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Abstract 

Background MicroRNAs (miRNAs) play a crucial role in regulating adaptive and maladaptive responses in cardiovas-
cular diseases, making them attractive targets for potential biomarkers. However, their potential as novel biomarkers 
for diagnosing cardiovascular diseases requires systematic evaluation.

Methods In this study, we aimed to identify a key set of miRNA biomarkers using integrated bioinformatics 
and machine learning analysis. We combined and analyzed three gene expression datasets from the Gene Expres-
sion Omnibus (GEO) database, which contains peripheral blood mononuclear cell (PBMC) samples from individuals 
with myocardial infarction (MI), stable coronary artery disease (CAD), and healthy individuals. Additionally, we selected 
a set of miRNAs based on their area under the receiver operating characteristic curve (AUC-ROC) for separating 
the CAD and MI samples. We designed a two-layer architecture for sample classification, in which the first layer iso-
lates healthy samples from unhealthy samples, and the second layer classifies stable CAD and MI samples. We trained 
different machine learning models using both biomarker sets and evaluated their performance on a test set.

Results We identified hsa-miR-21-3p, hsa-miR-186-5p, and hsa-miR-32-3p as the differentially expressed miRNAs, 
and a set including hsa-miR-186-5p, hsa-miR-21-3p, hsa-miR-197-5p, hsa-miR-29a-5p, and hsa-miR-296-5p as the opti-
mum set of miRNAs selected by their AUC-ROC. Both biomarker sets could distinguish healthy from not-healthy sam-
ples with complete accuracy. The best performance for the classification of CAD and MI was achieved with an SVM 
model trained using the biomarker set selected by AUC-ROC, with an AUC-ROC of 0.96 and an accuracy of 0.94 
on the test data.

Conclusions Our study demonstrated that miRNA signatures derived from PBMCs could serve as valuable novel 
biomarkers for cardiovascular diseases.
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Introduction
Cardiovascular diseases (CVDs) are the leading cause of 
human mortality, accounting for 32% of all global deaths. 
It is estimated that approximately 85% of CVD mortality 
is due to myocardial infarction (MI) [1]. MI is an acute 
coronary syndrome characterized by sudden block-
age and stenosis of the coronary artery and subsequent 
myocardial ischemia, leading to extensive cardiomyocyte 
damage and necrosis [2].

Over the last 50 years, numerous attempts have been 
made to use biomarkers to facilitate diagnosis, assess 
the risk, follow-up therapy, and determine therapeutic 
efficacy in CVD candidates. Based on released guide-
lines, cardiac troponins (cTns) are used as a highly sen-
sitive and accurate approach for detecting MI. Despite 
these inherent advantages, the high sensitivity of cTn-
based assays has also led to more false-positive results 
[3], necessitating the advent and development of new 
modalities with pathological value. To improve the diag-
nostic value of existing MI biomarkers, a combination of 
complementary biological markers, such as microRNAs 
(miRNAs) and other genetic factors, has been proposed. 
Previous research supports the notion that miRNAs 
exhibit great potential as alternative biomarkers for CVD 
detection and follow-up [4]. It has been suggested that 
miRNAs possess 18-22 nucleotides and play a crucial role 
in the regulation of gene expression. Evidence indicates 
that miRNAs are involved in the pathogenesis of cardiac 
tissue injury [5]. Several biological processes, such as 
angiogenesis, cardiomyocyte growth and contractility, 
lipid metabolism, plaque formation, and cardiac rhythm, 
are regulated by miRNAs [6]. Circulating and tissue-
specific miRNAs have shown promise as diagnostic and 
prognostic biomarkers across a range of cardiovascu-
lar diseases, including MI and other conditions such as 
CAD, heart failure, atrial fibrillation, cardiac hypertro-
phy, and fibrosis [7, 8]. The use of miRNAs as diagnostic 
and prognostic biomarkers in CVDs is supported by their 
stability and rapid release into circulation after myocar-
dial injury [7]. In CAD, altered expression of miRNAs 
like miR-1, miR-133a, miR-208a/b, and miR-499, which 
are abundantly expressed in the heart, has been reported 
in patients compared to healthy controls. Additional 
miRNAs including miR-21, miR-208a/b, miR-133a/b, 
and the miR-30 family are frequently dysregulated in 
acute coronary syndrome (ACS) versus stable CAD [9]. 
Furthermore, miRNAs like miR-3113-5p, miR-223-3p, 
miR-499a-5p, and miR-133a-3p demonstrate potential 
as biomarkers to identify patients at risk of sudden car-
diac death [10]. Moreover, miRNAs have shown diag-
nostic potential in other CVDs. For instance, miR-21 has 
been associated with cardiac injury and has been impli-
cated in the pathology and recurrence of MI. Elevated 

