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Abstract 

Background Stroke was reported to be highly correlated with the triglyceride glucose‑body mass index (TyG‑BMI). 
Nevertheless, literature exploring the association between changes in the TyG‑BMI and stroke incidence is scant, 
with most studies focusing on individual values of the TyG‑BMI. We aimed to investigate whether changes in the TyG‑
BMI were associated with stroke incidence.

Methods Data were obtained from the China Health and Retirement Longitudinal Study (CHARLS), which is an ongo‑
ing nationally representative prospective cohort study. The exposures were changes in the TyG‑BMI and cumulative 
TyG‑BMI from 2012 to 2015. Changes in the TyG‑BMI were classified using K‑means clustering analysis, and the cumu‑
lative TyG‑BMI was calculated as follows: (TyG‑BMI2012 + TyG‑BMI2015)/2 × time (2015–2012). Logistic regressions were 
used to determine the association between different TyG‑BMI change classes and stroke incidence. Meanwhile, 
restricted cubic spline regression was applied to examine the potential nonlinear association of the cumulative 
TyG‑BMI and stroke incidence. Weighted quantile sum regression was used to provide a comprehensive explanation 
of the TyG‑BMI by calculating the weights of FBG, triglyceride‑glucose (TG), and BMI.

Results Of the 4583 participants (mean [SD] age at baseline, 58.68 [9.51] years), 2026 (44.9%) were men. During 
the 3 years of follow‑up, 277 (6.0%) incident stroke cases were identified. After adjusting for potential confounders, 
compared to the participants with a consistently low TyG‑BMI, the OR for a moderate TyG‑BMI with a slow rising trend 
was 1.01 (95% CI 0.65–1.57), the OR for a high TyG‑BMI with a slow rising trend was 1.62 (95% CI 1.11–2.32), and the OR 
for the highest TyG‑BMI with a slow declining trend was 1.71 (95% CI 1.01–2.89). The association between the cumu‑
lative TyG‑BMI and stroke risk was nonlinear  (Passociation = 0.017;  Pnonlinearity = 0.012). TG emerged as the primary 
contributor when the weights were assigned to the constituent elements of the TyG‑BMI  (weight2012 = 0.466; 
 weight2015 = 0.530).

Conclusions Substantial changes in the TyG‑BMI are independently associated with the risk of stroke in middle‑aged 
and older adults. Monitoring long‑term changes in the TyG‑BMI may assist with the early identification of individuals 
at high risk of stroke.
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Introduction
Stroke, the foremost cause of mortality and disability in 
numerous nations, poses a progressively escalating bur-
den on the global healthcare system [1]. The Global Bur-
den of Disease 2013 Study reported a substantial number 
of stroke survivors, with approximately 25.7 million indi-
viduals alive, along with 6.5 million stroke-related fatali-
ties and 113 million stroke-related disability-adjusted 
life-years observed worldwide [2]. While the age-stand-
ardized mortality rate of stroke has exhibited a decline 
on a global scale, the incidence and prevalence of stroke 
in China continue to exhibit an alarming increase [2–4]. 
Consequently, there exists an immediate imperative to 
develop cost-effective and reproducible indicators that 
can enhance the stratification of stroke risk.

Insulin resistance (IR), recognized as a novel risk factor 
for stroke, is considered an early indication of type-2 dia-
betes, extending beyond patients with diabetes to include 
nondiabetic individuals as well [5]. Various methods 
exist to evaluate IR, with the hyperinsulinaemic glucose 
clamp (HEC) being the established reference standard 
[6]. However, HEC necessitates intravenous adminis-
tration of glucose and insulin, accompanied by multiple 
blood samples [7]. This intricate and costly procedure 
is not widely employed in clinical practice. In contrast, 
the Homeostasis Model Assessment of IR (HOMA-IR) 
has gained widespread usage and demonstrated effec-
tiveness in predicting cardiovascular and cerebrovas-
cular diseases [7–10]. Nonetheless, HOMA-IR requires 
measurement of fasting insulin levels, which possesses 
limited clinical practicality. As a feasible alternative for 
assessing IR, the triglyceride-glucose (TyG) index can be 
effortlessly derived from routine clinical laboratory tests 
and is reported to be associated with stroke occurrence 
and recurrence. Furthermore, recent investigations have 
revealed that the TyG index outperforms HOMA-IR in 
predicting stroke [11, 12].

Recently, a study introduced a novel index called the 
triglyceride glucose-body mass index (TyG-BMI), which 
is computed as ln [TG (mg/dl) × FBG (mg/dl)/2] × BMI 
(kg/m2), with the objective of using it as a potential and 
straightforwards marker for IR [13]. TyG-BMI incor-
porates BMI into its calculation. This modification may 
allow TyG-BMI to better account for the influence of 
obesity on IR, and the combination of obesity and TyG 
can potentially identify IR more strongly than other sur-
rogate markers, since obesity is a well-established risk 
factor for IR [14]. Several studies have also shown that 
TyG-BMI has a better predictive performance than TyG 

in metabolic diseases or cardiovascular disease [15–18]. 
However, only a cross-sectional study conducted on two 
population-based samples in China demonstrated a posi-
tive association between a high TyG-BMI and ischaemic 
stroke [19]. However, the exploration of the associa-
tion between changes in TyG-BMI and stroke incidence 
has been infrequently reported in the literature, with 
most studies focusing on individual TyG-BMI values. 
Despite the valuable insights provided by earlier stud-
ies, there remains a notable gap in our understanding of 
how changes in TyG-BMI may relate to stroke risk, espe-
cially in a nationwide context. In addition, the relative 
contributions of TG, FBG, and BMI to stroke incidence 
is not clear. Our study aims to fill this gap by exploring 
this relationship in greater depth, utilizing data sourced 
from the "China Health and Retirement Longitudinal 
Study (CHARLS)", an ongoing nationwide cohort study 
designed to represent the population.

Methods
Study population
This study utilizes a secondary analysis of data from the 
CHARLS, an ongoing nationwide cohort study designed 
to represent the population [20]. The study design has 
been previously described [20]. In summary, a total of 
17,708 participants residing in 10,257 households were 
selected using a multistage stratified probability-pro-
portional-to-size sampling technique. These partici-
pants were recruited from 150 counties or districts and 
450 villages within 28 provinces in China, spanning the 
period from June 2011 to March 2012. A standardized 
questionnaire was administered to collect information on 
sociodemographic and lifestyle factors, as well as health-
related data. The baseline survey (Wave 1) achieved a 
response rate of 80.5%, and subsequent follow-up assess-
ments were conducted every 2 years, with Wave 2 in 
2013, Wave 3 in 2015 and Wave 4 in 2018. Blood samples 
were also collected at baseline and Wave 3. For this anal-
ysis, participants had to be aged 45 years and older, and 
complete data on fasting blood glucose (FBG), triglycer-
ides (TG) and body mass index (BMI) were needed. Peo-
ple were excluded if they had a stroke before 2015.

