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Abstract 

Background It is unclear to what extent genetics explain the familial clustering and the co-occurrence of distinct 
cardiometabolic disorders in the general population. We therefore aimed to quantify the familial (co-)aggregation 
of various cardiometabolic disorders and to estimate the heritability of cardiometabolic traits and their genetic cor-
relations using the large, multi-generational Lifelines Cohort Study.

Methods We used baseline data of 162,416 participants from Lifelines. Cardiometabolic disorders including type 2 
diabetes (T2D), cardiovascular diseases, hypertension, obesity, hypercholesterolemia, and metabolic syndrome (MetS), 
were defined in adult participants. Fifteen additional cardiometabolic traits indexing obesity, blood pressure, inflam-
mation, glucose regulation, and lipid levels were measured in all included participants. Recurrence risk ratios (λR) 
for first-degree relatives (FDR) indexed familial (co-)aggregation of cardiometabolic disorders using modified condi-
tional Cox proportional hazards models and were compared to those of spouses. Heritability  (h2), shared environment, 
and genetic correlation  (rg) were estimated using restricted maximum likelihood variance decomposition methods, 
adjusted for age,  age2, and sex.

Results Individuals with a first-degree relative with a cardiometabolic disorder had a higher risk of the same disorder, 
ranging from λFDR of 1.23 (95% CI 1.20–1.25) for hypertension to λFDR of 2.48 (95% CI 2.15–2.86) for T2D. Most of these 
were higher than in spouses (λSpouses < λFDR), except for obesity which was slightly higher in spouses. We found moder-
ate heritability for cardiometabolic traits (from  h2

CRP: 0.26 to  h2
HDL: 0.50). Cardiometabolic disorders showed positive 

familial co-aggregation, particularly between T2D, MetS, and obesity (from λFDR obesity-MetS: 1.28 (95% CI 1.24–1.32) 
to λFDR MetS-T2D: 1.61 (95% CI 1.52–1.70)), consistent with the genetic correlations between continuous intermediate 
traits (ranging from  rg HDL-Triglycerides: − 0.53 to  rg LDL-Apolipoprotein B: 0.94).
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Conclusions There is positive familial (co-)aggregation of cardiometabolic disorder, moderate heritability of interme-
diate traits, and moderate genetic correlations between traits. These results indicate that shared genetics and com-
mon genetic architecture contribute to cardiometabolic disease.

Keywords Cardiometabolic disorders, Cardiometabolic traits, Familial (co-)aggregation, Genetic correlation, 
Heritability

Background
Cardiometabolic disorders, such as type 2 diabetes 
(T2D), cardiovascular diseases (CVD), obesity, hyper-
cholesterolemia, and hypertension are interrelated condi-
tions, responsible for high mortality and disability rates 
worldwide. The global burden of these disorders is con-
tinuously increasing: the global population with CVD 
doubled from 271 million in 1990 to 523 million in 2019 
[1], and the case-number of diabetes (20–79 years) is pre-
dicted to increase from 537 million in 2021 to 783 million 
in 2045 [2]. These cardiometabolic disorders often co-
occur within individuals, suggesting a co-pathogenesis of 
metabolic abnormalities among various cardiometabolic 
disorders, which is commonly described as metabolic 
syndrome (MetS), a highly prevalent, multifaceted cluster 
of metabolic abnormalities [3–9].

A role of genetics is likely: several studies have 
observed familial aggregation of CVD [10, 11] and T2D 
[12], obesity [13, 14], and MetS [15–17], while cardio-
metabolic traits, such as blood pressure, fasting blood 
glucose, and total cholesterol, were shown to be heritable 
[18–20]. Some evidence exists that different cardiometa-
bolic disorders co-aggregate within families, i.e., a family 
history of a specific cardiometabolic disorder associates 
with elevated risk of another cardiometabolic disorder 
[21–24]. However, familial aggregation, and especially 
co-aggregation of a full spectrum of cardiometabolic dis-
orders, has not yet been investigated comprehensively 
within a single study. Furthermore, the accuracy and gen-
eralizability of most family studies are limited by various 
factors, such as modest sample size ranging from 2302 to 
17,954 individuals, specific founder populations, different 
family relationship included (e.g., only siblings or parent-
offspring), or the use of self-reported family history not 
validated by objective measures.

For above reasons, it remains uncertain to what extent 
cardiometabolic disorders (co-)aggregate in families in 
the general population, and to what extent the correla-
tion between cardiometabolic disorders and traits can be 
explained by genetics. Bridging this knowledge gap may 
help risk stratification and early detection of cardiometa-
bolic disorders. Furthermore, knowledge of shared genet-
ics between disorders and traits may help advance our 
understanding of pathophysiology. Therefore, we aimed 
to: (1) quantify the familial (co-)aggregation of various 

cardiometabolic disorders; (2) estimate the heritability 
of a wide array of underlying cardiometabolic traits; and 
(3) estimate genetic correlations between cardiometa-
bolic traits, by using extensive data from Lifelines, a large 
multi-generational family study representative of the 
general Dutch population.