levels of miR-21 have been observed in ACS patients and 
have been linked to cardiomyocyte apoptosis and car-
diac hypertrophy. Similarly, miR-26 has been implicated 
in the pathology and recurrence of MI [11]. In addition 
to their diagnostic potential, miRNAs have also shown 
promise as prognostic biomarkers for adverse myocar-
dial effects, sudden death, and risk assessment in MI and 
other CVDs. For example, miR-101 and miR-150 have 
been associated with flawed left ventricular contractility 
after MI, while miR-16 and miR-27a have been linked to 
an increased risk of adverse left ventricular remodeling 
[7, 9]. These miRNAs may provide valuable prognos-
tic information and aid in risk stratification for post-MI 
complications.

Numerous studies have investigated the potential of 
miRNAs as biomarkers for MI, revealing promising 
findings. For instance, miR-1 has been proposed as a 
potential biomarker for MI [9]. This miRNA has shown 
increased expression levels in patients with MI, suggest-
ing its potential diagnostic value. Additionally, other 
miRNAs, such as miR-19b-3p, miR-208a, miR-223-3p, 
miR-483-5p, and miR-499a-5p, have demonstrated 
promising diagnostic accuracy for MI within a short time 
window after the onset of symptoms [10]. A recent sys-
tematic review compared the peak time and diagnostic 
accuracy of miRNAs and conventional biomarkers in MI. 
The results revealed miR-1-3p, miR-19b-3p, miR-208a, 
miR-223-3p, miR-483-5p, and miR-499a-5p had superior 
peak times within 4 h and better accuracy versus cTn and 
Creatine kinase-MB, indicating their promise for early 
diagnosis. The strengths of miRNAs included their early 
peak expression, satisfactory sensitivity and specificity, 
and higher accuracy especially within the first few hours 
of symptom onset compared to conventional biomarkers 
[12].

It has been postulated that the function and diagnos-
tic properties of miRNAs are beyond the myocardium 
in patients with CVD. Specifically, the expression of 
miRNAs can vary in different biofluids and cell compo-
nents such as serum and peripheral blood mononuclear 
cells (PBMCs) [13]. PBMCs are a fraction of white blood 
cells, including monocytes, lymphocytes, macrophages, 
and other cells of the immune system [14]. Emerging 
data indicate that PBMCs can be used as a valid source 
of biomarkers for monitoring various pathological con-
ditions. Of note, the alteration of mRNAs and miRNAs 
under pathological conditions provides valuable informa-
tion about different kinds of disorders. PBMCs can reca-
pitulate the conditions of target tissues, thus providing a 
highly sensitive and specific source of biomarkers [15]. 
Combined with these conditions, these cells are reposito-
ries of dysregulated genes and miRNA expression profiles 
in CVDs [14, 15].
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In recent years, the advent and application of machine 
learning (ML) has been an exciting prospect for advanc-
ing scientific research. Although the concept of ML and 
its initial algorithms were conceived many years ago, 
recent improvements in computing power and access to 
vast amounts of data have demonstrated that ML tech-
niques outperform classical statistical methods in various 
fields. Furthermore, the progress made in omics tech-
nologies has enabled the analysis of massive and intricate 
biological datasets, consisting of hundreds to thousands 
of samples, which makes it possible for ML to extract val-
uable biological insights and information from such data 
[16]. Consequently, ML provides innovative methods for 
merging and interpreting diverse types of omics data, 
leading to the identification of new biomarkers. These 
biomarkers can aid in precise disease prediction, patient 
stratification, and the development of novel therapeutic 
approaches [17].