The CHARLS study was approved by the institutional 
review board of Peking University. Written informed 
consent was obtained from all participants. This study 
was conducted following the Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE) 
reporting guidelines [21].
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Assessment of the change in TyG‑BMI
The exposure of this study was the change in TyG-
BMI values between 2012 and 2015. The TyG-BMI was 
calculated by the formula ln[TG (mg/dl) × FBG (mg/
dl)/2] × BMI (kg/m2) [13]. We calculated the cumulative 
TyG-BMI with reference to the cumulative TyG change 
formula [22]: (TyG-BMI2012 + TyG-BMI2015)/2 × time 
(2015 − 2012). Height and weight were measured by a 
trained nurse. BMI was calculated as weight in kilograms 
divided by height in metres squared.

Ascertainment of incident stroke events
Stroke was the main outcome of this study. In accord-
ance with previous studies [23, 24], stroke events were 
assessed by individuals who self-reported “yes” to the 
question of “Have you been diagnosed with stroke by a 
doctor?” or selected specific answers to questions regard-
ing the treatment of stroke “by Chinese Traditional 
Medicine/Western Modern Medicine/Physical Therapy/
Acupuncture and Moxibustion/Occupational Therapy/
None of the Above” were regarded as people with stroke. 
The date of stroke diagnosis was recorded as being 
between the date of the last interview and that of the 
interview reporting an incident stroke [23, 24].

Covariates
At baseline (Wave 1), trained interviewers collected infor-
mation on sociodemographic status and health-related 
factors using a structured questionnaire, including age, 
sex, living residence, marital status, and educational 
level. Educational level was classified as no formal educa-
tion, primary school, middle or high school, and college 
or above. Health-related factors included self-reported 
smoking and drinking status (never, former, or current), 
self-reported physician-diagnosed medical conditions 
(diabetes, hypertension, heart problems, kidney disease, 
and dyslipidaemia), and use of medications for diabetes, 
hypertension, and dyslipidaemia. Laboratory examina-
tion contained total cholesterol (TC), high-density lipo-
protein cholesterol (HDL-C), low-density lipoprotein 
cholesterol (LDL-C), estimated glomerular filtration ratio 
(eGFR), and glycosylated haemoglobin, type A1c (HbA1c) 
[25]. Marital status was classified into 2 groups: mar-
ried and other marital status (never married, separated, 
divorced, and widowed). Diabetes was defined as fasting 
plasma glucose ≥ 126 mg/dl (to convert to millimoles per 
litre, multiplied by 0.0555), current use of antidiabetic 
medication, or self-reported history of diabetes. Hyper-
tension was defined as systolic blood pressure ≥ 140 
mmHg, diastolic blood pressure ≥ 90 mmHg, current 
use of antihypertensive medication, or self-reported his-
tory of hypertension. Dyslipidaemia was defined as total 

cholesterol ≥ 240 mg/dl (to convert to millimoles per 
litre, multiplied by 0.0259), triglycerides ≥ 150 mg/dl, 
low-density lipoprotein cholesterol ≥ 160 mg/dl, high-
density lipoprotein cholesterol < 40 mg/dl, current use 
of lipid-lowering medication, or self-reported history of 
dyslipidaemia.

Statistical analyses
Data were analysed using various statistical methods. For 
normally distributed continuous variables, means and 
standard deviations (SDs) were reported. Categorical 
variables were described in terms of frequency and per-
centage. The χ2 test and analysis of variance were utilized 
to compare differences in the baseline characteristics 
between the different groups, as appropriate. Approxi-
mately 4.3% (197/4583) of the total data items were found 
to be missing. These missing values were assumed to be 
missing at random and were addressed through the mul-
tiple imputation of chained equations method using the 
baseline characteristics. To account for the missing data, 
five imputed datasets were created. The results were then 
pooled using R statistical software along with the mice 
package.

We utilized an unsupervised machine learning tech-
nique called K-means with Euclidean distance to group 
patients based on their TyG-BMI measurements in 
2012 and 2015. We opted for the k-means algorithm 
due to its computational efficiency and ability to gener-
ate easy-to-understand visualizations of the data points 
[26]. The K-means algorithm, a centroid-based clustering 
approach, divides a dataset into K clusters by minimizing 
the sum of squared distances within each cluster [26, 27]. 
To execute the process, we followed a three-step proce-
dure: first, we specified the desired number of clusters; 
then, we randomly selected k patients as the initial clus-
ter centres; next, we assigned each patient to the nearest 
centroid and sequentially updated the cluster centroids 
[27]. This iterative process continued until the total 
within-cluster sum of squares was minimized, and each 
patient was assigned to a specific cluster based on their 
distance from the centres, as determined by the Euclid-
ean distance [26]. To determine the appropriate number 
of clusters, we visually analysed the reduction in the sum 
of squared distances resulting from varying the number 
of clusters. We presented a visual representation of the 
resulting clustering. Importantly, throughout the entire 
clustering process, the algorithm remained unaware of 
the outcome variables, ensuring unbiased analysis.

During a median follow-up of 36.7 months (range: 
29.6–41.8 months) from baseline to Wave 3, the data 
set of transition of the TyG-BMI was analysed and clas-
sified into 4 classes using K-means clustering (Fig. 1A), 
and the paired t test was employed to assess the changes 
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within each class: for Class 1 (n = 1273), the TyG-BMI 
ranged from 163.42 ± 15.13 in 2012 to 163.36 ± 15.45 in 
2015 (P = 0.914), and the mean (SD) cumulative TyG-
BMI was 490.18 ± 38.64, representing a consistently low 
TyG-BMI; for Class 2 (n = 1664), the TyG-BMI ranged 
from 197.39 ± 14.40 in 2012 to 200.17 ± 14.45 in 2015 
(P < 0.001), and the mean (SD) cumulative TyG-BMI 
was 596.34 ± 30.55, representing a moderate TyG-
BMI with a slow rising trend; for Class 3 (n = 1171), 
the TyG-BMI ranged from 233.00 ± 17.59 in 2012 to 
236.43 ± 16.93 in 2015 (P < 0.001), and the mean (SD) 
cumulative TyG-BMI was 704.14 ± 34.37, represent-
ing a high TyG-BMI with a slow rising trend; for Class 
4 (n = 475), the TyG-BMI ranged from 283.42 ± 29.91 
in 2012 to 279.56 ± 27.16 in 2015 (P = 0.037), and the 
mean (SD) cumulative TyG-BMI was 844.48 ± 62.90, 
representing the highest TyG-BMI with a slow declin-
ing trend (Fig.  1B). The distribution of TyG-BMI 
according to the change in TyG-BMI classes is shown in 
Fig. 1C, D. The normal distribution of TyG-BMI within 
each class is observable, and there exists a statistically 

significant disparity in the mean TyG-BMI values 
among these classes.

