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Abstract 

Background Diabetes mellitus (DM), heart failure (HF) and metabolic dysfunction associated steatotic liver disease 
(MASLD) are overlapping diseases of increasing prevalence. Because there are still high numbers of patients with HF 
who are undiagnosed and untreated, there is a need for improving efforts to better identify HF in patients with DM 
with or without MASLD. This study aims to develop machine learning (ML) models for assessing the risk of the HF 
occurrence in patients with DM with and without MASLD.

Research design and methods In the Silesia Diabetes-Heart Project (NCT05626413), patients with DM 
with and without MASLD were analyzed to identify the most important HF risk factors with the use of a ML approach. 
The multiple logistic regression (MLR) classifier exploiting the most discriminative patient’s parameters selected 
by the χ2 test following the Monte Carlo strategy was implemented. The classification capabilities of the ML models 
were quantified using sensitivity, specificity, and the percentage of correctly classified (CC) high- and low-risk patients.

Results We studied 2000 patients with DM (mean age 58.85 ± SD 17.37 years; 48% women). In the feature selection 
process, we identified 5 parameters: age, type of DM, atrial fibrillation (AF), hyperuricemia and estimated glomerular 
filtration rate (eGFR). In the case of MASLD( +) patients, the same criterion was met by 3 features: AF, hyperuricemia 
and eGFR, and for MASLD(−) patients, by 2 features: age and eGFR. Amongst all patients, sensitivity and specificity 
were 0.81 and 0.70, respectively, with the area under the receiver operating curve (AUC) of 0.84 (95% CI 0.82–0.86).

Conclusion A ML approach demonstrated high performance in identifying HF in patients with DM indepen-
dently of their MASLD status, as well as both in patients with and without MASLD based on easy-to-obtain patient 
parameters.
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Graphical Abstract

Background
In 2020, the concept of metabolic-associated fatty liver 
disease (MAFLD) has been proposed by an interna-
tional expert consensus [1] to acknowledge the broader 
metabolic context of non-alcoholic fatty liver disease 
(NAFLD). The global prevalence of NAFLD has been 
reported to reach 30.1% [2], and prevalence of MAFLD 
is approx. 39% [3]. MAFLD shares many of the char-
acteristics of NAFLD, but its definition highlights the 
importance of considering the entire spectrum of meta-
bolic abnormalities, which may have a major impact on 
cardiovascular risk. Recognizing the link to wide spec-
trum of metabolic abnormalities and avoiding the stig-
matizing word “fatty“, the nomenclature was recently 
been changed and MAFLD has now been replaced by 
metabolic dysfunction associated steatotic liver disease 
(MASLD) [4]. A diagnosis of MASLD is established upon 
meeting one of five cardiovascular risk criteria, diverg-
ing from the diagnostic approach for MAFLD, which 
required two out of seven metabolic dysfunctions.

Cardiovascular disease (CVD) risk is increased in 
patients with NAFLD which has a well-established 
association with metabolic syndrome [5]. Diabetes mel-
litus (DM) plays an essential role in MAFLD diagnosis, 

serving as one of the criteria for its classification and a 
key risk factor for its progression [6]. The international 
multidisciplinary consensus statement on MAFLD and 
the risk of CVD stresses the importance of diagnosing 
CVD in patients in MAFLD and assessing for MAFLD in 
patients with CVD [7].

In recent meta-analyses, MAFLD was also associated 
with left ventricular diastolic and systolic dysfunction 
[8, 9], strengthening the evidence for interconnection 
between MAFLD and CVD. Despite the high prevalence 
of heart failure (HF) [10], diagnosing HF presents a chal-
lenge due to its non-specific symptoms and signs in clini-
cal practice [11]. Data on undiagnosed HF are not easy 
to obtain, and in up to half HF cases an accurate diagno-
sis may be missed [12]. Indeed, the majority of the exist-
ing tools created for predicting incident HF are based on 
the general population [13–15]. Within the DM popula-
tion, a limited number of tools have been developed for 
effective HF screening, but numerous ones are devoted 
to prediction of incident HF [16]. Importantly, these 
models did not take into account MASLD as one of risk 
modifiers, thereby potentially limiting their utility among 
those affected with this condition. Given the number of 
patients with DM, the growing prevalence of MAFLD 
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[17] and its impact on HF risk [8, 9], accurate approaches 
that can identify patients who are at a high risk of HF in 
patients with DM are needed, which may facilitate diag-
nostic accuracy and treatment planning, ultimately pro-
moting better health outcomes.