In this study, we aimed to identify potential miRNA 
biomarkers in patients with MI by combining and ana-
lyzing three different microarray datasets from PBMCs. 
The integration of omics data with bioinformatics and 
ML techniques could be a promising tool in the discovery 
of new and more accurate biomarkers for monitoring MI. 
Additionally, this approach can deepen our understand-
ing of the underlying mechanisms of MI and aid in the 
development of valid diagnostic biomarkers and patient 
stratification.

Methods
Microarray data collection
Microarray datasets were obtained from the Gene 
Expression Omnibus (GEO) database (https:// www. ncbi. 
nlm. nih. gov/ geo/). To obtain robust classification perfor-
mance between MI, healthy control, and CAD samples, 
sufficiently large sample sizes for each group are required. 
For this purpose, the GSE59867 dataset was selected, as 
it contains sizable numbers of both MI and CAD sam-
ples. To provide an equally large set of healthy controls, 
the GSE56609 and GSE54475 datasets containing healthy 
samples were also included. Combining these three data-
sets enabled comparative analysis between MI, CAD, and 
healthy control groups with adequate statistical power. 
All samples were produced using Affymetrix Human 
Gene 1.0 ST Array platform (GPL6244). This platform 
contains 189 miRNA probes based on the annotation 
data from the GEO database. Only healthy, CAD, and 
early-stage MI samples were selected from these datasets 
for further analysis. Early-stage MI samples were ana-
lyzed to enable detection of miRNA biomarkers specific 
to the initial ischemia and infarction event, before exten-
sive myocardial necrosis and remodeling occurs. Using 
samples from the early phase enhances identification of 

miRNA signals related to plaque rupture and MI onset 
versus stable CAD. Additionally, early-stage samples 
allow investigation of mechanisms initiating myocardial 
injury. The basic information for the three datasets evalu-
ated in this study is provided in Table  1. Bioinformatics 
analyses including preprocessing, differential expression 
analysis, and functional and pathway enrichment analy-
ses were conducted using R, ver. 4.2.0 [18], and RStudio 
[19]. All plots and graphics of these sections were created 
using the ggplot2 R package [20].

Preprocessing
The raw data in the form of CEL files from all datasets 
were obtained from GEO. To prepare the data for analy-
sis, we utilized the fRMA package [24] to facilitate pre-
processing of individual microarray samples and their 
consistent combination. For each dataset, background 
correction was applied using the RMA algorithm, fol-
lowed by quantile normalization based on the reference 
distribution. To account for probe-specific effects, batch 
effects were eliminated during summarization and gene 
expression variances were estimated accordingly. In cases 
where multiple probe sets matched the same gene, the 
mean log-fold change was retained. Consequently, fRMA 
can serve as a technique to remove batch effects across 
diverse datasets generated by identical microarray plat-
forms [25]. To ensure the effectiveness of the batch effect 
removal, we employed principal component analysis 
(PCA) and relative log expression (RLE) plots to visualize 
the data before and after applying fRMA.

Differential expression analysis
The barcode algorithm was introduced by McCall et  al. 
[26], aimed to convert actual expression values into 
binary barcode values. Extensive sample collections 
were gathered and normalization was performed using 
fRMA across multiple platforms, including the Affym-
etrix Human Gene 1.0 ST Array (GPL6244) platform. 
By utilizing these normalized datasets, the distribution 
of the observed intensities for both the expressed and 
unexpressed genes was estimated. The determination of 
whether a gene was expressed or not was based on the 
following equation, where a value of 1 indicates expres-
sion and a value of 0 indicates non-expression:

Table 1 Sample information on the GEO microarray dataset

Dataset Platform Healthy CAD MI References

GSE59867 GPL6244 – 46 111 [21]

GSE56609 GPL6244 46 – – [22]

GSE54475 GPL6244 5 – – [23]

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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In the barcode algorithm, the normalized intensity of 
gene i in sample j is denoted as xij . A user-defined param-
eter, C, was introduced along with the standard deviation 
( σ ne ) and mean ( µne ) of the non-expressed distribu-
tion. Based on these values, the barcode representation 
of a sample was generated as a vector consisting of ones 
and zeros. The ones and zeros generated by the barcode 
algorithm refer to binary calls of whether or not a gene is 
estimated to be expressed (1) or not expressed (0) in each 
individual sample. The barcode function within the R 
fRMA package was employed to implement the barcode 
algorithm, utilizing the default value of C.