Upon establishing classes of the change in TyG-BMI, 
we examined the association between different classes 
with changes in TyG-BMI and stroke events, and binary 
logistic models were used to calculate odds ratios (ORs) 
with 95% CIs. Four models were estimated: Model 1 
adjusted for age and sex; Model 2 adjusted for age, sex, 
marital status, residence, educational level, smoking sta-
tus, and drinking status; Model 3 adjusted for the vari-
ables in Model 2 and history of hypertension, diabetes, 
heart disease, dyslipidaemia, kidney disease, medication 
use for hypertension, medication use for diabetes, medi-
cation use for dyslipidaemia, systolic blood pressure, and 
diastolic blood pressure; and Model 4 adjusted for the 
variables in Model 3 and total cholesterol, HDL-C, LDL-
C, HbA1c, and the eGFR.

To examine the association between the cumulative 
TyG-BMI and stroke events, the cumulative TyG-BMI 
was split into quartiles and then included in binary 
logistic models with the first quartile as the reference 
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group. We searched for a linear trend by modelling the 
median value of each quantile to test ordered relations 
across quantiles of cumulative TyG-BMI. In addition, 
we explored the potential nonlinear association using a 
restricted cubic spline (RCS) regression model, and the 
model was conducted with 4 knots at the 5th, 35th, 65th, 
and 95th percentiles of cumulative TyG-BMI (reference 
is the 5th percentile). We further applied a two-piecewise 
linear regression model to examine the threshold effect 
of the cumulative TyG-BMI on stroke using a smoothing 
function [28, 29]. Subgroup analyses were conducted to 
examine whether the potential association of the change 
in TyG-BMI and cumulative TyG-BMI with stroke was 
moderated by the following demographic and clinical 
characteristics: age, sex, marital status, residence, edu-
cational level, smoking status, drinking status, history of 
hypertension, diabetes, heart disease, dyslipidaemia, and 
kidney disease. P values for interaction were evaluated 
using interaction terms and likelihood ratio tests.

To evaluate the performance of the TyG-BMI in pre-
dicting stroke, a receiver-operating characteristic (ROC) 
curve analysis was conducted, the area under the ROC 
curves (AUCs) were calculated, and the curves were 
generated with a smooth kernel density. To evaluate 
the extent to which TyG-BMI improved the prediction 
performance over TyG, Delong’s test was performed. 
TyG-BMI was derived using a mathematical formula 
incorporating TG, FBG, and BMI variables. To provide a 
comprehensive explanation of the formula, we employed 
the weighted quantile sum (WQS) regression model, 
employing bootstrap resampling methods for 1000 itera-
tions. The WQS model facilitated the determination 
of weights assigned to FBG, TG, and BMI, quantifying 
their respective contributions to the overall effect. These 
weights were constrained within the range of 0 to 1, with 
a cumulative sum of 1 [30]. Higher weights indicated 
greater significance of the corresponding indicator in 
stroke prediction.

Five sensitivity analyses were conducted as follows: (1) 
repeating primary analyses using the complete data set 
(4373 participants) without multiple imputations; (2) 
repeating primary analyses excluding participants who 
had heart disease (538 participants) to account for loss 
to follow-up due to cardiovascular disease; (3) using the 
competing risk model to account for competing risks due 
to mortality (188 participant deaths); (4) using the Cox 
proportional hazards models to account for censored 
data; and (5) treating cumulative TyG-BMI as a continu-
ous variable to examine the linear relationship between 
cumulative TyG-BMI and the risk of stroke without 
imposing predefined categories. Considering that the 
alteration in effect size per unit of TyG-BMI is small, we 
undertook the normalization of TyG-BMI to assess the 

effect in terms of a per-SD change in TyG-BMI. A two-
sided P < 0.05 was considered to indicate statistical sig-
nificance. All analyses were performed using R statistical 
software version 4.2.2 (R Foundation).

Results
Baseline characteristics of study participants
Of the 17,708 CHARLS participants at study base-
line, we excluded 11,770 individuals who lacked FBG 
data at Waves 1 and 3. Additionally, 982 participants 
were excluded due to incomplete information on the 
TyG index and BMI at Waves 1 and 3. Furthermore, we 
excluded 136 participants younger than 45 years and 237 
individuals who reported a history of stroke at Waves 1 
and 3. Consequently, a total of 4583 participants met the 
inclusion criteria and were included in the subsequent 
analysis (Fig.  2). A comparison of baseline characteris-
tics between participants included and those who were 
not included in the analysis is shown in Additional file 1: 
Table S1.

A total of 4583 adults were included in the analyses. 
The mean age at baseline was 58.68 ± 9.51 years; 2056 
(44.9%) of the participants were men, and 2527 (55.1%) 
were women. Table  1 shows the characteristics of the 

17 708   Participants at Wave 1

11 770  Excluded
7 081 Without FBG at Wave 1
4 689  Without FBG at Wave 3

5 938   Participants had blood sample
at both Wave 1 and Wave 3

982  Excluded
125  Without TyG at Wave 1

24  Without TyG at Wave 3
752  Missing BMI at Wave 1

81  Missing BMI at Wave 3

4 956  Participants had blood sample 
and took  physical examination 
at both Wave 1 and Wave 3

4 583  Participants included analysis

373  Excluded
136  Age < 45 years
21  Had stroke at Wave 1

216  Had stroke at Wave 3

Fig. 2 Flowchart of the study population. BMI: body mass index; FBG: 
fasting blood glucose; TyG: triglyceride‑glucose
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Table 1 Baseline characteristics of 4583 participants according to the change in the TyG‑BMI

Characteristic Overall (n = 4583) Change in the TyG‑BMI P  valuea

Class 1 (n = 1273) Class 2 (n = 1664) Class 3 (n = 1171) Class 4 (n = 475)

Age, mean ± SD, years 58.68 ± 8.62 60.97 ± 8.94 58.50 ± 8.47 57.30 ± 8.26 56.55 ± 7.72 < 0.001

Sex < 0.001

 Male 2056 (44.9%) 743 (58.4%) 733 (44.1%) 424 (36.2%) 156 (32.8%)

 Female 2527 (55.1%) 530 (41.6%) 931 (55.9%) 747 (63.8%) 319 (67.2%)

Marital status < 0.001

 Married 3905 (85.2%) 1052 (82.6%) 1407 (84.6%) 1012 (86.4%) 434 (91.4%)

 Other 678 (14.8%) 221 (17.4%) 257 (15.4%) 159 (13.6%) 41 (8.6%)

Residence < 0.001

 Urban 1528 (33.3%) 301 (23.6%) 537 (32.3%) 481 (41.1%) 209 (44.0%)

 Rural 3055 (66.7%) 972 (76.4%) 1127 (67.7%) 690 (58.9%) 266 (56.0%)

Educational level < 0.001

 No formal educa‑
tion

1344 (29.3%) 399 (31.3%) 492 (29.6%) 310 (26.5%) 143 (30.1%)

