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Abstract 

Background Diabetes mellitus (DM) is the most common metabolic disease worldwide and a major risk factor 
for adverse cardiovascular events, while the additive effects of DM on left ventricular (LV) deformation in the restrictive 
cardiomyopathy (RCM) cohort remain unclear. Accordingly, we aimed to investigate the additive effects of DM on LV 
deformation in patients with RCM.

Materials and methods One hundred thirty‑six RCM patients without DM [RCM(DM−)], 46 with DM [RCM (DM+)], 
and 66 age‑ and sex‑matched control subjects who underwent cardiac magnetic resonance (CMR) scanning were 
included. LV function, late gadolinium enhancement (LGE) type, and LV global peak strains (including radial, circumfer‑
ential, and longitudinal directions) were measured. The determinant of reduced LV global myocardial strain for all RCM 
patients was assessed using multivariable linear regression analyses. The receiver operating characteristic curve (ROC) 
was performed to illustrate the relationship between DM and decreased LV deformation.

Results Compared with the control group, RCM (DM−) and RCM(DM+) patients presented increased LV end‑diastolic 
index and end‑systolic volume index and decreased LV ejection fraction. LV GPS in all three directions and longitudi‑
nal PDSR progressively declined from the control group to the RCM(DM−) group to the RCM(DM+) group (all p < 0.05). 
DM was an independent determinant of impaired LV GPS in the radial, circumferential, and longitudinal directions 
and longitudinal PDSR (β =  − 0.217, 0.176, 0.253, and − 0.263, all p < 0.05) in RCM patients. The multiparameter com‑
bination, including DM, showed an AUC of 0.81(95% CI 0.75–0.87) to predict decreased LV GLPS and an AUC of 0.69 
(95% CI 0.62–0.76) to predict decreased LV longitudinal PDSR.

Conclusions DM may have an additive deleterious effect on LV dysfunction in patients with RCM, especially dias‑
tolic dysfunction in RCM patients, indicating the importance of early identification and initiation of treatment of DM 
in patients with RCM.
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Introduction
Diabetes mellitus (DM) is considered a major risk factor 
for cardiovascular complications and is an independent 
risk factor for cardiovascular morbidity and mortality 
[1, 2]. Left ventricular (LV) hypertrophy, myocardial 
fibrosis, stiffness, and diastolic dysfunction are the main 
courses of diabetic cardiomyopathy [3–5]. Restrictive 
cardiomyopathy (RCM) is a myocardial disorder with 
common physiology but divergent etiologies [6]. RCM 
patients have a stiff LV with impaired diastolic filling 
and high filling pressures, which commonly induce 
pulmonary hypertension and tend to exacerbate heart 
failure (HF). Until later stages of the disease, biventricular 
chamber size and systolic function are usually normal or 
almost normal [7–9]. However, the additive effects of DM 
on left ventricular (LV) deformation in the RCM cohort 
remain unclear.

Previous studies have pointed out that RCM and DM 
can impair LV function and deformation, culminating 
in progressive deterioration and poor outcomes [10, 
11]. Similar to RCM, DM status can aggravate cardiac 
structural and functional abnormalities, such as diastolic 
dysfunction and LV wall stiffness [12, 13]. Therefore, 
among RCM patients, investigating the effects of DM on 
LV myocardial deformation is important to achieve the 
goal of health management.

Cardiac magnetic resonance (CMR) imaging 
provides comprehensive information on cardiac 
function, deformation, and myocardial tissue. The 
late gadolinium enhancement (LGE) can potentially 
enhance the diagnosis, management, and prognosis of 
RCM [14]. The deformation, especially impaired global 
longitudinal strain, has been proven to be associated with 
cardiovascular events and have a better prognostic value 
than LVEF [15, 16]. Therefore, the current study sought 
to investigate the additive effects of DM on LV function 
and global deformation in patients with RCM.

Methods and materials
Study population
The study protocol was approved by the Biomedical 
Research Ethics Committee of our hospital. Informed 
consent was waived due to the retrospective nature of the 
research.