Machine learning (ML) techniques have demonstrated 
potential in identifying patients at an elevated risk for 
incident HF [18]. We have previously reported a pro-
spective study of patients with DM, where the multiple 
logistic regression (MLR) classifier was successful in 
identifying MAFLD patients with prevalent CVD based 
on easy-to-obtain parameters [19]. The current study 
builds upon our previous work, focusing this time on 
the identification of patients at high risk of HF. By select-
ing risk factors and creating techniques separately for 
patients with and without MASLD, we aimed to highlight 
the unique phenotypes of HF patients, which may vary 
based on the presence of MASLD.

In the presented study, we focused on the recently 
established nomenclature of MASLD, but as the termi-
nology is new, in the manuscript we have had to refer 
to studies examining MAFLD given that those studying 
MASLD are not available as yet. The primary objective 
of this study was to develop and validate ML models for 
assessing the risk of the HF occurrence in patients with 
DM, amongst those with and without MASLD.

Research design and methods
Study design
This was an ancillary study as part of the Silesia Diabe-
tes-Heart Project (registered on ClinicalTrials.gov with 
identifier NCT05626413), as previously detailed [20]. 
It was a single-center, observational study dedicated to 
examining patients with DM, who were hospitalized in 
the diabetology ward in Zabrze, Poland, from January 
2015 to September 2020. Inclusion criteria consisted of 
patients aged ≥ 18 years old, with the diagnosis of either 
type 1 DM (T1DM) or type 2 DM (T2DM). The exclusion 
criteria were the terminal stages of cancer or in-hospital 
death. The analysis reported in this work is cross-sec-
tional and only baseline data obtained during hospital 
stay were considered for MASLD and HF ascertainment.

Ethical approval
Upon hospitalization, every patient signed consent forms, 
henceforth, additional consent was deemed unnecessary 
as the data analyzed was from an anonymized registry. 
This study received approval from the Medical Univer-
sity of Silesia Ethics Committee (PCN/0022/KB/126/20) 
and was conducted in accordance with the Declaration 
of Helsinki. Any tests and procedures employed during 

hospitalization were standard of medical care, and they 
would have been performed regardless of this study.

Definition of heart failure
The diagnosis of HF was based on medical documenta-
tion of a previous HF diagnosis when there was sufficient 
evidence from medical records. Additionally, the diagno-
sis was made if new symptoms, signs, and structural or 
functional impairment of the heart was detected by echo-
cardiography during hospitalization, based on the guide-
lines of the European Society of Cardiology [21]. New HF 
was diagnosed by an experienced consultant cardiologist 
who used all available diagnostic information to decide 
on the presence or absence of HF. Echocardiography was 
performed using the ARIETTA 750 ultrasound system 
(Hitachi) outfitted with a S121 transducer.

MASLD diagnosis
MASLD was diagnosed through hepatic ultrasonog-
raphy showing evidence of steatosis, coupled with 
at least one of the following criteria: T2DM or over-
weight or obesity (BMI ≥ 25  kg/m2), or blood pres-
sure ≥ 130/85 mmHg or specific drug treatment, plasma 
triglycerides ≥ 1.7  mmol/L or lipid lowering treatment 
[4]. The ultrasonography examinations were conducted 
by certified radiology specialists using an ARIETTA 
750 ultrasound system (Hitachi) equipped with a C253 
transducer.

Anthropometric measures, vital signs assessment 
and biochemical assays
Height (in meters) and weight (in kilograms) of each 
participant were recorded at the time of discharge using 
standardized methods, and their body mass index (BMI) 
was calculated as weight divided by the square of their 
height (kg/m2). Blood pressure and heart rate were moni-
tored during the entire hospital stay, and the mean blood 
pressure and heart rate was calculated from these meas-
urements. Blood and urine samples for biochemical tests 
were collected during the hospitalization period accord-
ingly to the patient’s medical condition. An overview 
of biochemical methods used in this study have been 
described previously [20].