 Primary school 1910 (41.7%) 570 (44.8%) 680 (40.9%) 481 (41.1%) 179 (37.7%)

 Middle or high 
school

1207 (26.3%) 284 (22.3%) 440 (26.4%) 344 (29.4%) 139 (29.3%)

 College or above 122 (2.7%) 20 (1.6%) 52 (3.1%) 36 (3.1%) 14 (2.9%)

Smoking  statusb < 0.001

 Never 2858 (62.4%) 627 (49.3%) 1067 (64.1%) 829 (70.8%) 335 (70.5%)

 Former 374 (8.2%) 97 (7.6%) 121 (7.3%) 112 (9.6%) 44 (9.3%)

 Current 1341 (29.3%) 546 (42.9%) 471 (28.3%) 228 (19.5%) 96 (20.2%)

Drinking  statusb < 0.001

 Never 2700 (58.9%) 651 (51.1%) 993 (59.7%) 739 (63.1%) 317 (66.7%)

 Former 367 (8.0%) 122 (9.6%) 112 (6.7%) 104 (8.9%) 29 (6.1%)

 Current 1513 (33.0%) 499 (39.2%) 558 (33.5%) 327 (27.9%) 129 (27.2%)

History of comorbidi‑
ties

  Hypertensionb 1216 (26.5%) 173 (13.6%) 371 (22.3%) 426 (36.4%) 246 (51.8%) < 0.001

  Diabetesb 281 (6.1%) 26 (2.0%) 74 (4.4%) 103 (8.8%) 78 (16.4%) < 0.001

 Heart  diseaseb 537 (11.7%) 113 (8.9%) 164 (9.9%) 160 (13.7%) 100 (21.1%) < 0.001

  Dyslipidaemiab 491 (10.7%) 40 (3.1%) 142 (8.5%) 168 (14.3%) 141 (29.7%) < 0.001

 Kidney  diseaseb 256 (5.6%) 70 (5.5%) 84 (5.0%) 75 (6.4%) 27 (5.7%) 0.493

History of medica‑
tion use

 Hypertension 
 medicationsb

885 (19.3%) 114 (9.0%) 249 (15.0%) 318 (27.2%) 204 (42.9%) < 0.001

 Diabetes 
 medicationsb

171 (3.7%) 18 (1.4%) 38 (2.3%) 61 (5.2%) 54 (11.4%) < 0.001

 Dyslipidaemia 
 medicationsb

257 (5.6%) 18 (1.4%) 65 (3.9%) 92 (7.9%) 82 (17.3%) < 0.001

Blood pressure, 
mean ± SD, mmHg

  Systolicb 128.44 ± 20.63 123.79 ± 19.81 127.10 ± 19.89 132.10 ± 20.81 136.61 ± 20.99 < 0.001

  Diastolicb 75.00 ± 11.98 71.39 ± 11.16 74.17 ± 11.53 77.84 ± 11.97 80.64 ± 12.08 < 0.001

TC, mean ± SD, mg/dl 194.74 ± 38.93 185.54 ± 36.22 193.49 ± 37.02 200.13 ± 37.91 210.52 ± 47.15 < 0.001

HDL‑C, mean ± SD, 
mg/dl

51.25 ± 15.29 59.54 ± 16.26 52.23 ± 13.67 45.37 ± 12.09 40.09 ± 11.60 < 0.001

LDL‑C, mean ± SD, 
mg/dlb

117.61 ± 34.97 110.75 ± 31.35 119.58 ± 33.44 122.30 ± 36.10 117.55 ± 43.13 < 0.001

HbA1c, mean ± SD 5.29 ± 0.81 5.14 ± 0.58 5.20 ± 0.65 5.40 ± 0.94 5.73 ± 1.20 < 0.001
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participants. The mean TyG-BMI was 205.97 ± 40.60 in 
2012 and 207.44 ± 40.06 in 2015, and the mean cumula-
tive TyG-BMI was 620.12 ± 115.68.

When compared with Class 1, participants in the other 
classes were more likely to be older, female, and mar-
ried; to reside in a rural setting; to have a middle or high 
school education, fewer current smokers and drinkers, 
and higher systolic and diastolic blood pressure; to have 
a higher prevalence of hypertension, diabetes, dyslipi-
daemia and heart disease; to have a history of medication 
use for hypertension, diabetes and dyslipidaemia; to have 
higher TC, LDL-C, and HbA1 levels; and to have lower 
HDL-C levels (Table 1).

Odds ratios for incident stroke
During a median follow-up of 36.5 months between 
2015 and 2018, 277 participants experienced inci-
dent stroke, and the incidence rate of stroke was 6.0%. 
Table 2 shows the associations between the change in 
TyG-BMI and incident stroke events. After adjusting 
for potential confounders (in Model 4), compared with 
Class 1, the adjusted ORs (95% CIs) for incident stroke 
were 1.01 (0.65–1.57) for Class 2, 1.62 (1.11–2.32) for 
Class 3, and 1.71 (1.01–2.89) for Class 4. The results 
were found when modelling the cumulative TyG-BMI 

as quantiles (Table  2), and the baseline characteris-
tics of the participants according to the quantiles of 
cumulative TyG-BMI are shown in Additional file  1: 
Table  S2. After adjusting for confounders (in Model 
4), when compared with Quartile 1, the adjusted ORs 
(95% CIs) for incident stroke were 1.66 (1.11–2.50) for 
Quartile 2, 1.41 (0.91–2.17) for Quartile 3, and 1.36 
(0.85–2.18) for Quartile 4. Notably, no statistically 
significant differences were observed between Quar-
tiles 3, 4, and 1 (P for trend = 0.563). Moreover, ROC 
analyses (Additional file 1: Fig. S1) demonstrated that 
baseline TyG-BMI had greater accuracy in predict-
ing stroke compared with TyG (AUC, 0.62 vs. 0.57; 
P < 0.001).

In the RCS model, the association between cumu-
lative TyG-BMI and risk of incident stroke was non-
linear (for association, P = 0.017; for nonlinearity, 
P = 0.012) (Fig.  3). The risk of stroke increased with 
a cumulative TyG-BMI < 570 (OR per SD increased: 
1.32, 95% CI 1.00–1.74). The risk decreased when the 
cumulative TyG-BMI was between 570 and 720 (OR 
per SD decreased: 0.78, 95% CI 0.64–0.95). The risk 
increased with a cumulative TyG-BMI > 720 (OR per 
SD increased: 1.15, 95% CI 0.90–1.47); however, the dif-
ference was not statistically significant (P = 0.251).