Methods
Study population
Lifelines is a multi-disciplinary prospective population-
based cohort study examining in a unique three-gener-
ation design the health and health-related behaviours of 
167,729 persons living in the North of the Netherlands. 
It employs a broad range of investigative procedures in 
assessing the biomedical, socio-demographic, behavioural, 
physical and psychological factors which contribute to the 
health and disease of the general population, with a special 
focus on multi-morbidity and complex genetics [25]. The 
recruitment of participants and their families, and how 
we define household ID are detailed in the Supplementary 
Methods (Additional file 1). Briefly, kinship was registered 
by questionnaires and verified where possible in partici-
pants with genetic data (n ~ 80,000). Participants who lived 
in the same house, which was determined based on regis-
tered postal codes, shared the same household ID. In total, 
there were 30,914 families (of size ≥ 2) of up to four gener-
ations and 40,496 singletons (i.e., participants without any 
relative participating in Lifelines). Physical measurements 
and collection of biological samples were performed in 
participants aged 8 years and older [25].

A total of 162,416 participants aged 8 to 93 (152,723 
adults and 9693 children) were included in the current 
cross-sectional study. Data on six cardiometabolic dis-
orders and fifteen cardiometabolic traits were extracted 
from the database. Cardiometabolic disorders included 
T2D, MetS, hypertension, hypercholesterolemia, obe-
sity, and CVD. Cardiometabolic traits included markers 
of glucose regulation (fasting blood glucose, glycated 
haemoglobin [HbA1c] and skin autofluorescence), 
blood pressure (systolic and diastolic blood pressure 
[SBP and DBP]), inflammation (leukocyte count and 
c-reactive protein [CRP]), obesity (body mass index 
[BMI] and waist circumference), and lipid levels (total 
cholesterol, high density lipoprotein cholesterol [HDL], 
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low density lipoprotein cholesterol [LDL], apolipopro-
tein A, apolipoprotein B, and triglycerides).

Signed informed consent was provided by all partici-
pants. Lifelines was conducted according to the prin-
ciples of the Declaration of Helsinki and following the 
research code of the University Medical Center Gron-
ingen. Meanwhile, the study was approved by the medi-
cal ethical committee of the University Medical Center 
Groningen.

Measurement
Cardiometabolic disorders
Cardiometabolic disorders were defined in adult partic-
ipants and included T2D, MetS, hypertension, hyper-
cholesterolemia, obesity, and CVD. Individuals with at 
least one of these six conditions were considered preva-
lent cases of any cardiometabolic disorder.

Type 2 diabetes We defined T2D as the combina-
tion of self-reported T2D and any supporting data 
(i.e., use of self-reported glucose-lowering medica-
tion, fasting plasma glucose level ≥ 7.0  mmol/L, and/
or  HbA1c ≥ 6.5%). The following participants were not 
considered to have T2D: (1) self-reported diabetes but 
without support by laboratory and medication data; 
(2) self-reported diabetes but age < 30 years at the time 
of visit; (3) self-reported diabetes but reported age of 
onset < 30  years old with self-reported insulin medica-
tion.

Metabolic syndrome According to National cholesterol 
Education Program Adult Treatment Panel III (NCEP 
ATP III) definition, participants with three or more of 
the five following criteria were defined as having MetS: 
(1) SBP ≥ 130 mmHg, and/or DBP ≥ 85 mmHg, and/or use 
of antihypertensive medication (Anatomical Therapeu-
tic Chemical [ATC] Classification Codes C02, C03, C07, 
C08, and/or C09; a key to the ATC codes can be found 
in the Additional file 2: Table S9); (2) fasting blood glu-
cose ≥ 5.6 mmol/L, and/or use of blood glucose-lowering 
medication, and/or diagnosis of T2D; (3) HDL cholesterol 
levels < 1.03 mmol/L in men, and < 1.30 mmol/L in women, 
and/or use of lipid-lowering medication (ATC codes C10A 
and/or C10B); (4) triglyceride levels ≥ 1.70 mmol/L and/or 
use of lipid-lowering medication (ATC codes C10A and/
or C10B); and (5) waist circumference ≥ 102  cm in men 
and ≥ 88 cm in women [26].

Hypertension Hypertension was defined by 
SBP ≥ 140  mmHg, and/or DBP ≥ 90  mmHg, and/or the 
use of antihypertensive medication (ATC codes C02, C03, 
C07, C08, C09, and/or G04CA03).

Hypercholesterolemia Total cholesterol ≥ 6.5  mmol/L 
and/or the use of lipid-lowering medication (ATC codes 
C10A and/or C10B) were used to define hypercholester-
olemia. For participants with self-reported myocardial 
infarction, total cholesterol ≥ 5.0  mmol/L was used as a 
cut off to define hypercholesterolemia [27].

Obesity BMI was calculated as weight (kg)/height 
squared  (m2). BMI ≥ 30 was used to define obesity in 
adults [28].