Initially, we consecutively retrospectively enrolled 
253 patients with RCM who had completed CMR 
examinations in our hospital between January 2010 
and December 2022. The diagnostic criteria for RCM 
were invasive cardiomyopathy confirmed by biopsy or a 
combination of clinical symptoms and relevant cardiac 
examinations [17]. The exclusion criteria were as follows: 
(1) congenital heart disease, pericardial disease, severe 
arrhythmia, severe valvular heart disease, or acute 

coronary syndrome; (2) an incomplete clinical record; 
and (3) inadequate images because of arrhythmia or 
poor image quality. Following these criteria, a total of 
182 RCM patients were included in this study. According 
to whether there was coexisting DM, patients were 
further divided into the RCM without DM (RCM[DM−]) 
group and the RCM with DM (RCM[DM+]) group. The 
diagnosis of DM was based on current European Society 
of Cardiology (2019) guidelines [18]. In addition, age-, 
sex-, and body mass index-matched subjects without a 
diagnosis of the RCM and a history of DM were enrolled 
as controls. We excluded patients with congenital 
heart disease, primary cardiac myopathy, pericardial 
disease, severe arrhythmia, severe valvular heart disease, 
coronary artery disease, MI, acute coronary syndrome, 
and cardiac MRI images with poor quality.

CMR scanning protocol
All CMR examinations were performed in the supine 
position using a 3.0T whole body magnetic resonance 
scanner Trio Tim or MAGNETOM Skyra (Siemens 
Medical Solutions, Erlangen, Germany) equipped with 
32-channel body phased array coils and a standard 
ECG trigger equipment. Balanced steady-state free 
precession (b-SSFP) cine images were acquired using a 
retrospective vector ECG gating technique at the end of 
inspiratory breath holding, and twenty-five frames were 
reconstructed per breath-hold acquisition. Standard 
short-axis, long-axis two- and four-chamber cine images 
were obtained. which covered the entire left ventricles. 
The following scanning parameters were used: repetition 
time (TR) 2.81  ms or 3.4  ms, echo time (TE) 1.22  ms, 
flip angle 40° or 50°, slice thickness 8  mm, field of view 
(FOV) 250 × 300  mm2 or 340 ×  285mm2, and matrix 
208 × 139 or 256 × 166. Gadolinium-based contrast agent 
(MultiHance; Bracco, Milan, Italy; Magnevist, Bayer 
Schering Pharma, Berlin, Germany) was intravenously 
injected at a dose of 0.2  mmol/kg body weight at an 
injection rate of 2.5–3.0 ml/s, followed by a 20 ml saline 
flush at a rate of 3.0 ml/s. LGE images were acquired in 
the corresponding slice position as the cine imaging 
10–15  min after contrast injection. The images were 
obtained using a phase-sensitive inversion recovery 
sequence with the following parameters: temporal time 
300 ms, TE 1.44 ms, flip angle 40°, slice thickness 8 mm, 
FOV 275 × 400  mm2, and matrix size = 256 × 184  mm2.

CMR data analysis
All CMR data were uploaded to an offline worksta-
tion using a semi-automated software (Cvi42; Circle 
Cardiovascular Imaging, Inc., Calgary, Canada). The 
LV endocardial and epicardial traces were manually or 
semiautomatically delineated in the serial short-axis 
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slices at the end-diastolic and end-systolic phases. 
Papillary muscles were considered as part of the ven-
tricular cavity, and epicardial fat was excluded. LV 
functional parameters, including LV end-diastolic vol-
ume (LVEDV), LV end-systolic volume (LVESV), LV 
stroke volume (LVSV), LVEF, and LV mass (LVM) were 
computed automatically. LVEDV, LVESV, LVSV and 
LVM were indexed to body surface area (BSA). The LV 
global function index (LVGFI) was calculated using the 
following formula [19]:

For LV global deformation analysis, LV long-axis cine 
images (2-chamber and 4-chamber) and short-axis 
cine (2-chamber) images were loaded into the feature 
tracking module by delineating LV endocardial and 
epicardial borders at the end-diastolic phases of all 
cine images. The LV global radial peak strain (GRPS), 
global circumferential peak strain (GCPS), and global 
longitudinal peak strain (GLPS) and their correspond-
ing peak systolic strain rate (PSSR) and peak diastolic 
strain rate (PDSR) in the three directions were acquired 
automatically (Fig.  1). LEG was defined as the area of 
signal intensity five standard deviations above the mean 
intensity of the normal myocardium on the LGE short-
axis images. Two radiologists (Y.G and R.S) categorized 
delayed enhancement into 1 of 3 categories: (1) None: 
in which there were no areas of LGE; (2) Focal patchy: 
in which there were non-diffuse, discrete areas of LGE, 
including circumferential LGE confined to the endocar-
dium; (3) Global: in which there was circumferential, 
diffuse LGE extending from the endocardium to the 
epicardium (Fig. 1) [20]. These two observers evaluated 

LVGFI = {LVSV/[(LVEDV+ LVESV)/2+ (LVM/1.05)]} × 100

the LGE images separately, and if the results were 
inconsistent, they discussed and agreed on the result.