BMI: body mass index; eGFR: estimated glomerular filtration ratio; FBG: fast blood glucose; HbA1c: glycated haemoglobin; HDL-C: high-density lipoprotein cholesterol; 
IQR: interquartile range; LDL-C: low-density lipoprotein cholesterol; SD: standard deviation; TC: total cholesterol; TG: triglyceride; TyG: triglyceride-glucose
a P value was based on χ2 or analysis of variance test where appropriate
b Missing data: 10 for smoking status, 3 for drinking status, 23 for hypertension, 37 for diabetes, 17 for heart disease, 93 for dyslipidaemia, 25 for kidney disease, 23 for 
hypertension medications, 38 for diabetes medications, 96 for dyslipidaemia medications, 35 for systolic blood pressure, 35 for diastolic blood pressure, 9 for LDL-C, 2 
for the eGFR, and 19 for HbA1c
c The TyG-BMI was calculated by the formula ln[Triglyceride (mg/dl) × Fasting blood glucose (mg/dl)/2] × BMI (kg/m2)
d Cumulative TyG-BMI was calculated by the formula (TyG-BMI2012 + TyG-BMI2015)/2 ×  time(2015−2012)

Table 1 (continued)

Characteristic Overall (n = 4583) Change in the TyG‑BMI P  valuea

Class 1 (n = 1273) Class 2 (n = 1664) Class 3 (n = 1171) Class 4 (n = 475)

eGFR, mean ± SD, ml/
min/1.73  m2b

74.51 ± 33.82 73.36 ± 35.30 74.55 ± 32.57 74.89 ± 31.14 76.53 ± 39.88 0.433

TG2012, median (IQR) 104.43 (74.34, 152.22) 74.34 (58.41, 100.00) 100.00 (74.34, 137.18) 135.40 (100.45, 
188.51)

193.82 (131.87, 
286.30)

< 0.001

TG2015, median (IQR) 113.27 (81.42, 164.60) 80.53 (65.49, 105.31) 107.96 (83.19, 147.79) 150.44 (111.50, 
207.08)

208.85 (142.92, 
292.92)

< 0.001

FBG2012, mean ± SD 109.61 ± 34.26 102.11 ± 22.68 105.59 ± 24.95 114.56 ± 40.19 131.58 ± 55.19 < 0.001

FBG2015, mean ± SD 101.22 ± 31.66 92.45 ± 18.22 97.44 ± 23.01 107.74 ± 37.91 121.90 ± 51.01 < 0.001

BMI2012, mean ± SD 23.65 ± 3.77 19.79 ± 1.73 23.04 ± 1.62 26.08 ± 2.01 30.14 ± 3.42 < 0.001

BMI2015, mean ± SD 23.81 ± 3.71 19.83 ± 1.76 23.34 ± 1.66 26.37 ± 2.02 29.85 ± 2.96 < 0.001

TyG‑BMI2012, 
mean ±  SDc

205.97 ± 40.60 163.42 ± 15.13 197.39 ± 14.40 233.00 ± 17.59 283.42 ± 29.91 < 0.001

TyG‑BMI2015, 
mean ±  SDc

207.44 ± 40.06 163.36 ± 15.45 200.17 ± 14.45 236.43 ± 16.93 279.56 ± 27.16 < 0.001

Cumulative TyG‑BMI 
index, mean ±  SDd

620.12 ± 115.68 490.18 ± 38.64 596.34 ± 30.55 704.14 ± 34.37 844.48 ± 62.90 < 0.001
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Subgroup analyses
Tables  3 and 4 show the association of the change in 
TyG-BMI and cumulative TyG-BMI with incident stroke 
events stratified by potential risk factors. After adjust-
ing for potential confounders, no interaction was found 
between changes in TyG-BMI classes and subgroup vari-
ables. Marital status and educational level moderated the 
association of cumulative TyG-BMI with stroke.

WQS analyses
The WQS regression model was utilized to offer a thor-
ough elucidation of the TyG-BMI. The weights assigned 
to the constituent elements of TyG-BMI, encompassing 
the cumulative influence of stroke while controlling for 
potential confounding variables, are presented in Fig. 4. 
Importantly, TG emerged as the primary contributor in 
both 2012 and 2015, with weights of 0.466 and 0.530, 
respectively.

Sensitivity analyses
Sensitivity analyses consistently yielded congruent results 
when performing complete data analyses (Additional 

file  1: Table  S3), excluding participants who had heart 
disease (Additional file 1: Table S4), employing compet-
ing risk regression to account for competing risks due 
to mortality (Additional file  1: Table  S5), or employing 
Cox regression to account for censored data (Additional 
file  1: Table  S6). Furthermore, the nonlinear nature of 
the association between cumulative TyG-BMI and the 
risk of incident stroke persisted when subjecting the data 
to complete data analyses (Additional file  1: Fig. S2) or 
treating cumulative TyG-BMI as a continuous variable 
(Additional file 1: Table S7).

Discussion
Our study revealed that substantial changes in the 
TyG-BMI are independently associated with the risk 
of stroke in individuals aged 45 years and above from 
the CHARLS national data. Notably, the association 
between the cumulative TyG-BMI and stroke occur-
rence exhibited a nonlinear pattern; specifically, the risk 
of stroke increased with a cumulative TyG-BMI < 570. 
Considering that the TyG-BMI incorporates FBG, TG, 
and BMI, our investigation identified TG as the primary 

Table 2 Associations of different classes of the TyG‑BMI with stroke incidence

BMI: body mass index; CI: confidence interval; OR: odds ratio; TyG: triglyceride-glucose
a Adjusted for age and sex
b Adjusted for age, sex, marital status, residence, educational level, smoking status, and drinking status
c Adjusted for variables in Model 2 and history of hypertension, diabetes, heart disease, dyslipidaemia, kidney disease, medication use for hypertension, medication 
use for diabetes, medication use for dyslipidaemia, systolic blood pressure, diastolic blood pressure
d Adjusted for variables in Model 3 and total cholesterol, HDL-C, LDL-C, HbA1c, and the eGFR
e The TyG-BMI was calculated by the formula ln[Triglyceride (mg/dl) × Fasting blood glucose (mg/dl)/2] × BMI (kg/m2), and the change in TyG-BMI from 2012 to 2015 
was analysed and classified into 4 classes using K-means clustering
f The cumulative TyG-BMI was calculated by the formula (TyG-BMI2012 + TyG-BMI2015)/2 ×  time(2015−2012), and then it was split into quartiles
g Tests for linear trends were performed by modelling the median value of each quantile to test ordered relations across quantiles of the cumulative TyG-BMI

No. of events/
total

Model  1a Model  2b Model  3c Model  4d

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Change in the TyG‑
BMIe

 Class 1 48/1273 Reference Reference Reference Reference

 Class 2 112/1664 1.64 (1.11–2.42) 0.014 1.68 (1.13–2.51) 0.010 1.17 (0.77–1.77) 0.463 1.01 (0.65–1.57) 0.965

 Class 3 64/1171 1.98 (1.39–2.81) < 0.001 2.03 (1.43–2.89)  < 0.001 1.74 (1.22–2.49) 0.002 1.62 (1.11–2.32) 0.011

 Class 4 53/475 3.66 (2.41–5.56) < 0.001 3.91 (2.55–5.98) < 0.001 2.07 (1.29–3.31) 0.002 1.71 (1.01–2.89) 0.044