Cardiovascular diseases Four types of CVD were used 
to define CVD cases at baseline, including myocar-
dial infarction with drugs (platelet aggregation inhibi-
tors/antithrombotic drugs) or ECG abnormalities, 
self-reported heart failure with drug use (angiotensin con-
verting enzyme inhibitors/angiotensin-II receptor antag-
onists/aldosterone antagonists) or therapy (pacemaker, 
ICD implantation or heart transplant), self-reported 
stroke, and self-reported cardiac surgery (i.e., Coronary 
Arterial By-pass Graft, Percutaneous Transluminal Coro-
nary Angioplasty, and stent positioning). Participants with 
at least one of these four CVD were considered prevalent 
cases. To investigate a broader range of CVDs, we also 
used an extended CVD definition previously reported 
by van der Ende et al. [27]. The extended CVD definition 
additionally included self-reported heart valve problems, 
self-reported atherosclerosis, self-reported thrombosis, 
self-reported aneurysm, narrowing carotids, atrial fibril-
lation with drugs or  CHA2DS2-VASc (congestive heart 
failure, hypertension, age ≥ 75 (doubled), diabetes melli-
tus, prior stroke or transient ischemic attack (doubled), 
vascular disease, age 65–74, female) score > 2, and self-
reported arrhythmia.

Cardiometabolic traits
Biomarkers were measured from fasting blood samples 
at the laboratory centre of the University Medical Center 
Groningen. Skin autofluorescence was measured in 
adults during baseline visits to quantify the accumulation 
of Advanced Glycation End products in the skin. Anthro-
pometrics, including body weight, body height, and waist 
circumference, were performed by a trained research 
nurse, following the Lifelines protocol [29]. SBP and DBP 
were measured repetitively 10 times within 10  min, but 
only the average of the last 3 measurements was used for 
analysis. Details of the cardiometabolic trait measure-
ments are explained in Additional file 1: Supplementary 
Methods.

Statistical analysis
To adjust for treatment effects, 15 mmHg and 10 mmHg 
were added to the SBP and DBP values, respectively, in 
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individuals taking antihypertensive medication. This 
method has been shown to reduce bias and improve 
statistical power [30]. Also, for individuals taking lipid-
lowering medication, total cholesterol and LDL-C were 
adjusted by dividing their value by 0.8 and 0.7, respec-
tively [31]. Data was presented depending on the type of 
variables and its distribution. Continuous variables were 
presented as mean ± SD when normally distributed and 
as median and interquartile range when non-normally 
distributed. Binary cardiometabolic disorders at baseline 
were described by the number of cases and their preva-
lences. All analyses were conducted in R version 4.2.2.

Familial aggregation and co‑aggregation
Familial aggregation and co-aggregation of cardio-
metabolic disorders were quantified by the recurrence 
risk ratio (λR) introduced by Risch [32], and previously 
applied in Lifelines [13, 33]. The recurrence risk ratio 
is defined as a ratio between the risk in those with an 
affected first-degree relative (FDR) and the risk of the 
total Lifelines population, with λR > 1 indicating posi-
tive familial aggregation (i.e. elevated risk in those with 
positive family history). This λR was estimated using a 
modified, conditional Cox proportional hazards model 
applied to cross-sectional data. The modification of this 
model was performed by applying equal time-to-event 
for all participants [34]. This model was adjusted for 
age,  age2 (to account for non-linear age effects), sex, and 
accounted for within-family correlations. We repeated 
this analysis on spouses as a negative control, as spouses 
are unlikely to be genetically related and estimates of λR 
therefore represent the general influence of shared envi-
ronmental factors and/or assortative mating on cardio-
metabolic disorders.

As exploratory analyses, we performed familial aggre-
gation analyses of the six cardiometabolic disorders strat-
ified by age, sex, and familial relationship.

Heritability, genetic correlation and phenotypic correlation
Heritability  (h2) was defined as the ratio of addi-
tive genetic variance to the total phenotypic variance 
 (h2 =  VA/VP), using family pedigree as a proxy. The con-
tribution of household (or shared/common environment, 
 c2) was defined as  c2 =  VC/VP. We estimated  h2 and  c2 of 
cardiometabolic traits using residual maximum likeli-
hood-based (REML) variance decomposition under lin-
ear mixed models implemented in the ASReml-R package 
(ASReml, UK) [35]. Significance level of this estimate was 
derived from likelihood ratio tests, comparing the herit-
ability model to a model in which additive genetic vari-
ances was constrained to zero. A detailed description 
of testing the significance of genetic correlations and 

phenotypic correlations can be found in the Supplemen-
tary Methods (Additional file 1).

Bivariate REML-based variance decomposition was 
used to estimate the genetic and phenotypic correlation 
between pairs of cardiometabolic traits. Genetic correla-
tions between traits were estimated as: rG =

σA1A2
√

σ
2

A1
σ
2

A2

 , 

where σA1A2 is the estimated additive genetic covariance 
between trait x and trait y, and σ2

A1 and σ2
A2 are the esti-

mated additive genetic variances for traits x and y, 
respectively. Phenotypic correlations between pairs of 
traits were obtained from estimated phenotypic covari-
ance and variance as: rP =

σP1P2
√

σ
2

P1
σ
2

P2

 , where σP1P2 is the 

phenotypic covariance between trait x and trait y, and 
σ2

P1 and σ2
P2 is the phenotypic variance for traits x and y, 

respectively.
A rank-based inverse-normal transformation was 

applied to all variables prior to analysis. In addition, we 
performed log-transformation on non-normally distrib-
uted variables as a sensitivity analysis to further validate 
our results. All models for heritability, genetic correla-
tions, and phenotypic correlations were adjusted for age, 
 age2 and sex.