Reproducibility analysis of LV strain
To determine intra- and inter-observer variability, one 
observer (Y. G) measured LV global myocardial strain 
and strain rate in 60 random subjects (including 40 RCM 
patients and 20 controls) twice within one month. A 
second observer (R. S), who was blinded to the results 
of the first observer and clinical data, reperformed the 
measurements to assess the interobserver variability.

Statistical analysis
Statistical analyses were performed with SPSS (version 
23.0; IBM SPSS, Inc., Chicago, IL, USA). Data are 
expressed as the means with standard deviations or 
medians with interquartile ranges (IQRs) for continuous 
variables. Categorical variables are presented as numbers 
(percentages) and compared using Fisher’s exact test or 
the chi-square test, as appropriate. Parameters among 
RCM(DM−), RCM(DM+), and control were compared 
by one-way analysis of variance (ANOVA) followed 
by Bonferroni’s post hoc test (normally distributed 
variables) or the Kruskal–Wallis rank test (nonparametric 
variables), as appropriate. Correlation analysis was 
conducted to identify the relationship between LV 
function, strain parameters, and clinical indexes. 
Pearson’s correlation was used between continuous 
variables, and Spearman’s correlation was used to analyze 
the rank correlation.

Moreover, variables with a p-value of less than 0.1 in the 
univariable analyses and an absence of collinearity were 
included in a stepwise multivariable analysis to identify 

Fig. 1 Measurement of LV global strain and definition of LGE patterns. Cardiac magnetic resonance feature tracking in short‑axis and long‑axis 
four‑chamber and two‑chamber cine images at end‑diastole (A1, B1, C1) and end‑systole (A2, B2, C2). LGE patterns were defined as none (E), focal 
patchy (F, G) and global (H)
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the independent determinants of LV strain parameters. 
The receiver operating characteristic curve (ROC) was 
performed to quantify the diagnostic efficiency of DM 
for LV impaired deformation. A p-value of < 0.05 was 
considered statistically significant.

Results
Baseline characteristics
Overall, 182 RCM (RCM[DM−]: n = 136, 61.03% male, 
58.35 ± 10.76  years; RCM[DM+]: n = 46, 58.70% male, 
58.46 ± 11.97  years) patients and 66 controls (68.18% 
male, 57.42 ± 8.65 years)were included in this study. The 
main clinical baseline characteristics of the study cohort 
are summarized in Table 1. Age, sex, BMI, systolic blood 
pressure, diastolic blood pressure, and heart rate were 
not significantly different between the observed groups 
(all p > 0.05). Cardiac amyloidosis is the predominant 
type of RCM, whether or not these patients have DM. 
Regarding cardiovascular risk factors, there was no dif-
ference in hyperlipidemia, hypertension, or atrial fibril-
lation between the two RCM groups (all p > 0.05). The 
NYHA functional class in the RCM(DM+) group was 
decreased than in the RCM(DM-) group (p < 0.05). Addi-
tionally, the NT-proBNP value was significantly higher 

in the RCM (DM+) group than in the RCM (DM−) 
group (7642.00[1337.00–13602.00] vs. 4322.50[1436.00–
7777.75], p < 0.05), and there was no difference in tro-
ponin, eGFR or creatinine values between the two RCM 
groups. For the antidiabetic medication of RCM(DM +) 
patients, 11 patients used insulin, and 40 patients used 
oral antidiabetic agents (22 for biguanides, 5 for sulfony-
lureas, 15 for α-Glucosidase inhibitor, and 3 for GLP-1/
DPP-4 inhibitor).