Cumulative TyG‑
BMIf

 Quartile 1 [353, 
534]

41/1146 Reference Reference Reference Reference

 Quartile 2 (534, 
608]

73/1146 1.92 (1.30–2.85) 0.001 1.99 (1.34–2.95) 0.001 1.79 (1.20–2.67) 0.005 1.66 (1.11–2.50) 0.014

 Quartile 3 (608, 
693]

71/1145 1.91 (1.28–2.84) 0.002 2.06 (1.37–3.09) < 0.001 1.60 (1.06–2.43) 0.027 1.41 (0.91–2.17) 0.122

 Quartile 4 (693, 
1130]

92/1146 2.56 (1.74–3.77) < 0.001 2.80 (1.88–4.16) < 0.001 1.65 (1.09–2.56) 0.022 1.36 (0.85–2.18) 0.205

 P for  trendg < 0.001 < 0.001 0.102 0.563



Page 9 of 15Huo et al. Cardiovascular Diabetology          (2023) 22:254  

contributor to the observed association. Meanwhile, our 
findings have important clinical implications, suggesting 
that monitoring long-term changes in the TyG-BMI may 
assist with the early identification of individuals at high 
risk of stroke. Furthermore, to mitigate the risk of stroke, 
prioritizing the management of TG levels may be worth 
considering.

A previous investigation provided evidence demon-
strating the rapid induction of IR in humans through 
elevated levels of free fatty acids in plasma [31]. In addi-
tion, when exposed to high-glucose conditions, glucose 
molecules form conjugates with proteins resembling the 
insulin receptor on the cytoplasmic membrane, resulting 
in the prompt formation of advanced glycation end prod-
ucts [32]. Consequently, the binding of serum insulin to 
the deposited advanced glycation end products on the 
insulin receptor becomes imperfect, thereby impeding 
the mediation of insulin’s glucose transport stimulation 
and triggering IR [33]. Recent studies have suggested that 
the product of plasma TyG holds promise as an effec-
tive measure for detecting IR [6, 34]. Moreover, BMI, a 
straightforwards anthropometric parameter commonly 

employed as an indicator of obesity and IR, is notewor-
thy. In individuals with obesity, adipose tissue lipolysis 
intensifies, leading to the release of substantial amounts 
of free fatty acids, which represents a crucial factor influ-
encing insulin sensitivity modulation [35]. Consequently, 
it is reasonable to hypothesize that the TyG-BMI, derived 
from the anthropometric BMI and TyG parameters, may 
also serve as a valuable marker for IR.

Indeed, the association between the TyG-BMI and 
HOMA-IR has been empirically established [13]. Con-
sequently, the TyG-BMI has been advocated as a reliable 
metric for assessing IR and IR-related ailments in numer-
ous studies. A cross-sectional investigation carried out 
in rural Beijing, China affirmed that the TyG-BMI exhib-
ited superior efficacy in detecting IR [36]. Moreover, the 
2015 Health, Well-Being, and Ageing Study proposed 
the utility of TyG-BMI as an assessment tool for predia-
betes, albeit not as the optimal index [37]. Findings from 
a substantial cross-sectional survey involving 11,149 
participants, the Korean National Health and Nutri-
tion Examination Survey, demonstrated that TyG-BMI 
served as a viable alternative marker for evaluating IR 
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Fig. 3 Nonlinear association between cumulative TyG‑BMI and stroke. A Distribution for cumulative TyG‑BMI from 2012 to 2015; B graphs 
show ORs for stroke. Data were fitted by a restricted cubic spline (RCS) logistics regression model, and the models were conducted with 4 knots 
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between cumulative TyG‑BMI and stroke. OR was evaluated by a 1‑SD increase in TyG‑BMI. All models were adjusted for age, sex, marital status, 
residence, educational level, smoking status, drinking status, history of hypertension, diabetes, heart disease, dyslipidaemia, kidney disease, 
medication use for hypertension, medication use for diabetes, medication use for dyslipidaemia, systolic blood pressure, diastolic blood pressure, 
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when compared to other IR parameters [38]. Addition-
ally, the associations between TyG-BMI and prehyper-
tension, as well as hypertension, have been conclusively 

validated [39, 40]. Despite the identification of an associ-
ation between TyG-BMI and ischaemic stroke in a recent 
cross-sectional study [19], certain limitations, such as the 

Table 3 Associations of different classes of change in TyG‑BMI with stroke incidence stratified by different factors

BMI: body mass index; CI: confidence interval; OR: odds ratio; TyG: triglyceride-glucose; NA: not applicable

All models were adjusted for age, sex, marital status, residence, educational level, smoking status, drinking status, history of hypertension, diabetes, heart disease, 
dyslipidaemia, kidney disease, medication use for hypertension, medication use for diabetes, medication use for dyslipidaemia, systolic blood pressure, diastolic blood 
pressure, total cholesterol, HDL-C, LDL-C, HbA1c, and the eGFR

Subgroup Change in the TyG‑BMI, OR (95% CI) P for interaction

Class 1 (n = 1273) Class 2 (n = 1664) Class 3 (n = 1171) Class 4 (n = 475)

Age (years) 0.192

 < 60 Reference 1.22 (0.59–2.54) 2.07 (1.09–3.93) 2.65 (1.18–5.92)

 ≥ 60 Reference 0.92 (0.52–1.64) 1.45 (0.91–2.28) 1.16 (0.54–2.51)

Sex 0.919

 Male Reference 1.16 (0.60–2.25) 1.54 (0.92–2.59) 1.83 (0.78–4.30)

 Female Reference 0.88 (0.47–1.62) 1.60 (0.93–2.73) 1.63 (0.82–3.25)

Marital status 0.122

 Married Reference 1.25 (0.74–2.09) 1.95 (1.25–3.04) 1.90 (1.04–3.45)

 Other Reference 0.49 (0.18–1.33) 1.08 (0.53–2.17) 1.45 (0.41–5.19)

Residence 0.319

 Urban Reference 0.93 (0.34–2.59) 2.49 (0.99–6.26) 1.79 (0.58–5.50)

 Rural Reference 1.07 (0.65–1.78) 1.42 (0.94–2.14) 1.60 (0.86–2.98)

Educational level 0.153

 No formal education Reference 0.80 (0.37–1.73) 1.15 (0.63–2.10) 1.35 (0.53–3.43)

 Primary school Reference 1.03 (0.53–2.02) 1.84 (1.06–3.20) 1.57 (0.68–3.59)

 Middle or high school Reference 2.50 (0.75–8.31) 3.64 (1.19–11.16) 4.46 (1.19–16.69)

 College or above Reference NA NA NA

Smoking status 0.999

 Never Reference 0.91 (0.51–1.65) 1.59 (0.95–2.66) 1.62 (0.82–3.19)

 Former Reference 0.95 (0.24–3.75) 1.29 (0.42–4.00) 2.16 (0.43–10.78)