Results
Basic characteristics
Of the total of 152,723 included adult participants, 
66,695 (43.7%) had at least one cardiometabolic disorder, 
of which approximately half had multiple (≥ 2) morbidi-
ties, shown in Table  1. The prevalence of co-occurring 
cardiometabolic disorders within individuals is illus-
trated in Fig. 1. The most common comorbidities in our 
study population involved a combination of MetS and 
hypertension with a prevalence of 2.47% among the total 
participants. Given the definition of MetS, it is possible 
that MetS overlaps with other cardiometabolic disorders. 
However, this overlap is incomplete, given that 12.28% 
of MetS cases only had a single morbidity without any 
other investigated morbidities (i.e. obesity, hyperten-
sion, CVD, T2D, hypercholesterolemia), and less than 1% 
of MetS cases had all morbidities (details in Additional 
file  2: Table  S1). Meanwhile, 93.4% of participants with 
T2D had at least one comorbidity, as shown in Additional 
file 1: Fig. S1). In addition, the prevalence of all types of 
cardiometabolic disorders was expectedly higher in the 
older age group (Additional file 1: Fig. S2).

Familial aggregation
Positive familial aggregation of cardiometabolic dis-
orders is shown in Fig.  2A; having an FDR or a spouse 
affected with a certain cardiometabolic disorder associ-
ated with a higher risk of the same disorder (ranging 
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Table 1 Characteristics of the Lifelines participants (N = 162,416)

Baseline 
characteristic

All participants (N = 162,416) Adults (N = 152,723) Children (N = 9693)

N n/mean ± SD/
median (IQR)

Prevalence 
(%)

N n/mean ± SD/
median (IQR)

Prevalence 
(%)

N n/mean ± SD/
median (IQR)

Prevalence (%)

Age (years) 162,416 42.68 ± 14.92 152,723 44.63 ± 13.13 9693 11.97 ± 2.77

Gender (female) 162,416 94,428 58.1 152,723 89,340 58.5 9693 5088 52.5

Any cardiometabolic 
disorder

152,723 66,695 43.7 N/A

Single disease 152,723 35,075 23 N/A

Multi-morbidities (>1 
diseases)

152,723 31,620 20.7 N/A

Cardiometabolic disorders

One or more cardio-
vascular diseases

152,230 4526 3 N/A

 MI with drug use 
or ECG abnormali-
ties

152,230 1881 1.2 N/A

 Self-reported 
heart failure 
with drug use 
or therapy

152,230 802 0.5 N/A

 Self-reported 
cardiac surgery 
(PTCA, CABG, 
and stent posi-
tioning)

152,230 2221 1.5 N/A

 Self-reported 
stroke

152,230 1178 0.8 N/A

Type 2 diabetes 152,341 4844 3.2 N/A

Hypertension 151,342 39,645 26.2 N/A

Obesity 152,588 23,861 15.6 N/A

Hypercholester-
olemia

147,785 23,012 15.6 N/A

Metabolic syndrome 144,400 27,847 19.3 N/A

Cardiometabolic traits

Waist circumference 
(cm)

162,278 88.80 ± 13.48 152,588 90.16 ± 12.51 9690 67.30 ± 9.32

Body weight (Kg) 162,279 77.86 ± 17.11 152,588 79.77 ± 15.33 9691 47.70 ± 15.23

Body height (cm) 162,281 173.75 ± 10.72 152,590 174.79 ± 9.43 9691 157.50 ± 15.65

BMI (Kg/m2) 162,279 25.62 ± 4.63 152,588 26.06 ± 4.35 9691 18.72 ± 3.19

Systolic Blood Pres-
sure* (mmHg)

162,306 126.04 ± 17.53 152,628 127.29 ± 17.13 9678 106.43 ± 10.82

Diastolic Blood Pres-
sure* (mmHg)

162,306 73.96 ± 10.77 152,628 74.88 ± 10.33 9678 59.51 ± 6.28

Skin auto fluores-
cence (z-score)

83,057 1.93 ± 0.44 83,057 1.93 ± 0.44 N/A

C-reactive protein 
(mg/l)

49,924 1.2 (0.00–
247.00)

49,487 1.2 (0.0–247.0) 437 0.5 (0.20–
69.50)

Leukocyte count 
 (109/l)

155,477 5.8 (1.20–
126.60)

147,353 5.8 (1.2–126.6) 8124 5.5 (1.60–
17.40)

Total 
cholesterol*(mmol/l)

155,855 6.27 ± 1.27 147,658 6.33 ± 1.26 8197 5.10 ± 0.85

Triglycerides 
(mmol/l)