Comparison of CMR parameters among RCM patients 
with and without DM and controls
The CMR imaging results for LV function and global 
peak strain were summarized in Table  2. In contrast to 
the controls, patients who had RCM with and without 
DM exhibited increased LVEDVi, LVESVi, LVMI, and 
decreased LVSVi, LVEF, and LVGFI (all p < 0.05). The 
RCM (DM+) group exhibited a lower LVSVi, LVEF, and 
LVGFI than the RCM (DM−) group (all p < 0.05). Regard-
ing LV global deformation parameters, the LV global 
peak train in all three directions were decreased from 
the control group to the RCM (DM−) group to the RCM 
(DM+) group (all p < 0.005). Moreover, The LV global 
PDSR in the longitudinal direction (PDSR_L) declined 

Table 1 Baseline characteristics of the study cohort

DM diabetes mellitus, RCM restrictive cardiomyopathy, BMI body mass index, BP blood pressure, NYHA New York Heart Association, HbA1c glycated hemoglobin, eGFR 
estimated glomerular filtration rate
* p < 0.05 versus control group (Bonferroni’s)
§ p < 0.05 versus RCM patients without DM

Control subjects (n = 66) RCM(DM−) (n = 136) RCM (DM+) (n = 46)

Baseline characteristics

 Age, years 57.42 ± 8.65 58.35 ± 10.76 58.46 ± 11.97

 Male, n (%) 45(68.18%) 83(61.03%) 27(58.70%)

 BMI, kg/m2 23.31(21.78,25.27) 22.15 ± 2.95 22.04 ± 3.00

 Systolic BP, mmHg 127.83 ± 16.19 100.84 ± 22.41 110.26 ± 26.51

 Diastolic BP, mmHg 76.58 ± 10.16 77.50(68.00–90.00) 80.50(71.00–90.50)

 Heart rate, bpm 73.74(65.25,78.97) 85.54(76.73,95.38)* 91.44(80.26,103.03)*

Cardiac amyloidosis, n (%) 114(83.8%) 42(91.3%)

Cardiac risk factors, n (%)

 Hypertension – 40(29.41%) 25(54.35%)§

 Hyperlipidemia – 11(8.09%) 5(10.87%)

 Atrial fibrillation – 15(11.0%) 4(8.69%)

NYHA functional class, n

 I/II/III/IV – 6(4.41%)/51(37.50%)/58(42.65%)/21(
15.44%)

1(2.17%)/6(13.04%)/27(58.7
0%)/12(26.09%)§

Laboratory data

 HbA1c, % – – 7.40(6.80,8.00)

 eGFR, mL/min/1.73m2 – 79.94 ± 28.45 71.91 ± 33.67

 Creatinine, umol/L – 78.00(58.00,102.50) 81.00(69.50,126.25)

 Troponin, ng/L – 78.55(39.85,138.80) 92.40(45.25,149.15)

 NT‑proBNP – 4322.50(1436.00–7777.75) 7642.00(1337.00–13602.00)§
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progressively from the control group to the RCM (DM−) 
group to the RCM (DM+) group (0.98[0.77–1.11] vs. 
0.53[0.42–0.69] vs. 0.44[0.35–0.50], all p < 0.05). The 
remaining LV global PSSR and PDSR parameters were 
decreased in the two RCM groups than in the control 
group (p < 0.05), but there were no statistical differences 
between the two RCM groups. In addition, global diffuse 
was the most common LGE pattern (47.7% in the RCM 
[DM−] group; 45.6% in the RCM [DM+] group), fol-
lowed by focal patchy (29.4% in the RCM [DM−] group; 
23.9% in the RCM [DM+] group), but there was no sta-
tistical difference in the LGE pattern between the RCM 
patients with and without DM (p > 0.05).

Association of LV dysfunction and remodeling with clinical 
variables in RCM patients
Univariable and multivariable linear regression analy-
ses were performed to evaluate the independent effect of 
DM on LV function and deformation in RCM patients. 
After multivariable adjustment for covariates among all 
RCM patients, DM was an independent determinant 
of impaired LVEF (β = 0.166, p = 0.014). Furthermore, 

NT-proBNP levels were independently associated 
with LVEF, LVMI, and LVMVR (β = − 0.260, 0.314, and 
–0.272, all p < 0.05), LGE was independently associ-
ated with LVEF and LVMVR (β = − 0.297 and 0.158, all 
p < 0.05) type, gender were independently associated with 
LVMVR(β = − 0.182, p < 0.05)(Table3).

