, our data sug-
gested that higher cumMETS-IR with an increasing trend 
in the observation period conferred a greater risk of inci-
dent CVD. The risk of CVD prolonged with the expo-
sure duration of high METS-IR increased. Additionally, 
increased METS-IR, even the METS-IR has decreased 
trend afterwards could not reverse the risk of CVD 
acquired by high METS-IR exposure. These findings 
emphasized the importance of control METS-IR levels to 
an optimal level across the life course.

The METS-IR score, a novel non-insulin index calcu-
lated based on conventional clinical indicators of FBG, 
TG, HDL-C, and BMI, has been used to screen for early 
insulin sensitivity and metabolism-illnesses [10]. Since 
serum insulin levels is not routinely measured in the gen-
eral clinical field, METS-IR can be applied more easily 
than insulin-based indexes. Previous studies, which were 
generally based on a single METS-IR assessment, have 
investigated the predicting role of METS-IR in the devel-
opment of cardiovascular events in specific populations 
[13, 16, 26]. One prospective cohort study with 6,489 Chi-
nese showed that elevated METS-IR was independently 
associated with incident chronic heart disease, especially 
in females [26]. Results from the third National Health 

and Nutrition Examination Survey with 6,043 individuals 
showed that significantly non-linear association between 
METS-IR and subclinical MI, especially in in non-diabetic 
individuals [13]. Similarly, data from a Korean community 
study showed that a higher METS-IR precedes further 
ischemic heart disease among 17,943 non-diabetic sub-
jects [16]. A retrospective cohort study with 2031 patients 
from the Urumqi Research on Sleep Apnea and Hyper-
tension study showed that METS-IR was a powerful 
predictor of CVD and its subtypes in patients with hyper-
tension and OSA [27]. Consistently, another study found 
a significant relationship between METS-IR with the risk 
of stroke among 14,032 hospitalized patients with hyper-
tension [28]. Although the above studies indicated that 
METS-IR may help identify subjects at high risk of car-
diovascular events, the studies are limited by the relatively 
small sample sizes, a single measurement of METS-IR, 
and the evident differences in study design and popula-
tion characteristics, the results warrant confirmation in 
larger study with repeated measurements.

To our knowledge, this is the first large-scale analysis 
to examine the long-term effects of cumulative exposure 
to METS-IR on the risk of CVD. Incorporation of both 
exposure intensity and duration into one single param-
eter, as done previously [29–31], our study showed that a 
higher cumulative exposure, a longer exposure duration, 
and a higher cumulative burden of METS-IR over 6-years 

Table 2 Association of cumulative exposure to METS-IR with the risk of cardiovascular disease

METS-IR metabolic score for insulin resistance

Model 1: adjusted for age and sex;

Model 2: further adjusted for education, income, smoking status, drinking status, and physical activity;

Model 3: further adjusted for history of hypertension, diabetes, dyslipidemia, total cholesterol, estimated glomerular filtration rate, and high sensitivity C-reactive 
protein
a Incidence rate per 1000 person-years

Exposure Case, n (%) Incidence rate* Model 1 Model 2 Model 3

Cumulative exposure

 Q1 (n = 11,817) 494 (4.18) 3.91(3.58–4.27) Reference Reference Reference

 Q2 (n = 11,818) 757 (6.41) 6.14(5.72–6.59) 1.39(1.24–1.56) 1.40(1.25–1.57) 1.38(1.23–1.54)

 Q3 (n = 11,818) 843 (7.13) 6.95(6.49–7.43) 1.47(1.31–1.64) 1.49(1.33–1.66) 1.44(1.29–1.61)

 Q4 (n = 11,817) 1090 (9.22) 9.30(8.77–9.87) 1.86(1.67–2.07) 1.90(1.71–2.12) 1.77(1.58–1.98)

  P for trend  < 0.0001  < 0.0001  < 0.0001

Exposure duration

 0 year (n = 14,380) 500 (4.53) 4.33(3.96–4.72) Reference Reference Reference

 2 years (n = 7378) 363 (5.49) 5.28(4.77–5.85) 1.18(1.03–1.35) 1.18(1.03–1.35) 1.17(1.02–1.34)

 4 years (n = 7896) 581 (7.49) 7.29(6.72–7.91) 1.56(1.38–1.75) 1.56(1.38–1.76) 1.51(1.34–1.70)

 6 years (n = 17,616) 1740 (7.96) 7.76(7.41–8.14) 1.69(1.53–1.86) 1.70(1.54–1.88) 1.60(1.45–1.77)