155,855 0.96 (0.01–
37.31)

147,658 0.98 (0.01–
37.31)

8197 0.65 (0.11–
8.11)

HDL cholesterol 
(mmol/l)

155,854 1.49 ± 0.39 147,657 1.49 ± 0.40 8197 1.55 ± 0.33
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from λFDR: 1.23 (95% CI 1.20–1.25) for hypertension, to 
λFDR: 2.48 (95% CI 2.15–2.86) for T2D; and ranging from 
λspouse: 1.04 (95% CI 1.00–1.08) for hypercholesterolemia, 
to λspouse: 1.92 (95% CI 1.83–2.01) for obesity; details in 
Additional file 2: Table S2). In general, the recurrence risk 
ratios in individuals with an affected FDR were substan-
tially higher than the recurrence risk ratios in individuals 
with an affected spouse (λFDR > λspouse). The exception was 
obesity, for which there was a modestly lower recurrence 
risk ratio among FDR than spouses (λFDR: 1.85 (95% CI 

1.79–1.91) < λspouse: 1.92 (95% CI 1.83–2.01)). In addition 
to these analyses, we also calculated the familial aggrega-
tion of extended CVD and found slightly lower familial 
aggregation of this extended CVD compared to the origi-
nal CVD (λFDR: 1.22 (95% CI 1.16–1.28) and λspouse: 1.08 
(95% CI 1.01–1.15) for extended CVD, λFDR: 1.53 (95% 
CI 1.26–1.84) and λspouse: 1.17 (95% CI 0.97–1.41) for the 
original CVD; details in Additional file 2: Table S3).

Additionally, we performed exploratory stratified famil-
ial aggregation analysis to examine possible differential 

Table 1 (continued)

Baseline 
characteristic

All participants (N = 162,416) Adults (N = 152,723) Children (N = 9693)

N n/mean ± SD/
median (IQR)

Prevalence 
(%)

N n/mean ± SD/
median (IQR)

Prevalence 
(%)

N n/mean ± SD/
median (IQR)

Prevalence (%)

LDL cholesterol* 
(mmol/l)

155,845 4.43 (0.17–
18.86)

147,648 4.57 (0.14–
18.86)

8197 3.29 (0.14–
10.29)

Apolipoprotein 
A (mmol/l)

42,103 1.54 ± 0.27 41,751 1.54 ± 0.27 352 1.40 ± 0.20

Apolipoprotein B 
(mmol/l)

42,090 0.92 ± 0.24 41,738 0.93 ± 0.24 352 0.64 ± 0.16

HbA1c (%) 154,818 5.50 (2.50–
16.40)

146,755 5.50 (2.50–
16.40)

8063 5.40 (2.80–
15.00)

Fasting blood glu-
cose (mmol/l)

151,530 4.90 (1.90–
24.40)

143,640 4.90 (1.90–
24.40)

7890 4.60 (2.00–
18.30)

CABG: coronary artery bypass graft; MI: myocardial infarction; N/A: not available; PTCA: percutaneous transluminal coronary angioplasty
* Values are adjusted for anti-hypertensive or lipid-lowering medication. For systolic blood pressure 15 mmHg was added and for diastolic blood pressure 
10 mmHg was added in individuals taking anti-hypertensive medication, while total cholesterol was divided by 0.8 and LDL cholesterol were divided by 0.7 in 
individuals taking lipid lowering medication

Fig. 1 Upset plot showing the overlap in the prevalence of cardiometabolic disorders. The bars in the lower left panel show the total number 
of cases of each cardiometabolic disorder. The connected black dots in the matrix panel below represent the combination of multiple 
cardiometabolic disorders in participants, while a single dot without connection to others indicates a single morbidity in participants. The 
upper bars, representing the intersection size, show the number of individuals with cardiometabolic disorders and its comorbidities highlighted 
by the connected black dots in the matrix panel below
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Fig. 2 Familial aggregation (A) and co-aggregation of cardiometabolic disorders among first-degree relatives (B) and spouses (C), adjusted for age, 
 age2, and sex. Intensity of the colours in figure B and C indicates the magnitude of recurrence risk ratio for cardiometabolic disorders indicated 
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Page 8 of 14Triatin et al. Cardiovascular Diabetology          (2023) 22:282 

effects of kinship type (affected sibling vs. affected off-
spring vs. affected parent), sex (men vs. women), and 
age (age < 40 vs. 40–60 vs. > 60 years). The group with ≥ 1 
affected offspring showed the highest recurrence risks, 
followed by the group with ≥ 1 affected sibling. The 
group with ≥ 1 affected parent showed the lowest recur-
rence risks (details in Additional file  2: Table  S6). Sex-
stratified analyses did not show differences in recurrence 
risks between men and women (details in Additional 
file 2: Table S7). Age stratification showed generally simi-
lar recurrence risks across age categories. Only recur-
rence risk of T2D in the group age < 40 seemed higher 
than in older age categories, although this estimate is 
relatively imprecise and possibly inflated due to low T2D 
prevalence in this category (details in Additional file  2: 
Table S8).