As shown in Tables  4 and 5, after adjusting for 
confounding factors, the multivariable linear 
regression analysis showed that DM was independently 
associated with LV GRPS (β = − 0.217, p < 0.001),GCPS 
(β = 0.176, p = 0.005), GLPS (β = 0.253, p < 0.001), and 
PSDR_L(β = − 0.263, p < 0.001). Moreover, NT-proBNP 
level, LGE type, and LVMI were independently associated 
with LV GRPS (β =  − 181, –0.379 and –0.269, all p < 0.01), 
GCPS (β = 0.299, 0.280 and 0.209, all p < 0.01), GLPS 
(β = 0.249 0.330 and 0.177, all p < 0.01), and PSDR_L 
(β = 0.196, 0.188 and 0.243, all p < 0.01). 

The results from the ROC analysis were showed in 
Fig.  2. The multiparameter combination, including DM, 
NT-proBNP, LGE type and LVMI showed a sensitivity of 
54.6% and specificity of 96.6% to predict decreased LV 
GLPS (AUC = 0.81; 95% confidence interval = 0.75–0.87, 

Table 2 CMR findings between control, RCM (DM−) group and RCM (DM+) group

Data are presented as median (25th, 75th percentile)

LVEDVi left ventricular end diastolic volume index, LVESVi left ventricular end systolic volume index, LVSVi left ventricular stroke volume index, LVEF left ventricular 
ejection fraction, LVMI left ventricular mass index, LVGFI left ventricular global function index, RCM restrictive cardiomyopathy, GPS global peak strain, PSSR peak 
systolic strain rate, PDSR peak diastolic strain rate, LGE late gadolinium enhancement
* p < 0.05 versus control group (Bonferroni’s)
§ p < 0.05 versus RCM(DM-) group (Bonferroni’s)

Control subjects (n = 66) RCM (DM−) (n = 136) RCM (DM+) (n = 46)

LVEDVi, ml/m2 70.96(62.63,80.16) 76.93(67.08,88.48)* 76.26(65.96,84.89)*

LVESVi, ml/m2 23.96(19.91,28.49) 36.34(29.21,46.64)* 36.79(29.98,53.47)*

LVSVi, ml/m2 47.68(40.86,53.31) 38.70(30.41,48.22)* 32.20(24.81,42.04)*,§

LVEF, % 65.47(62.57,70.24) 51.28(42.39,60.98)* 44.63(32.19,59.37)*,§

LVMI, g/m2 40.80(35.95,46.35) 71.01(56.42,88.56)* 63.29(50.88,88.59)*

LVGFI 50.89(47.76,55.72) 31.22(23.29,40.89)* 26.07(20.37,35.71)*,§

LVMVR 0.57(0.50,0.66) 0.91(0.74,1.15)* 0.83(0.68,1.14)*

LV GPS, %

 Radial 36.37(32.67,41.48) 14.69(10.18,21.26)* 9.72(7.50,19.31)*,§

 Circumferential − 20.59(− 22.67,− 19.01) − 11.45(− 15.69,− 9.02)* − 10.35(− 14.61,− 7.06)*,§

 Longitudinal − 15.35(− 17.14,− 12.73) − 6.43(− 8.19,− 4.49)* − 4.93(− 6.89,− 2.92)*,§

LV PSSR (1/s)

 Radial 2.10(1.79,2.57) 1.04(0.67,1.59)* 0.95(0.68,1.59)*

 Circumferential − 1.02(− 1.16,− 0.93) − 0.83(− 1.10,− 0.61)* − 0.78(− 1.02,− 0.57)*

 Longitudinal − 0.79(− 0.93,− 0.69) − 0.51(− 0.73,− 0.36)* − 0.46(− 0.71,− 0.31)*

LV PDSR (1/s)

 Radial − 2.79(− 3.20,− 2.24) − 1.07(− 1.77,− 0.79)* − 0.97(− 1.40,− 0.61)*

 Circumferential 1.34(1.21,1.52) 0.84(0.65,1.09)* 0.85(0.59,1.04)*

 Longitudinal 0.98(0.77,1.11) 0.53(0.42,0.69)* 0.44(0.35,0.50)*,§

LGE pattern, n

 None/focal patchy/global – 31/40/65 14/11/21
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p < 0.001), and a sensitivity of 41.6% and specificity of 90.9% 
to predict decreased LV longitudinal PDSR (AUC = 0.69; 
95% confidence interval = 0.62–0.76, p < 0.001).

Inter‑ and Intraobserver variability
There was excellent intra- and interobserver agreement 
in terms of LV global strain. The intra- and interobserver 
agreement was excellent for LV GPS (ICC = 0.923–
0.978 and 0.912–0.961, respectively), LV global PSSR 

(ICC = 0.913–0.968 and 0.893–0.951, respectively), and 
LV global PDSR (ICC = 0.918–0.971 and 0.887–0.941, 
respectively) in all three directions.