 P for trend  < 0.0001  < 0.0001  < 0.0001

Cumulative burden

  < 0 (n = 21,383) 833 (4.86) 4.66(4.35–4.98) Reference Reference Reference

  ≥ 0 (n = 25,887) 2351 (7.80) 7.60(7.30–7.92) 1.55(1.43–1.68) 1.56(1.44–1.69) 1.49(1.37–1.61)
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period were all significantly associated with the future 
risk of CVD, as well as its subtypes of stroke and MI. The 
results were consistent with aforementioned researches, 
and confirmed the role of longitudinally dynamic METS-
IR in the development of CVD. Additionally, the results 
were supported by findings on the associations of cumu-
lative exposure to other IR indices with the risk of CVD 
[31]. Taken together, the findings suggested that METS-
IR, as an economic and convenient index of IR, may be 
used identifying individuals at high risk of developing 
CVD. In terms of clinical applications, contemporary 
electronic medical records have potential to automati-
cally calculated cumMETS-IR in order to better stratify 
high risk population. a time-weighted METS-IR over 
33.61 may alter people to establish early lifestyle changes 
that can reduce atherosclerotic progression.

Furthermore, our study also showed that the risk of 
CVD also depended on the time course of METS-IR 

accumulation. Specially, a positive slope (an increasing 
trend) of METS-IR over time conferred a higher risk of 
CVD. Individuals with increasing trend, even the levels of 
METS-IR decreased afterwards, still had a higher risk of 
CVD. Additionally, incorporation of both cumMETS-IR 
and the time course, the results showed that same cum-
METS-IR exposure accumulated with an increasing trend 
compared with a decreasing trend contributed more to 
the subsequent risk of CVD. The results indicated that an 
increasing in METS-IR over time, even from a relatively 
lower level to result in the same accumulation, did not 
fully decrease the risk acquired progressively. Possible 
reasons may be that atherosclerosis caused by increas-
ing METS-IR, is a chronic progressive disease that begins 
early in life and develops over the course of decades 
before becoming clinical manifestation [32].

Although the precise mechanisms linking cumMETS-
IR and CVD risk remain incompletely understood, 

Fig. 2 Determining cut-off values of time-weight mean METS-IR with distribution and standardized log-rank statistics (left panel), and the incidence 
of cardiovascular disease according to exposure duration of METS-IR defined by the cut-off values. A. Plots of the distribution time-updated mean 
METS-IR B. Standardized log-rank statistical C. Incidence rate of cardiovascular disease according to high METS-IR exposure duration D. Hazard ratio 
and 95% confidence interval for the association of high METS-IR exposure duration with the risk of cardiovascular disease CI confidence interval, 
cumMETS-IR cumulative metabolic score of insulin resistance Adjusted for age, sex, education, income, smoking status, drinking status, physical 
activity, salt intake, history of hypertension, diabetes, dyslipidemia, total cholesterol, estimated glomerular filtration rate, and high sensitivity 
C-reactive protein



Page 8 of 11Tian et al. Cardiovascular Diabetology          (2023) 22:339 

several potential interpretations have been proposed. 
First, due to the involvement of BMI, METS-IR might 
be a better indicator of IR in adipose tissue, muscle and 
liver [33]. Therefore, it can be postulated that an increase 
in METS-IR over time may reflect IR affecting adipose 
tissue, muscle and liver. Cumulative IR accelerated the 

progression of atherosclerosis by altering risk factors 
and disrupting metabolism through oxidative stress and 
inflammation [34–36]. Inflammations caused by high 
cumulative IR could promote the pathophysiological pro-
cesses of vascular endothelial cells, smooth muscle cells, 
and macrophages were promoted, which then enhance the 

Table 3 Association of time course of cumulative METS-IR with the risk of cardiovascular disease

Model 1: adjusted for age and sex;

Model 2: further adjusted for education, income, smoking status, drinking status, and physical activity;

Model 3: further adjusted for history of hypertension, diabetes, dyslipidemia, total cholesterol, estimated glomerular filtration rate, and high sensitivity C-reactive 
protein

METS-IR metabolic score for insulin resistance
a Incidence rate per 1000 person-years

Exposure Case, n (%) Incidence  ratea Model 1 Model 2 Model 3

Slope

  < 0 (n = 22,444) 1488 (6.63) 6.43(6.11–6.76) Reference Reference Reference

   ≥ 0 (n = 24,826) 1696 (6.83) 6.61(6.30–6.93) 1.18(1.10–1.27) 1.17(1.09–1.26) 1.14(1.07–1.22)