Definitions of metabolic diseases
Obesity was defined based on BMI of 30 kg/m2 or more, 
and being overweight as BMI between 25 and 29.9  kg/
m2. Diagnoses of T1DM 1and T2DM were based on 
prior medical history. New DM diagnoses arising dur-
ing hospitalization adhered to the criteria set forth in the 
guidelines of the American Diabetes Association and Dia-
betes Poland that were operative at the time of patient’s 
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hospitalization [22, 23]. Hypercholesterolemia was con-
firmed in cases where there was a documented medical 
history, newly discovered plasma total cholesterol lev-
els ≥ 5  mmol/L, or if the patient was on statin therapy. 
Due to the lack of routine measurement of high and low-
density lipoprotein during the hospital stay, it was not 
considered as a diagnostic parameter for hypercholes-
terolemia. Hypertriglyceridemia was confirmed in cases 
where there was a documented medical history, newly 
recognized plasma triglyceride levels ≥ 1.7 mmol/L, or if 
the patient was on fibrate therapy. Estimated glomerular 
filtration rate (eGFR) was calculated based on CKD-EPI 
(Chronic Kidney Disease Epidemiology Collaboration) 
equation based on the serum creatinine concentration 
[24]. Hyperuricemia was considered in patients with 
a documented medical history of the condition, or uric 
acid concentration that exceeded 6  mg/dl (360  µmol/L) 
in women and 7 mg/dl (420 µmol/L) in men.

Definitions of cardiovascular diseases
Arterial hypertension was identified in case of a systolic 
blood pressure of 140 mmHg or higher, a diastolic blood 
pressure of 90 mmHg or higher, or treatment with anti-
hypertensive medications. The presence of coronary 
artery disease was determined by either its confirmation 
through angiography, a history of myocardial infarction, 
or coronary artery bypass grafting. Atrial fibrillation (AF) 
was detected based on electrocardiogram (ECG) readings 
(12-lead ECG, 24-h ECG Holter, or other electrocardio-
graphic documentation).

Diabetes complications
Diabetic foot disease was confirmed by the presence of 
infection, ulceration, or damaged tissues of the foot. 
Diabetic peripheral neuropathy was diagnosed based on 
feet examination and symptoms of nerve dysfunction 
manifested by inability to sense vibration, temperature, 
or touch. Diabetic retinopathy was ascertained based on 
fundus examination during hospitalization or based on a 
documented medical history.

HF risk factors in patients with DM in relation to MASLD 
using ML
Identifying high risk of HF in patients with DM was per-
formed based on the analysis of 52 parameters belong-
ing to several categories: demographic (2 parameters), 
clinical (diabetes-related) (3), diabetes-related vascular 
disease (9), diabetic complications (3), general (3), con-
comitant diseases (4), and laboratory parameters (28) 
(Additional file 1: Table S1)—see a high-level data analy-
sis flow of the entire pipeline in Fig. 1. Missing data were 
imputed using a regularized version of the factorial anal-
ysis for mixed data algorithm [25], which is based on an 

idea of balancing the impact of all the variables that are 
continuous and categorical while elaborating the dimen-
sions of variability. The process of missing data impu-
tation preceded the feature selection procedure and 
training a ML model for identifying high-risk patients.

Determining the most discriminative patients’ parameters 
using feature selection
The most discriminative parameters were determined for 
(i) all patients participating in this study; for the patients 
(ii) with (MASLD( +)) and (iii) without [MASLD(−)] 
MASLD. This process was performed using the χ2 test 
analysis. In order to identify a stable set of the most 
important parameters, feature selection was repeated 
1000 times following the Monte Carlo approach, with 
a random selection of 80% of patients, with and with-
out HF, for each of the considered scenarios, i.e., for 
all patients, as well as for the MASLD( +) and for 
MASLD(−) subgroups (Fig. 1). The predictors for which 
the p-values determined by the χ2 test had a value lower 
than 0.05, being our threshold for statistical significance 
in this analysis, were considered significant in each itera-
tion of the Monte Carlo analysis (those iterations are 
independent of each other). The final three sets of fea-
tures for each scenario included only those features that 
were identified in all 1000 Monte Carlo iterations.