Discussion
This study investigated the difference in LV function and 
deformation damage in RCM patients with or without 
DM and explored the independent predictors of LV 
dysfunction and deformation injury. The main findings 

Table 3 Determinants of LV dysfunction in RCM patients

DM diabetes mellitus, RCM restrictive cardiomyopathy, BMI body mass index, BP blood pressure, NYHA New York Heart Association, HbA1c glycated hemoglobin,; eGFR 
estimated glomerular filtration rate, LVEDVi left ventricular end diastolic volume index, LVESVi left ventricular end systolic volume index, LVSVi left ventricular stroke 
volume index, LVEF left ventricular ejection fraction, LVMI left ventricular mass index, LVGFI left ventricular global function index, GPS global peak strain, PSSR peak 
systolic strain rate, PDSR peak diastolic strain rate, LGE late gadolinium enhancement
a NT-proBNP was log-transformed before being included in the regression analysis

LVEF LVMI LVMVR

Univariable Multivariable Univariable Multivariable Univariable Multivariable

r p β p r p β p

Age, years 0.017 0.819 0.012 0.870 − 0.023 0.761

Male, n (%) − 0.034 0.649 − 0.113 0.128 − 0.155 0.037 − 0.182 0.010

BMI, kg/m2 0.124 0.094 − 0.064 0.393 − 0.051 0.492

Hyperlipidemia 0.070 0.348 0.003 0.972 0.075 0.314

Hypertension − 0.099 0.185 0.064 0.390 0.008 0.920

DM − 0.150 0.043 − 0.166 0.014 − 0.071 0.228 − 0.069 0.356

eGFR, mL/min/1.73m2 0.069 0.395 0.015 0.851 0.009 0.393

NT‑proBNPa − 0.371 < 0.001 − 0.260 < 0.001 0.328 < 0.001 0.314 < 0.001 0.350 < 0.001 0.272 < 0.001

LGE type 0.399 < 0.001 − 0.297 < 0.001 0.238 < 0.001 0.287 < 0.001 0.158 0.037

Table 4 Univariable and multivariable linear regression analysis of LV global peak strain in RCM patients

DM diabetes mellitus, RCM restrictive cardiomyopathy, BMI body mass index, BP blood pressure, NYHA New York Heart Association, HbA1c glycated hemoglobin,; eGFR 
estimated glomerular filtration rate, LVEDVi left ventricular end diastolic volume index, LVESVi left ventricular end systolic volume index, LVSVi left ventricular stroke 
volume index, LVEF left ventricular ejection fraction, LVMI left ventricular mass index, LVGFI left ventricular global function index, GPS global peak strain, PSSR peak 
systolic strain rate, PDSR peak diastolic strain rate, LGE late gadolinium enhancement
a NT-proBNP was log-transformed before being included in the regression analysis

GRPS GCPS GLPS

Univariable Multivariable Univariable Multivariable Univariable Multivariable

r p value β p value r p value β p value r p value β p value

Age#, years 0.042 0.573 0.033 0.659 − 0.036 0.626

Male, n (%) 0.057 0.446 − 0.092 0.216 − 0.008 0.918

BMI, kg/m2 0.058 0.434 − 0.081 0.277 − 0.122 0.101

NYHA − 0.251 0.001 0.262  < 0.001 0.280  < 0.001

Hyperlipidemia 0.044 0.554 − 0.004 0.961 − 0.073 0.327

Hypertension − 0.053 0.473 0.057 0.442 0.086 0.249

DM − 0.205 0.005 − 0.217  < 0.001 0.153 0.039 0.176 0.005 0.237 0.001 0.253  < 0.001

eGFR, mL/min/1.73m2 0.106 0.192 − 0.077 0.340 − 0.085 0.295

NT‑proBNPa − 0.418  < 0.001 − 0.181 0.007 0.482  < 0.001 0.299  < 0.001 0.451  < 0.001 0.249  < 0.001

LGE type − 0.424  < 0.001 − 0.379  < 0.001 0.384  < 0.001 0.280  < 0.001 0.393  < 0.001 0.320  < 0.001