 Current Reference 1.29 (0.55–3.00) 1.60 (0.85–2.99) 1.88 (0.64–5.50)

Drinking status 0.860

 Never Reference 0.99 (0.56–1.77) 1.48 (0.90–2.44) 1.42 (0.72–2.83)

 Former Reference 0.52 (0.12–2.21) 1.23 (0.39–3.88) 0.76 (0.11–5.52)

 Current Reference 1.12 (0.49–2.57) 1.87 (0.98–3.58) 2.46 (0.92–6.56)

Hypertension 0.540

 No Reference 1.03 (0.58–1.83) 1.49 (0.97–2.29) 2.06 (1.00–4.27)

 Yes Reference 1.20 (0.53–2.74) 2.24 (1.04–4.83) 1.78 (0.72–4.39)

Diabetes 0.556

 No Reference 1.01 (0.64–1.59) 1.65 (1.14–2.39) 1.73 (0.99–3.02)

 Yes Reference 0.75 (0.06–9.83) 0.72 (0.06–9.34) 1.09 (0.07–15.94)

Heart disease 0.752

 No Reference 0.96 (0.59–1.56) 1.50 (1.02–2.23) 1.74 (0.98–3.10)

 Yes Reference 1.12 (0.34–3.75) 2.23 (0.76–6.60) 1.67 (0.43–6.44)

Dyslipidaemia 0.529

 No Reference 0.91 (0.57–1.46) 1.54 (1.05–2.25) 1.79 (1.00–3.22)

 Yes Reference 2.68 (0.31–23.49) 3.99 (0.47–33.50) 3.73 (0.40–34.69)

Kidney disease 0.865

 No Reference 0.94 (0.60–1.49) 1.55 (1.06–2.26) 1.68 (0.98–2.88)

 Yes Reference 2.20 (0.31–15.64) 3.22 (0.49–21.26) 3.22 (0.24–43.38)
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Table 4 Associations of the cumulative TyG‑BMI with stroke stratified by different factors

BMI: body mass index; CI: confidence interval; OR: odds ratio; TyG: triglyceride-glucose; NA: not applicable

All models were adjusted for age, sex, marital status, residence, educational level, smoking status, drinking status, history of hypertension, diabetes, heart disease, 
dyslipidaemia, kidney disease, medication use for hypertension, medication use for diabetes, medication use for dyslipidaemia, systolic blood pressure, diastolic blood 
pressure, total cholesterol, HDL-C, LDL-C, HbA1c, and the eGFR
a Tests for linear trends were performed by modelling the median value of each quantile to test ordered relations across quantiles of cumulative TyG-BMI

Subgroup Cumulative TyG‑BMI, OR (95% CI) P for  trenda P for interaction

Quartile 1
[353, 534]

Quartile 2
(534, 608]

Quartile 3
(608, 693]

Quartile 4
(693, 1130]

Age (years) 0.151

 < 60 Reference 2.59 (1.20–5.56) 2.14 (0.97–4.70) 2.43 (1.07–5.49) 0.188

 ≥ 60 Reference 1.41 (0.86–2.32) 1.20 (0.70–2.08) 0.96 (0.51–1.81) 0.735

Sex 0.354

 Male Reference 1.74 (0.97–3.12) 2.12 (1.14–3.94) 1.41 (0.66–3.01) 0.339

 Female Reference 1.46 (0.82–2.60) 0.93 (0.51–1.72) 1.14 (0.61–2.14) 0.860

Marital status 0.008

 Married Reference 2.04 (1.22–3.39) 2.04 (1.21–3.44) 1.76 (1.00–3.10) 0.256

 Other Reference 1.25 (0.60–2.58) 0.42 (0.15–1.17) 0.65 (0.23–1.78) 0.219

Residence 0.720

 Urban Reference 2.11 (0.75–5.95) 1.52 (0.54–4.32) 1.06 (0.35–3.22) 0.285

 Rural Reference 1.53 (0.97–2.40) 1.39 (0.85–2.27) 1.43 (0.83–2.45) 0.337

Educational level 0.034

 No formal education Reference 1.19 (0.61–2.33) 0.93 (0.44–1.97) 1.33 (0.60–2.96) 0.564

 Primary school Reference 1.64 (0.89–3.04) 1.69 (0.89–3.22) 1.23 (0.59–2.54) 0.863

 Middle or high school Reference 6.49 (1.44–29.29) 5.13 (1.12–23.55) 4.56 (0.94–22.07) 0.464

 College or above Reference NA NA NA NA

Smoking status 0.483

 Never Reference 1.54 (0.88–2.69) 1.00 (0.55–1.81) 1.20 (0.65–2.21) 0.924

 Former Reference 0.89 (0.23–3.43) 1.85 (0.52–6.63) 1.57 (0.36–6.84) 0.444

 Current Reference 1.91 (0.96–3.83) 2.33 (1.09–4.96) 1.23 (0.46–3.26) 0.476

Drinking status 0.906

 Never Reference 1.55 (0.89–2.70) 1.30 (0.72–2.32) 1.26 (0.68–2.35) 0.865

 Former Reference 1.61 (0.47–5.48) 0.65 (0.16–2.68) 0.75 (0.16–3.62) 0.503

 Current Reference 1.83 (0.90–3.74) 1.90 (0.88–4.12) 1.72 (0.71–4.16) 0.307

Hypertension 0.241

 No Reference 1.40 (0.87–2.25) 1.39 (0.82–2.35) 1.51 (0.83–2.74) 0.209

 Yes Reference 3.24 (1.27–8.25) 2.16 (0.85–5.53) 1.82 (0.69–4.80) 0.644

Diabetes 0.333

 No Reference 1.69 (1.12–2.56) 1.49 (0.96–2.31) 1.38 (0.84–2.26) 0.479

 Yes Reference 1.00 (0.07–14.33) 0.24 (0.01–4.70) 0.78 (0.05–11.40) 0.927

Heart disease 0.709

 No Reference 1.53 (0.99–2.36) 1.36 (0.85–2.16) 1.32 (0.79–2.20) 0.535

 Yes Reference 2.52 (0.74–8.58) 1.58 (0.44–5.72) 1.62 (0.44–6.00) 0.991

Dyslipidaemia 0.591

 No Reference 1.59 (1.05–2.43) 1.38 (0.88–2.18) 1.28 (0.77–2.12) 0.626

 Yes Reference 4.38 (0.49–38.93) 2.78 (0.32–24.24) 2.92 (0.33–25.81) 0.983

Kidney disease 0.066

 No Reference 1.48 (0.97–2.24) 1.30 (0.84–2.02) 1.26 (0.78–2.04) 0.659 0.151

 Yes Reference NA NA NA NA
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study’s cross-sectional design and focus on stroke sub-
type, warrant caution in drawing definitive conclusions. 
Consequently, the precise association between TyG-BMI 
and ischaemic stroke remains equivocal.