ML classifiers for identifying patients at a high HF risk
The three sets of most discriminative parameters were 
used to predict HF occurrence in each of the scenarios by 
training MLR models, as we focus on the binary predic-
tion outcome (a patient being either a high- or low-risk 
one) with predictors which may be either categorical or 
continuous. Also, MLR models are known to be easy to 
interpret yet efficient in training and reduce the effect of 
confounding factors [26]. For each MLR model, the cut-
off value was determined based on the receiver operat-
ing characteristic curve (ROC) analysis using the Index 
of Union technique, which aims at maximizing both sen-
sitivity and specificity while determining the cut-point 
[27]. The capabilities of the ML models were quantified 
using sensitivity, specificity, and the percentage of cor-
rectly classified (CC) high- and low-risk patients. We 
also determined the ROC curves and calculated the area 
under each curve (AUC) along with their 95% confidence 
intervals (95% CI). Decision curve analysis (DCA) was 
used to assess the clinical utility of the proposed solu-
tions. In addition, we evaluated the MLR models over an 
independent test set of patients (i.e., those patients were 
never used while training ML models). Statistical analy-
sis and ML techniques were implemented in MATLAB 
R2023a (feature section: fscchi2 function from the Sta-
tistics and Machine Learning Toolbox, version 2023a; 
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MLR models: fitglm function from the Statistics and 
Machine Learning Toolbox, version 2023a), whereas the 
data imputation technique was implemented in RStudio 
(Build 492) using the imputeFAMD function from the 
missMDA package (version 1.11).

Results
There were 2000 patients with DM (mean age 58.85 ± SD 
17.37 years; 48% women) in the eligible population (Addi-
tional file  1: Figure S1).Among them we distinguished 
a subset of 1735 ones (Dataset A) (Additional file  1: 

Table  S1) to select the most discriminative features and 
build MLR models (to ensure consistency with our previ-
ous work [20]), while the remaining 265 patients (Data-
set B) –, Additional file 1: Table S2) were treated as a test 
set to verify the generalization of the MLR models. For 
all ML models, the Model Operating Points were selected 
using the Index of Union method (of note, although there 
exist other approaches toward selecting the cut-point 
value in the ROC analysis [28, 29], exploiting the Youden 
index and the closest to (0, 1) criteria led to obtaining 
models of similar classification performance—see Addi-
tional file 1: Table S4). In this analysis, only the baseline 
patient’s data was exploited.

Fig. 1 Data analysis flowchart
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In the Dataset A, 370 (21%) patients had T1DM and 
1365 (79%) had T2DM, whereas HF was reported in 
317 (18%) patients. MASLD was diagnosed in 991 (57%) 
patients. In the Dataset B, there were 58 (22%) with 
T1DM and 207 (78%) with T2DM, with HF reported in 
49 (18%) patients. In this dataset, MASLD was diagnosed 
in 137 (52%) patients.

Feature selection scenarios
Three feature selection scenarios resulted in 3 sets of 
the most discriminative predictors. For all patients from 
Dataset A, i.e., without knowing if they are MASLD( +) 
or MASLD(−), the set of selected features included 5 
parameters: age, type of DM, AF, hyperuricemia and 
eGFR (see the values of the discriminative predictors 
for Dataset A in Table 1, Additional file 1: Table S1 and 
Fig. 2; and for Dataset B in Additional file 1: Table S2 and 
Additional file 1: Figure S2). For MASLD( +) patients, the 
same criterion was met by 3 features: AF, hyperuricemia 
and eGFR, and for MASLD(−) patients, by 2 features: 
age and eGFR (Fig. 2). The statistically significant differ-
ences were consistently manifested in both datasets. Of 
note, maintaining such small numbers of discrimina-
tive predictors is of paramount practical importance, as 

ML models trained over the reduced feature sets are less 
likely to overfit (when compared e.g., to MLR models 
operating over all 52 predictors), and may better general-
ize over different datasets [30].

MLR model exploiting 5 predictors
In Dataset A, in scenario (i) (i.e., 5 parameters deter-
mined for all patients), 256/317 (80.76%) patients with 
confirmed HF, and 995/1418 (70.17%) without HF were 
correctly classified, hence 1251/1735 (72.10%) patients 
were identified correctly (Table 2). Sensitivity and speci-
ficity were 0.81 and 0.70, further confirming the ML 
model capabilities. Evaluation of the classifier using the 
ROC curves (Fig.  3a) gives AUC of 0.84 (95% CI 0.82–
0.86). The analysis of clinical utility using DCA (Fig. 3b) 
indicates that in the range of 7% to 39% of the threshold 
probability, the net benefit of the MLR model based on 5 
predictors was higher compared to alternative treatment 
strategies (treatment none and all patients).