LVMI, g/m2 − 0.381  < 0.001 − 0.269  < 0.001 0.348  < 0.001 0.209 0.001 0.305  < 0.001 0.177 0.007
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of this study are as follows: (1) For RCM patients, DM 
further deteriorated LV function, LV GPS in all three 

directions and LV peak diastolic strain rate in the 
longitudinal direction; (2) For RCM patients, DM was an 
independent determinant of impaired LVEF and LV GPS 
in all three directions; (3) Patients with RCM comorbid 
with DM displayed a decreased LV peak diastolic strain 
rate in the longitudinal direction, in which DM plays 
the predominant role. Our study demonstrated that DM 
may aggravate LV dysfunction and deformation injury in 
RCM patients, especially exacerbating the LV diastolic 
deformation rate injury in RCM patients. Therefore, 
RCM patients with comorbid DM may have a hidden 
high risk that needs more advanced and personalized 
management.

RCM is a heterogeneous group of heart muscle diseases 
characterized by restrictive ventricular physiology in the 
presence of normal or reduced diastolic volumes, with 
normal or near-normal LV systolic function and normal 
or near-normal wall thickness [7, 21]. Patients with RCM 
have an increased myocardial stiffness LV with impaired 
diastolic filling and high filling pressures. Chronically 
elevated LV diastolic pressures commonly induce 
pulmonary hypertension, right heart failure, and even 
whole heart failure [17]. As a cardiomyopathy with a poor 
prognosis, early intervention and control of risk factors 
for RCM can delay the further deterioration of cardiac 
function to a certain extent. As a growing health concern, 
DM is the most common chronic metabolic disease and 
the major risk factor for cardiovascular complications 
and adverse cardiovascular events [22]. Previous research 

Table 5 Univariable and multivariable linear regression analysis 
of LV global peak strain rate in RCM Patients

DM diabetes mellitus, RCM restrictive cardiomyopathy, BMI body mass index, BP 
blood pressure, NYHA New York Heart Association, HbA1c glycated hemoglobin,; 
eGFR estimated glomerular filtration rate, LVEDVi left ventricular end diastolic 
volume index, LVESVi left ventricular end systolic volume index, LVSVi left 
ventricular stroke volume index, LVEF left ventricular ejection fraction, LVMI left 
ventricular mass index, LVGFI left ventricular global function index, GPS global 
peak strain, PSSR peak systolic strain rate, PDSR peak diastolic strain rate, LGE late 
gadolinium enhancement, PDSR peak diastolic strain rate
a NT-proBNP was log-transformed before being included in the regression 
analysis

longitudinal PDSR

Univariable Multivariable

r p value β p value

Age#, years − 0.051 0.491

Male, n (%) − 0.055 0.462

BMI, kg/m2 0.122 0.101

NYHA − 0.252 0.001

Hyperlipidemia 0.046 0.534

Hypertension 0.092 0.216

DM − 0.269  < 0.001 − 0.263  < 0.001

eGFR, mL/min/1.73m2 0.091 0.264

NT‑proBNPa − 0.363  < 0.001 − 0.196 0.008

LGE type − 0.272  < 0.001 − 0.188 0.009

LVMI, g/m2 − 0.321  < 0.001 − 0.243 0.001

Fig. 2 Receiver operating characteristic curve (ROC) analysis to predict the relationship with LV global longitudinal peak strain (A) and LV global 
longitudinal peak diastolic strain rate (B)
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has confirmed that diastolic dysfunction is an important 
damage stage in patients with DM, with the progression 
of the disease there are varying degrees of diffuse 
myocardial fibrosis [23–25]. We conducted this study 
to explore changes in LV dysfunction in RCM patients 
with DM. Our study demonstrated that conventional 
LV volume parameters (i.e., LVEDVi and LVESVi) were 
higher in RCM patients than the control group but 
similar between the two RCM groups. RCM patients 
with comorbid DM augmented the impaired LVSVi 
and LVGFI in RCM patients. LVGFI is a measure of LV 
cardiac performance that integrates LV structure into LV 
functional assessment, which can provide incremental 
prognostic value. Compared with LVEF, LVGFI mainly 
reflects structure-related LV function impairment. We 
speculated that DM may increase the stiffness of the 
LV, leading to a decrease in LVSVi and LVGFI without 
significant volume changes.