Familial co‑aggregation
All pairs of cardiometabolic disorders showed positive 
familial co-aggregation among FDR (Fig.  2B), as well as 
spouses (Fig. 2C); either having FDR or a spouse affected 
with a certain cardiometabolic disorder conferred a 
higher risk of other cardiometabolic disorders. Signifi-
cantly elevated recurrence risks of MetS, obesity, and 
T2D were observed among individuals with a first-degree 
relative affected by MetS, obesity, or T2D. Although the 
co-aggregation of the disorders was positive in both FDR 
and spouses, most of the co-aggregation of the disorders 
between FDR were higher than spouses (λFDR > λspouse). 
In spouses, obesity showed a higher co-aggregation with 
other disorders than in FDR. This higher co-aggrega-
tion in spouses than in FDR was also observed in pairs 
of CVD-MetS and CVD-T2D. In addition, using the 
extended CVD definition resulted in positive familial co-
aggregation, yet with a lower lambda compared to the 
original CVD definition (from λFDR: 1.06 (95% CI 1.02–
1.10) for hypercholesterolemia to λFDR: 1.12 (95% CI 
1.08–1.16) for MetS, and from λspouse: 1.05 for hyperten-
sion to λspouse: 1.16 for obesity and T2D; details in Addi-
tional file 2: Table S3). Unexpectedly, for extended CVD 
we observed no familial co-aggregation of risk of T2D 
(λFDR: 1.00 (95% CI 0.92–1.08)).

We estimated λR of cardiometabolic disorders in FDR 
and spouses affected with one or more cardiometabolic 
disorders (i.e. ‘any cardiometabolic disorders’). We found 
a similar co-aggregation pattern, that is, those with a FDR 
with any cardiometabolic disorders had a higher recur-
rence risk (1.13 for both obesity and hypertension to 
1.17 for T2D; see Additional file 2: Table S2), which were 
higher than for spouses (λspouse 1.08 for hypertension and 
T2D).

Heritability
Cardiometabolic traits had moderate levels of heritability 
 (h2

CRP: 0.26 to  h2
HDL: 0.50). Heritability explained much 

more variance than the shared environment in each car-
diometabolic trait  (c2

Apolipoprotein B: 0.02 to  c2 Skin autofluores-

cence: 0.18; see Fig. 3, details in Additional file 2: Table S4). 
Together with a substantial heritable component, BMI 
and waist circumference had the largest estimates for the 
shared environmental variance component (i.e.,  c2: 0.17) 
compared to other cardiometabolic traits. Furthermore, 
we performed sensitivity analysis using traditionally 
log-transformed cardiometabolic traits, yielding similar 
results (Additional file 1: Fig. S3).

Phenotypic and genetic correlation
Cardiometabolic traits showed a wide range of pheno-
typic (range from  rP HDL-Triglyceride: − 0.47 to  rP Apolipoprotein 

B-LDL and  rP total cholesterol-LDL: 0.91) and genetic correla-
tions (range from  rG HDL-Triglyceride: − 0.53 to  rG Apolipoprotein 

B-LDL: 0.94), as shown in Fig.  4. Additional information 
can be found in Table S5 in Additional file 2. When we 
applied unsupervised hierarchical clustering, these cor-
relations showed strong clustering of traits: (1) HDL 
cholesterol and apolipoprotein A, and (2) LDL choles-
terol, apolipoprotein B, and total cholesterol. A third 
cluster included the remaining traits. Within this cluster, 
increased clustering was seen between obesity traits (i.e., 
BMI and waist circumference) and blood pressure traits 
(i.e., SBP and DBP). Although included in the third clus-
ter together with other non-lipid traits, phenotypic cor-
relations between skin autofluorescence and other traits 
were practically absent. In addition, weak-to-moderate 
genetic correlations were identified between triglycer-
ides with glucose markers, blood pressure, and obesity 
markers (from  rG Triglyceride-HbA1c: 0.16 to  rG Triglyceride -waist 

circumference: 0.30). We also explored the environmental 
correlations across various cardiometabolic traits (Addi-
tional file 1: Fig. S4, details in Additional file 2: Table S5).

Discussion
In this study, we aimed to estimate the genetic and envi-
ronmental contribution to the co-occurrence of car-
diometabolic disorders and traits within families, using 
objective measurements in a large multi-generational 
family study. We quantified the familial (co-)aggrega-
tion of six cardiometabolic disorders in first-degree rela-
tives and spouses. Individuals with a first-degree relative 
affected with one of the cardiometabolic disorders had a 
higher risk of having the same or related disorders. Simi-
larly, individuals with a spouse affected with cardiometa-
bolic disorders had a higher risk of having the same or 
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related disorders, suggesting an effect of shared environ-
mental factors and/or assortative mating. Also, we esti-
mated the heritability of fifteen cardiometabolic traits. 
These cardiometabolic traits had moderate heritability, 
indicating a role for genetics underlying the recurrence 
of cardiometabolic disorders within a family. Finally, we 
found moderate genetic correlations between cardio-
metabolic traits, suggesting genetics as an important but 
not exclusive underlying mechanism of the interrelation 
between cardiometabolic disorders.