MLR model exploiting all (52) predictors
Fitting the MLR model over all (n = 52) predictors 
resulted in AUC: 0.96 (95% CI 0.94–0.97), with 302/317 
(95.27%) and 1188/1418 (83.78%) of high- and low-risk 

Table 1 The most discriminative features (for the Dataset A) in individual scenarios (i) all patients: red; (ii) MASLD( +): blue; and (iii) 
MASLD(−) patients: yellow

The mean value ± standard deviation (SD) with the median (in parentheses) was determined for each of the analyzed continuous parameters. In the case of binary 
parameters, we determined the sum of 1 s and the percentage of all observations in the analyzed group. Individual comparisons of features between the groups with 
and without heart failure were performed by the Mann–Whitney U test (for continuous parameters) or the χ2 test (for binary)
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Fig. 2 The distributions of the most discriminative features (a–o) selected for (i) all patients, and (ii) MASLD( +) and (iii) MASLD(−) patients 
only from subset of Dataset A. The bar plots present the percentages calculated with respect to the entire set of either 1735 or 265 patients (Dataset 
A and Dataset B, respectively)
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patients correctly identified, amounting to 1490/1735 
(85.88%) correctly classified patients. Testing this MLR 
model (fitted over all parameters) on Dataset B allowed 
us to correctly classify 198/265 (74.72%) patients, with 
40/49 (81.63%) high- and 158/216 (73.15%) low-risk HF 
patients correctly identified. For this subset, AUC was 
0.84 (95% CI 0.79–0.90).

Although the classification performance is consist-
ent across the datasets, the MLR model operating on 52 
patients’ parameters is much more likely to overfit when 
compared to our models exploiting 5, 3 or 2 most dis-
criminative predictors (depending on the classification 
scenario), and may not be generalizable across different 
cohorts [30]. The predictive performance of the model 
operating on 52 patients’ parameters may be related to 
“memorizing” some intrinsic characteristics of the data-
set—this is much less likely to happen if the number of 
parameters is kept small, as shown in [30]. Also, apply-
ing this model in practice is significantly more challeng-
ing, as it would require ensuring that all 52 parameters 
are consistently collected for the incoming patients (in 
contrast to up to 5 parameters utilized by our other MLR 
models, which could be done much faster in a day-to-day 
clinical practice).

MLR models specializing in the MASLD( +) and MASLD(−) 
subgroups
For MASLD( +) patients (n = 991) of Dataset A, the MLR 
model operating on 3 parameters correctly identified 
134/194 (69.07%) patients with and 595/797 (74.65%) 
patients without HF, resulting in 729/991 (73.56%) cor-
rect predictions. While comparing it to the 765/991 
(77.19%) correctly classified MASLD( +) patients (as 
those with and without HF) using the MLR model based 
on 5 features selected in scenario (i), there was a similar 
overall classification performance of MLR using fewer 
features (Table 2), and the higher numbers of true posi-
tives as well false positives, i.e., the patients incorrectly 
identified as the high-risk ones. AUC of this model was 
0.78 (95% CI 0.75–0.81) (Fig.  3a), and DCA indicates a 

net benefit of the proposed solution in the range of 9% to 
41% of the threshold probability when compared to the 
all or none treatment strategies (Fig. 3b).

In the MASLD(−) subgroup analysis of Dataset A 
(744 patients), the MLR model was built using only 
two features, and correctly identified 103/123 (83.74%) 
patients with HF, and 437/621 (70.37%) without HF, 
which resulted in 540/744 (72.58%) correct predictions 
(Table  2). AUC of this model amounted to 0.84 (95% 
CI 0.81–0.87) (Fig.  3a) with a net benefit ranging from 
5 to 37% compared to the all or none treatment strate-
gies (Fig. 3b). The comparison of the MLR model operat-
ing on 2 features with the model operating on 5 features 
(over the same subgroup of patients) shows that the latter 
approach delivers better overall classification (Table 2).