The underlying cause of cardiac alterations in 
RCM patients with DM is a combination of multiple 
mechanisms. Myocardial metabolism disorder is the 
characteristic of patients with DM, and the underlying 
mechanisms of how DM affects LV function may be due 
to the synthesis effect of metabolic disorders, excitation–
contraction coupling impairment, microvasculature 
dysfunction, and extracellular matrix fibrosis [26, 27]. 
Several studies on DM-related myocardial damage have 
reported that DM can lead to more severe LV global 
deformation injury [13, 28]. Similarly, this study found 
that comorbid DM augmented the impairment of LV 
global peak strain in all three directions by CMR-FT in 
RCM patients. DM was an independent determinant 
of LV global peak strain, especially in the longitudinal 
direction in patients with RCM. The cardiac phenotypes 
of RCM are complex, with infiltrative cardiomyopathy 
such as cardiac amyloidosis being the most common 
type and infiltration starting in the sub-endocardium 
predominantly consisting of longitudinal fibers [29, 
30]. Furthermore, the myocardial fiber in the sub-
endocardium is the most susceptible to microvascular 
ischemia by DM [31, 32]. Therefore, the LV GLPS has 
a closed independent correlation with DM among the 
three directions. These pathomechanisms may partly 
explain the additive effect of DM on LV deformation in 
RCM patients.

In the early stages of RCM, LV diastolic dysfunction 
may occur due to increased myocardial stiffness, 
which causes a rapid rise in ventricular pressure at 
the beginning of the diastolic stage, while LV systolic 
function is typically preserved [7, 17]. In our study, the 
LV longitudinal PDSR was significantly decreased in the 
RCM(DM+) group, and multivariable regression analysis 

showed that DM was independently associated with 
longitudinal PDSR in RCM patients, which suggests a 
possible mechanistic link between DM and myocardial 
diastolic dysfunction in patients with RCM. Previous 
studies have shown that diastolic dysfunction can be 
detected in asymptomatic DM patients with normal 
LVEF levels, which is related to the complex mechanism 
of myocardium injury in diabetes [33, 34]. For patients 
with RCM, impaired diastolic dysfunction may be further 
aggravated with DM, which chronically elevates LV filling 
pressure and results in an almost fixed or decreased 
stroke volume. Under these conditions, the increase 
in heart rate is the only adaptive response to increased 
cardiac output, which is also consistent with the structure 
of our study.

Furthermore, our study showed that NT-proBNP 
levels were significantly higher in RCM(DM+) patients 
than in RCM(DM−) patients and were an independent 
determinant of LV global strains and longitudinal PDSR 
in RCM patients. LGE is associated with myocardial 
interstitial infiltration and is one of the most important 
CMR sign of RCM. Diffuse LGE independently predicted 
increased late mortality in RCM patients [20, 35]. 
Although there were no differences in the LGE type 
between RCM patients with and without DM, similar to 
NT-proBNP levels, the LGE type was also an independent 
determinant of LV deformation. The relationship of 
NT-proBNP and LGE type with LV deformation was 
stronger than that of DM. However, with the addition 
of DM, the multi-parameter combination obtained a 
larger AUC in the ROC curves of GLPS and longitudinal 
PDSR. In addition to the biochemical and imaging 
indicators of conventional cardiac function injury, DM, 
as a cardiovascular risk factor with increasing incidence, 
should be given more attention to achieve early 
prevention and treatment in RCM patients.

Limitation
The study had several limitations. First, this was a 
retrospective single-center study, so there may be some 
selection bias in the results. The information on the 
onset, duration, and treatment of DM was unavailable 
for some patients due to the nature of the retrospective 
study. Second, not all patients received biopsies to 
confirm the cause of their restrictive cardiomyopathy, 
so we based the inclusion criteria on the clinical biopsy 
results or combined clinical, ECG, and imaging findings, 
according to the ESC review [6]. Third, RCM patients 
usually have several cardiovascular risk factors, including 
hypertension, hyperlipidemia and coronary heart disease, 
which may have potential adverse effects on LV function. 
In order to avoid ischemic myocardial damage caused 
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by coronary heart disease, we excluded these patients. 
We included hypertension and hyperlipidemia in the 
multivariable regression analysis and found that DM was 
still an independent determinant of LV function.

Conclusions
This study demonstrated that DM is an important 
risk factor for LV dysfunction and deformation injury 
in patients with RCM; DM may have an additive 
deleterious effect on LV dysfunction in patients with 
RCM, especially diastolic dysfunction in RCM patients. 
Early identification and initiation of treatment of DM in 
patients with RCM may improve prognosis.
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