Time course patterns

 Decrease-decrease 536 (6.69) 6.48(5.95–7.05) Reference Reference Reference

 Decrease-increase 1010 (6.75) 6.50(6.11–6.91) 1.13(1.02–1.26) 1.11(1.00–1.24) 1.11(1.00–1.24)

 Increase–decrease 967 (6.56) 6.38(5.99–6.80) 1.08(0.97–1.20) 1.08(0.97–1.20) 1.07(0.96–1.19)

 Increase-increase 671 (7.03) 6.81(6.31–7.35) 1.27(1.13–1.43) 1.25(1.11–1.41) 1.23(1.09–1.38)

Combination cumulative exposure and time course

 CumMETS-IR < median, slope < 0 595 (5.13) 4.87(4.49–5.28) Reference Reference Reference

 CumMETS-IR < median, slope ≥ 0 656 (5.45) 5.15(4.77–5.56) 1.09(0.97–1.21) 1.08(0.96–1.20) 1.07(0.96–1.20)

 CumMETS-IR ≥ median, slope < 0 893 (8.23) 8.17(7.65–8.72) 1.43(1.28–1.58) 1.45(1.31–1.61) 1.38(1.24–1.53)

 CumMETS-IR ≥ median, slope ≥ 0 1040 (8.13) 8.05(7.58–8.56) 1.45(1.31–1.60) 1.45(1.31–1.61) 1.38(1.25–1.53)

Fig. 3 Hazard ratios and 95% CIs for the association of cumMETS-IR and METS-IR slope with the risk of cardiovascular disease by using restricted 
cubic spline regression with 4 knots with placed at the 5th, 35th, 65th, and 95th percentiles. CI confidence interval, cumMETS-IR cumulative 
metabolic score of insulin resistance, METS-IR metabolic score of insulin resistance Adjusted for age, sex, education, income, smoking status, 
drinking status, physical activity, salt intake, history of hypertension, diabetes, dyslipidemia, total cholesterol, estimated glomerular filtration rate, 
and high sensitivity C-reactive protein
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formation of atherosclerosis-associated foam cells and vul-
nerable plaques [37]. Second, cumulative IR was associated 
with greater platelet adhesion, activation, and aggregation, 
which leaded to the occlusion of arteries, causing hemody-
namic disturbances [38, 39]. Finally, our study showed that 
participants with high cumMETS-IR coexist with more 
cardiovascular risk factors, such as higher BMI, blood 
pressure, lipid profiles, and inflammatory levels, which 
may also contribute to the progression of CVD.

There are some interesting implications of this study, 
especially when viewed in the context of other studies. 
First of all, the assessment of CVD risk is informed by 
considering not just the total amount of METS-IR, but 
also the time course of the accumulation. In current 
practice, the METS-IR at the time is used without trying 
to incorporate the modulation of that risk by the time 
course of the individual’s METS-IR levels. We developed 
a risk model that took into account both of these descrip-
tors of longitudinal METS-IR exposure. The results dem-
onstrated here both emphasized the dependence of risk 
of CVD, not just on the present METS-IR levels, but also 
the time course of accumulation, and offer a model to 
quantify the modulation of risk by the time course. the 
clinical application of METS-IR. These data suggested 
that prolonged exposure to lower METS-IR, beginning 
early, is contributed more to the risk reduction of CVD.

The strengths of our study included the large sample size 
with a long follow-up, and the components of METS-IR 
were measured repeatedly. Additionally, we used cumula-
tive value of METS-IR to capture the longitudinal exposure 
of METS-IR, and incorporated both cumulative expo-
sure and time course of METS-IR accumulation into one 
risk parameter to predict future CVD, which conferred 
additional information beyond a single measurement of 
METS-IR. However, several limitations should also be 
noted. First, insulin concentrations were not collected in 
our study due to the large population with high cost, we 
could not compare the predict value of cumMETS-IR with 
the cumulation of the gold-standard for the risk of CVD. 
Second, owing to the observational nature of the study, we 
could not establish a causal association of cumMETS-IR 
with the risk of CVD. Third, residual confounding cannot 
be completely ruled out due to the limitation of observa-
tional study design, despite comprehensive adjustment for 
the  potential  confounders. Finally, the sex distribution of 
the sample was unbalanced. However, the associations 
were statistically robust, given that a significant interaction 
was not identified when data were stratified by sex.

Conclusions
Incident CVD risk was associated with both long-term 
exposure to METS-IR and the time course of METS-IR 
accumulation. Importantly, the same cumMETS-IR with 
an increasing trend resulted in a greater risk increase, 
emphasizing the importance of control an optimal 
METS-IR across the lifespan.
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