Validation of MLR models using dataset B
The MLR models for the three considered scenarios 
were evaluated using an independent Dataset B (n = 265; 
see the feature values in Additional file  1: Table  S3). 
Here, 192/265 (72.45%) patients were correctly classi-
fied using 5 features (AUC of 0.83, 95% CI 0.77–0.88 
with the clinical benefit of 7%-39% according to DCA), 
with 39/49 (79.59%) and 153/216 (70.83%) MASLD( +) 
and MASLD(−) patients correctly identified as those 
with high HF risk (Additional file  1: Table  S5). These 
results are consistent with those obtained for Dataset A 
(n = 1735) (Table  2). Subgroup evaluation of the mod-
els showed that in scenario (ii), where a specialized ML 
model for MASLD( +) patients operating over 3 features 
was built (AUC of 0.67, 95% CI 0.58–0.76 with the clini-
cal benefit of 13%-45% according to DCA), the model 
tended to classify more healthy patients as those with 
high HF risk (leading to false positives), when compared 
to the 5-feature model. In the MASLD(−) subgroup, 
there were no differences between the models based on 
(i) 5 and (iii) 2 features, suggesting that the model requir-
ing less predictors should be used—AUC was 0.87 (95% 
CI 0.81–0.94), while the clinical benefit ranged from 4 to 
38% according to DCA (Fig. 3c, d).

Table 2 Results of predicting the occurrence of HF using three MLR models based on the most discriminative features, extracted for 
(i) all patients, (ii) MASLD( +) patients, and (iii) MASLD(−) patients of Dataset A

The best results in the subgroup analysis are boldfaced

Method Sensitivity Specificity CC with event [%] CC without event 
[%]

CC All [%]

(i) All (5 parameters) 0.81 0.70 80.76 70.17 72.10

(i) MASLD( +) subgroup (5 parameters) 0.68 0.80 67.53 79.55 77.19
(ii) MASLD( +) subgroup (3 parameters) 0.69 0.75 69.07 74.65 73.56

(i) MASLD(−) subgroup (5 parameters) 0.84 0.74 83.74 74.07 75.67
(iii) MASLD(−) subgroup (2 parameters) 0.84 0.70 83.74 70.37 72.58
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Fig. 3 ROC curves and Decision Curve Analysis. ROC curves (a, c) obtained using the MLR models fitted to the most discriminative features 
determined for all patients, MASLD( +), and MASLD(−) together with the values of the areas under them. DCA curves (b, d) were estimated for each 
case to assess the clinical utility of the proposed classifiers. Columns a and b present results obtained for the Dataset A (1735 patients), and c, d 
show the results obtained for the Dataset B (265 patients)
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Discussion
In this analysis, our principal findings are as follows: 
(1) HF in patients with DM can be effectively identified 
with the use of a small subset of the most discriminative 
parameters exploited to build a MLR model; (2) in gen-
eral population of patients with DM regardless of their 
MASLD status, utilizing 5 clinical parameters which 
are easy-to-obtain in clinical practice (age, type of DM, 
AF, hyperuricemia, and eGFR) was enough to identify 
patients who have concomitant HF; (3) in patients with 
DM and comorbid MASLD, using only three parameters 
(AF, hyperuricemia, and eGFR) was enough to identify 
patients who present with HF; and (4) in patients with 
DM without comorbid MASLD, using only two clinical 
parameters (age and eGFR) allowed to identify patients 
who have HF.

Several acknowledged risk factors for incident HF in 
DM include older age, longer duration of DM, cumula-
tive glycemic burden, higher BMI, atherosclerotic dis-
ease, elevated urinary albumin concentration, impaired 
renal function and hypertension [33, 34]. However, these 
risk factors cannot provide more personalized informa-
tion about the risk of HF in a particular patient with 
DM because—for a clinician—it would be essential to 
know the exact constellation of parameters which indi-
cate the high probability that a patient who has just been 
referred for the first time is at high risk of HF and should 
be diagnosed with this disease. Our study suggests that 
this answer could be obtained from the ML models. In 
general population of patients with DM independently 
of the MASLD status, the model operating on 5 features 
achieved high predictive performance in identifying 
patients with HF.