Familial aggregation is evidence for a role of shared 
genetics and shared environment within a family in 
the occurrence of complex disorders. Positive famil-
ial aggregation of cardiometabolic disorders has been 
suggested by previous studies [10–17, 21]. Consist-
ent with the literature, our study also found positive 
familial aggregation between first-degree relatives 
although of somewhat lower magnitude. For example, 
in The Framingham Offspring Study, risks of CVD was 
approximately 2 times higher in middle-aged adults 
with at least one parent with CVD [10] and 1.5 time if 
they had at least one sibling with CVD [11]. For T2D, 
a large Danish study also identified an up to 3.4 times 
higher risk in first-degree relatives than the general 
population [36], even higher than our estimate of 2.48 
higher risk in first-degree relatives. Other studies also 

found higher familial aggregation of MetS compared to 
our recurrence risk estimate λFDR = 1.43 (95% CI 1.39–
1.48) in individuals with affected first-degree relatives. 
A large population-based study in China identified a 
two to three times higher risk of MetS in younger sib-
lings if their eldest sibling was affected by MetS [15]. 
Also, in the Tehran Lipid and Glucose Study, the risk 
of MetS was higher among offspring with affected par-
ents (OR: 2.29–4.53) [16]. A possible explanation for 
the varying aggregation estimates is the heterogene-
ity between studies due to different family relationship 
included, age diversity between studies, and differences 
in ethnicity, lifestyle, and health behaviors between 
the Netherlands and other countries. Another possible 
explanation may arise from the diverse definitions of 
different disease phenotypes. In our study, we utilized 
both an extended CVD phenotype and a narrow CVD 
phenotype, the latter encompassing four CVD types: 
myocardial infarction, heart failure, stroke, and cardiac 
surgery. We observed a slightly lower familial aggrega-
tion in the extended CVD phenotype. This difference 
could be attributed to varying levels of heterogeneity 
in the extended CVD phenotype compared to the nar-
row CVD phenotype, with the latter demonstrating 
greater homogeneity. Despite these differences, the evi-
dence converges on a major role of shared genetics in 

Fig. 3 Variance component of cardiometabolic biomarkers, adjusted for age,  age2, and sex. Y-axis indicates the estimates of variance components 
of the cardiometabolic traits indicated in the X-axis.  h2: variance of cardiometabolic traits due to genetic (Va/Vp), also known as heritability, 
 c2: variance of cardiometabolic traits due to shared (or common) environment (Vc/Vp),  e2: variance of cardiometabolic traits due to unique 
environment (Ve/Vp)
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determining cardiometabolic risk. In exploratory analy-
sis, we observed a higher recurrence risk in individuals 
with affected siblings and affected offspring when com-
pared to individuals with affected parents, although 
possibly this is driven by age differences between off-
spring and parents. However age-stratified exploratory 

analysis showed that the recurrence risk estimates were 
stable across both age and sex.

We considered recurrence risk estimates in spouses a 
negative control to those in family: given that spouses 
are unlikely to be genetically related, estimates of spousal 
recurrence reflect the effects of shared environment and/

Fig. 4 Phenotypic (A) and genetic (B) correlations between pairs of wide range of cardiometabolic traits. Dendrogram on the left side represents 
hierarchical distance between cardiometabolic traits. Clustering of cardiometabolic traits was performed using k-means clustering method, which 
generated three clusters indicated by the highlighted triangles. Phenotype and genetic correlations were adjusted for age,  age2, sex, and shared 
common environment
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or assortative mating on cardiometabolic risk. A Dan-
ish study observed around 1.5 times higher risk of T2D 
among individuals with a spouse affected with T2D [36], 
and in previous work in both Japanese and Dutch, we 
corroborated higher spousal cardiometabolic risk, for 
T2D (OR: 1.20 vs 1.59), hypertension (OR: 1.34 vs 1.45), 
and MetS (OR: 1.77 vs 1.77) in Japanese vs Dutch [37]. 
Although using the same cohort study, the estimates for 
spousal concordance in the Dutch Lifelines Population 
[37] are slightly higher than our current familial aggre-
gation estimates, which may be attributed to differences 
in the statistical approaches used to estimate the risk of 
disorders among spouses. The spousal concordance was 
related to concordance in lifestyle factors, such as physi-
cal activity, smoking, and alcohol drinking, indicative 
of potential cohabitation effects, and assortative mating 
[37–39].

We found that cardiometabolic traits had moderate 
genetic extent in which the heritability estimates are con-
sistent with those in the literature although some varia-
tion can occur due to differences in age, ethnicity, study 
design [40], and type of measurement used [41]. For 
example, slightly different estimates of heritability were 
found in a family study in a 1564 Chinese individuals 
from 494 families [20], reporting heritability of fasting 
glucose  (h2: 0.17), waist circumference  (h2: 0.26), SBP  (h2: 
0.24), DBP  (h2: 0.17), triglycerides  (h2: 0.41), HDL-C  (h2: 
0.49), LDL-C  (h2: 0.47), total cholesterol  (h2: 0.46), CRP 
 (h2: 0.38), and BMI  (h2 = 0.38). Also, a Dutch twin study 
presented moderate to high heritability for a range of car-
diometabolic traits from 0.47 for insulin level to 0.78 for 
BMI [42], with estimates typically being higher than fam-
ily studies including the present study.