Based on our current understanding, this study rep-
resents a novel approach in utilizing cluster analysis to 
categorize the changes in the TyG-BMI values. Each cat-
egory within the analysis corresponded to distinct sub-
populations, wherein individuals with a consistently low 
TyG-BMI exhibited the lowest risk, while those with a 
highest TyG-BMI and a slow declining trend displayed 
the highest risk. Previous studies predominantly relied 
on a single TyG-BMI value to predict the occurrence 
of stroke, often yielding different results on different 
occasions [19]. Furthermore, it is worth noting that our 
research sample consisted of a representative cross-sec-
tion of healthy individuals from various regions of China. 
By focusing on dynamic processes, our investigation has 
contributed further evidence to elucidate the associa-
tion between TyG-BMI and stroke. Specifically, our RCS 
model elucidated a nonlinear association between the 
cumulative TyG-BMI and stroke. However, the underly-
ing mechanistic explanation for this observed associa-
tion remains uncertain. Finally, we employed the WQS 
regression method to augment the interpretability of the 
TyG-BMI, wherein we observed that TG emerged as the 
primary contributor to the observed effects.

The precise mechanism by which IR contributes to the 
development of stroke remains poorly elucidated, with 
several potential pathways warranting consideration. 
First, IR is believed to induce endothelial dysfunction, 
foam cell formation, and the formation of vulnerable 
plaques, thereby playing a critical role in the pathogenesis 
of atherosclerosis [41–44]. Additionally, IR, characterized 

by a low-grade inflammatory state, facilitates the pro-
gression of atherosclerosis and stimulates the production 
of inflammatory markers [45, 46]. Second, IR exerts an 
impact on platelet adhesion, activation, and aggregation 
[47–50], culminating in stroke occurrence through arte-
rial stenosis or occlusion. Third, IR has been associated 
with heightened sympathetic nervous system activity 
[34] and impaired cardiac autonomic function [51], both 
of which contribute to the pathophysiology of acute car-
diovascular and cerebrovascular diseases. Last, individu-
als with IR often exhibit a larger waist circumference and 
BMI, hypertension, diabetes, cardiovascular disease, and 
a history of dyslipidaemia. Moreover, they frequently 
present with elevated fasting blood glucose levels, triglyc-
erides, and glycosylated haemoglobin, all of which repre-
sent established risk factors for stroke [51–54].

Our study contributes to the existing body of knowl-
edge by providing evidence supporting the utilization 
of the dynamic change in the TyG-BMI as a clinically 
valuable marker for identifying individuals at a height-
ened risk of cardiovascular disease. The TyG-BMI was 
derived through the calculation of FBG, TG, and BMI. 
However, apart from measuring TG and FBG, body 
weight and height are also needed to calculate the TyG-
BMI, which results in a more complicated formula. We 
still assert that the TyG-BMI holds promising prospects 
for accurately identifying patients at a heightened risk 
of stroke. First, these biochemical parameters can be 
conveniently obtained from a single sample at the same 
time, presenting a cost-effective and convenient alter-
native to the euglycaemic-hyperinsulinaemic clamp 
method. Furthermore, the widespread availability and 
routine performance of height, weight, FBG, and TG 
measurements in primary healthcare settings enhance 
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Fig. 4 Estimated weights assigned to TyG‑BMI with the WQS model. Weights in a positive direction obtained when the effect parameter of the WQS 
model was constrained to the positive direction with 1 000 repeated holdout validations for TyG‑BMI in 2012 (A) and 2015 (B). WQS models were 
adjusted for age, sex, marital status, residence, educational level, smoking status, drinking status, history of hypertension, diabetes, heart disease, 
dyslipidaemia, kidney disease, medication use for hypertension, medication use for diabetes, medication use for dyslipidaemia, systolic blood 
pressure, diastolic blood pressure, total cholesterol, HDL‑C, LDL‑C, HbA1c, and the eGFR. BMI: body mass index; FBG: fasting blood glucose; TyG: 
triglyceride‑glucose; WQS: weighted quantile sum
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the generalizability and practicality of the TyG-BMI in 
both clinical and epidemiological studies. Second, the 
TyG-BMI is designed to offer a more comprehensive 
assessment of insulin resistance, particularly in popula-
tions where obesity is prevalent. By incorporating BMI, 
which reflects body adiposity, the TyG-BMI provides a 
more holistic evaluation that accounts for the influence 
of obesity on IR [13]. Third, obesity is a well-established 
risk factor for IR and metabolic disorders [14, 55]. In 
clinical practice, addressing weight-related factors is 
often a key aspect of managing IR. The TyG-BMI aligns 
with this clinical relevance, potentially guiding inter-
ventions and treatment strategies for individuals with 
obesity-related IR. Last, the ROC analysis demon-
strated that baseline TyG-BMI had greater accuracy in 
predicting stroke compared with TyG.

However, it is essential to address several limita-
tions associated with this study. First, while the TyG-
BMI has demonstrated reliability and convenience as a 
surrogate marker for insulin resistance, establishing a 
direct association between IR and stroke necessitates a 
comparison with the gold standard diagnostic method. 
Unfortunately, this study did not undertake such a com-
parison, thereby limiting its ability to provide a direct 
explanation of the insulin resistance-stroke association. 
Second, the study only incorporated two blood tests, 
precluding a comprehensive assessment and refinement 
of the TyG-BMI. Third, it should be noted that, similar 
to other studies, the diagnosis of stroke in this research 
relied on self-reporting, which introduces a logisti-
cal constraint. Due to the absence of medical records 
in the CHARLS dataset, validation and confirmation of 
self-reported incident stroke were not feasible. How-
ever, it is worth mentioning that other large-scale stud-
ies, such as the English Longitudinal Study of Ageing, 
have reported a satisfactory level of agreement between 
self-reported incident stroke and medical records [56]. 
Fourth, this study adopts an observational design, and 
it is essential to acknowledge the presence of selec-
tion bias arising from the loss to follow-up. This bias is 
influenced by factors such as nonresponse due to severe 
cardiovascular disease or competing events result-
ing from mortality, which may potentially lead to an 
underestimation of the association between the TyG-
BMI and stroke. Nevertheless, it is noteworthy that our 
findings remained consistent even after we conducted 
exclusions involving participants with pre-existing 
heart disease. Furthermore, we employed Cox regres-
sion or competing risk regression analyses, which also 
yielded results consistent with our primary findings. 
Last, only participants from China were involved in this 
study; thus, the findings may not be fully generalizable 
to other countries.

Conclusions
In this study, we revealed that substantial changes in 
the TyG-BMI are independently associated with the risk 
of stroke in individuals aged 45 years and above from 
the CHARLS national data. Consequently, monitoring 
long-term changes in the TyG-BMI should prioritize 
stroke prevention strategies. Furthermore, our findings 
elucidated the underlying mechanisms of the TyG-BMI 
by highlighting TG as the primary contributor to the 
observed effects.
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