Our findings provide practical and easy to implement 
information about the risk factors of HF in patients with 
DM. Specifically, eGFR is negatively associated with the 
risk of HF, and others are positively associated with the 
HF risk, i.e., T2DM rather than T1DM, age, AF, and 
hyperuricemia. Several predictive models have surfaced 
in recent years that aimed to assess the risk of incident 
HF in individuals with DM, utilizing a range of factors. 
Williams et  al. drew from electronic medical records to 
pinpoint predictors of HF hospitalization, including age, 
coronary artery disease, blood urea nitrogen, AF, and 
hemoglobin A1c (HbA1c), among others [33]. Mean-
while, Hippisley-Cox’s QRISK score discerned a series 
of parameters including systolic blood pressure, ethnic-
ity, DM duration, type of DM and AF [34]. A post-hoc 
analysis of the PROactive study formulated a risk score, 
highlighting predictors such as age, elevated serum 
creatinine, diuretic use, HbA1c, duration of DM, low-
density lipoprotein cholesterol, heart rate, right and 

left bundle branch block, microalbuminuria, previous 
myocardial infarction, and pioglitazone treatment [35]. 
Another study derived DM-CURE risk score, based on 
the data from the Action to Control Cardiovascular Risk 
in Diabetes (ACCORD) trial. It spotlighted age at T2DM 
diagnosis, healthcare utilization, and cardiovascular-
related variables as most substantial predictors [36]. In 
another analysis of ACCORD trial, Segar et al. [18] devel-
oped a ML-derived (random survival forest) risk score 
which—similarly to us—used readily available clinical, 
laboratory, and additionally electrocardiographic vari-
ables. Eventually, the process of feature selection resulted 
in inclusion of BMI, age, hypertension, creatinine, high-
density lipoprotein cholesterol, fasting plasma glucose, 
QRS duration, among others, as optimal predictors. Our 
predictive model for DM patients echoes many of these 
elements, including reflection of renal function by eGFR, 
but further introduces uric acid levels. The above men-
tioned models, however, were different from ours which 
aimed to show that the patient has the HF at the time of 
examination, not for predicting the future.

The subgroup analysis of patients, either with or 
without MASLD, revealed two distinct smaller sets of 
discriminative features which were subsets of 5 most 
important predictors elaborated for the entire cohort. 
This substantiates the premise that the MASLD status 
essentially splits patients with HF into unique pheno-
types, setting a basis for specialized models that can 
operate on reduced number of features. These models 
are finely tuned for specific groups of patients delineated 
based on their MASLD status, and intrinsically gain from 
this added layer of clinical data, without the loss of classi-
fication performance. Practically speaking, this allows for 
a simplified approach to HF risk assessment, using fewer 
factors but still maintaining a similar level of accuracy. To 
draw a parallel, crafting specialized models for patients 
with known MASLD status, could be compared to the 
derivation of specialized models for males and females. 
This approach allows for selection of most predictive fea-
tures that are sex-specific [37].

For the model developed specifically for patients with 
MASLD, only three clinical features were deemed most 
predictive of HF: presence of AF, hyperuricemia and 
reduced eGFR. All of them are associated with meta-
bolic syndrome and both hyperuricemia and eGFR 
are indicative of renal dysfunction. Among the pheno-
type with MASLD, the cardiometabolic multimorbidity 
makes the presence of HF much more probable, beyond 
just one’s age. Interestingly, the irrelevance of type of 
DM likely stems from low rate of HF among those with 
T1DM. On the other hand, the model created only for 
those unaffected by MASLD demonstrates only older 
age and diminished eGFR as most useful to identify HF. 
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The role of age stands pivotal, and it appears to be more 
telling than other clinical markers in identifying the HF. 
This finding is the reflection of the composite physi-
ological alterations and their consequential impact on 
cardiac health, thereby serving as the main indicator for 
HF screening in individuals without MASLD. Supporting 
this observation, pooled population-based cohort study 
revealed that although incidence of HF substantially rises 
with age, and there is a significant interaction between 
age and established risk factors for HF such as DM, myo-
cardial infarction, and AF. These risk factors conferred a 
greater risk for incident HF with either reduced or pre-
served ejection fraction in young compared to elderly 
participants. Consequently, these risk factors present a 
lower population attributable risk among the elderly [38].