Genetic similarity between first-degree relatives is 
likely to contribute to familial co-aggregation of related 
cardiometabolic disorders [21–24]. A previous study 
found that parental history of one or more CVD (i.e., 
myocardial infarction, stroke, and angina) at a younger 
age < 55  year in the father and < 65  year in the mother 
significantly increased the risk of MetS in women, with 
ORs from 1.62 to 1.84 [21]. Another family study iden-
tified increased risk of having multiple cardiometabolic 
disorders in relation to parental history of diabetes (OR: 
1.54, 95% CI 1.01–2.33) and parental history of hyper-
tension (OR 1.42, 95% CI 1.06–1.91). The risk was even 
higher when both parents were affected with hyperten-
sion or diabetes, suggesting an additive genetic effect on 
the risk of cardiometabolic disease co-occurrence [24]. 
Similarly, a population-based study in US found a higher 
risk of co-occurring cardiometabolic disorders when 
individuals had a family history of diabetes or hyperten-
sion, and only a slightly increased risk with family history 
of obesity [23]. These studies mostly found evidence for 

co-aggregation between CVD, T2D, and hypertension. 
Compared to these studies, our estimates of co-aggrega-
tion between obesity, T2D, and MetS were larger, while 
hypertension, CVD, and hypercholesterolemia showed 
only modest familial co-aggregation. A possible reason 
for this difference is that previous studies used mostly 
self-reported family history without actual validation 
with objective laboratory measures in family members.

Cardiometabolic disorders likely share pathophysi-
ological mechanisms such as inflammation and insulin 
resistance [4–6]. The high insulin resistance in obesity 
and diabetes is thought to induce inflammation, causing 
vascular damage and endothelial dysfunction. Such vas-
cular damage and dysfunction lead to increased produc-
tion of vasoconstrictors, and subsequently to an increase 
in vascular resistance, a major contributor to CVD and 
hypertension [5, 6]. Consistent with this, we found sig-
nificant phenotypic and genetic correlations between 
blood pressure, obesity traits, inflammatory markers, and 
fasting glucose, although these correlations were of mod-
est strength. In the present study, we also found modest 
genetic correlations between HDL cholesterol and tri-
glyceride with glucose markers, blood pressure, and obe-
sity, which are the traits used for the definition of MetS. 
The accumulation of Advanced Glycation End products 
has been considered a potential cross-link between dia-
betes and cardiovascular events, by increasing inflam-
mation and causing endothelial dysfunction [43, 44]. 
We found little evidence of this in the present study: we 
observed only weak correlations between skin autofluo-
rescence and other cardiometabolic traits, although their 
genetic correlations are slightly higher than the pheno-
typic correlation. Furthermore, the association of skin 
autofluorescence, CVD, and T2D in the previous studies 
in this population were independent of glucose markers 
[43, 45].

Strengths of this study are that it is the largest family 
and comprehensive study of cardiometabolic outcomes 
to date, investigating six interrelated cardiometabolic dis-
orders and fifteen intermediate cardiometabolic traits. It 
was conducted in a large-scale population-based, multi-
generational cohort, representative of the general Dutch 
population [46]. We used a combination of objective 
laboratory measurements, questionnaire data, and medi-
cation data, resulting in precise outcome definitions and 
thus precise estimates of recurrence risk and heritability. 
Our study provides insights into the genetic and/or envi-
ronmental mechanisms that underly of co-existing cardi-
ometabolic disorders within individuals and families. Our 
findings highlight the role of shared genetics and envi-
ronmental factors on the risk of cardiometabolic disor-
ders and suggests overlapping genetic structure between 
disorders. Furthermore, our estimates of recurrence risk 
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may inform clinicians and health services in diagnosis, 
patient communication, and potential screening efforts 
based on family history. However, several study limita-
tions need to be addressed as well. Firstly, only data were 
available on family members participating in Lifelines. 
Missing data on non-participating family members may 
have caused underestimation of recurrence risk and her-
itability. Secondly, although largely representative of the 
Dutch population Lifelines predominantly consists of 
Dutch participants; generalization to other ancestries 
and maybe even to other European populations is there-
fore uncertain.

Conclusion
To conclude, in our large multi-generational family study, 
cardiometabolic disorders show positive (co-)aggregation 
within families and to a lesser extent between spouses. 
We found moderate heritability for a wide variety of 
intermediate cardiometabolic traits and moderate genetic 
correlations between traits. These results suggest that 
genetic factors are an important but moderate contribu-
tor to the co-occurrence of cardiometabolic traits. We 
find evidence for a strong contribution of shared environ-
mental factors, especially for obesity. To further elucidate 
potential mechanisms for co-aggregation, future studies 
may focus on identifying the shared genetic factors, the 
specific shared environmental risk factors, and potential 
gene-environment interaction.
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