Once again, as MASLD is a novel terminology, we 
have to compare our results to analysis of MAFLD and 
NAFLD. In the meta-analysis by Alon et al. there was a 
suggestion of an association of NAFLD with an increased 
risk of HF, AF, myocardial infarction and ischemic stroke 
[40] but later one by Zhou et al. highlighted a current lack 
of sufficient evidence to establish an association between 
MAFLD and AF [39]. In our study on the other hand, 
we indicated AF as one of the three factors enabling to 
detect HF among MASLD patients. Of note, eGFR was 
selected as a predictor in all of the abovementioned sce-
narios (i.e., the unknown MASLD status, and the patients 
with or without MASLD). These observations highlight 
the universality of eGFR as a marker of HF. Similarly, 
The Atherosclerosis Risk in Communities Study demon-
strated that reduced eGFR increases the risk of incident 
HF among those both with and without a history of coro-
nary heart disease [41].

Most MAFLD patients have co-existing obesity, how-
ever, MAFLD is also common in population without obe-
sity and—among these patients—there is a higher risk of 
developing CVD [42]. It has been proven that non-obese 
MAFLD patients and patients with MAFLD and DM had 
a higher risk of mortality [43]. Therefore, to improve risk 
assessment for MASLD patients, it is important to clas-
sify subgroups within the MASLD population based on 
metabolic phenotypes that consider the presence of met-
abolic disorders. Building on this need, we focused our 
study on the distinctive population with both DM and 
MASLD. This approach could be instrumental in deter-
mining the varying levels of risk among patients with 
MASLD, especially when there are no approved pharma-
ceutical treatments and lifestyle changes remain the main 
MASLD treatment option that is recommended [44, 
45]. Moreover, to improve both individualized manage-
ment and overall public health outcomes in the context 
of MAFLD, two-step screening strategy combining BMI 

and lipid accumulation product index has been recently 
proposed [46].

Validation of the models proved that they discrimi-
nated the subset of patients in Dataset B with broadly 
similar accuracy when compared to Dataset A, showing 
that the models did not overfit and are able to general-
ize well over the unseen data (overall, the classification 
capabilities of the MLR models were verified over 2000 
patients in total). For the scenario operating on 3 features 
in MASLD(+) patients and on 2 features in MASLD(−) 
patients, the model tended to classify more healthy 
patients as those having HF, while in fact they do not 
(hence, leading to false-positive detections). Fortunately, 
the predictive model for MASLD(+) individuals exhib-
ited slightly higher accuracy in correctly classifying 
patients with HF. Even though there are visible differ-
ences in cohorts with and without follow-up, the model 
could identify patients who had HF which confirms its 
generalizability.

Summarizing, we automatically selected the most dis-
criminative features from an extensive range of clini-
cal and laboratory parameters, with the aim to enhance 
the precision of HF risk evaluation in patients with and 
without MASLD using specialized ML models. Second, 
we introduced a model which could identify patients 
with a HF risk independently of their MASLD status. 
This approach opens new doors toward building cas-
caded classification systems combining the identification 
of patients with MASLD and assessing their HF risk in 
a reproducible way. Future studies should also incorpo-
rate physical activity as one of the parameters that could 
modify patients prognosis since exercise increases myo-
cardial free fatty acid oxidation in subjects with MAFLD 
what can be important in term of HF [47].

Limitations
We are aware of several limitations of our study. This was 
a single center study what may limit its generalizability. 
We did not collect the information about the cases of 
gout what could be important—e.g., as additional pre-
dictors in identifying high-risk patients. We also did not 
analyze patients’ blood lactate levels which in a recent 
real-world study turned out to be associated with an 
increased risk of MAFLD in patients with T2DM [48]. 
In our diagnosis of new onset HF, we were limited by the 
absence of natriuretic peptide measurements, vital in 
cases of HF with preserved ejection fraction. Addition-
ally, we were not able to phenotype HF based on ejec-
tion fraction, due to the lack of echocardiography data 
for some of the patients. Finally, although MLR models 
offer high-quality classification and generalized over 
unseen patients’ data, deploying other well-established 
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ML techniques [49] also including deep ML classifiers 
[50] could further improve the classification performance 
of the proposed pipeline.

Conclusion
Older age, T2DM, AF, hyperuricemia and lower eGFR 
discriminate patients who are at a high HF risk. A ML 
approach demonstrated high performance in identify-
ing HF in patients with DM, as well as both in patients 
with and without MASLD based on easy-to-obtain 
parameters.
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