To assess the differences in expressed ratios between 
the MI and healthy control groups, Fisher’s exact test 
was performed on the barcode values of individual genes. 
Genes that exhibited a false discovery rate (FDR) below 
0.05, calculated using the Benjamini-Hochberg proce-
dure to account for multiple testing issues were identified 
as differentially expressed genes (DEGs). The same pro-
cedures were applied to the CAD versus healthy control 
comparison, as well as to the MI versus CAD group, to 
identify DEGs specific to each comparison.

Differentially expressed miRNAs
The differentially expressed miRNAs were defined as 
those miRNAs within the total DEGs (i.e. they had an 
FDR < 0.05 resulted from the Fisher’s exact test compar-
ing the sample groups).

Functional and pathway enrichment analyses
The R clusterProfiler package [27] was utilized to per-
form Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis and Gene Ontol-
ogy (GO) functional annotation on the set of DEGs. GO 
analysis encompassed three categories: biological process 
(BP), cellular component (CC), and molecular function 
(MF). For statistical significance, an adjusted p-value 
threshold of less than 0.05 was employed. Enrichment 
analyses were conducted separately for DEGs specific to 
the MI-healthy and CAD-healthy comparisons. All the 
default parameters provided by the package were used in 
the analyses.

ML procedure
ML analysis was performed using Python software, ver. 
3.9, Numpy [28], Pandas [29], and Scikit-Learn packages 
[30]. Whenever hypertuning was needed, the Scikit-opt 
package [31] was used. In all ML analyses, the datasets 
were divided into training and test sets at a 0.7:0.3 ratio, 

(1)x̂ij =

{

1 if xij ≥ µne + C × σ ne

0 otherwise

and all reported results are the average of 10-fold 
cross-validation.

Two different approaches were used to select miRNAs 
for model training. The first approach was to use differ-
entially expressed miRNAs. To capture additional miR-
NAs with high discriminatory power for distinguishing 
MI from CAD despite not reaching differentially expres-
sion criteria, a secondary approach was used. miRNAs 
were selected based on having individual area under the 
receiver operating characteristic curves (AUC-ROCs) 
exceeding 0.8 for separating MI and CAD. This AUC-
based approach identifies miRNAs with the best classifi-
cation performance, unconstrained by statistical cutoffs. 
Using both the differentially expressed and AUC-based 
selection provides complementary methods to uncover 
miRNA biomarkers from both a biological and diagnostic 
perspective.

Differentially expressed miRNAs
In this approach, a two-layer architecture is deployed 
to the data to maximize the prediction values. The first 
layer predicted whether a sample was healthy or not, and 
the second layer separated MI from CAD in the samples 
that were predicted as not healthy in the first layer. To 
this end, a distinct ML model was trained for each layer. 
Because there were a limited number of miRNAs in the 
DEGs, both layers were trained with all of them. For fur-
ther comparison with the models’ performance, the ROC 
curve of each miRNA for classifying healthy and not-
healthy, as well as CAD and MI, was generated using a 
logistic regression model.

First layer for  the  isolation of  healthy and  not‑healthy 
samples A support vector machine (SVM) model using 
RBF kernels was trained and hypertuned using all miR-
NAs in the DEGs. To account for the substantial class 
imbalance between the healthy and not-healthy groups, 
with 51 samples in the minority healthy class compared 
to 157 combined CAD and MI samples, adjustments 
were made to the sample weights used during model 
training. Without compensating for the imbalance, the 
machine learning model would be biased towards the 
majority class and potentially ignore the minority class. 
To counteract this, the sample weights were empirically 
tuned, with the weight for healthy samples set to 1 and 
the weight for not-healthy samples set to 0.5. These val-
ues were determined through iterative testing to produce 
a model with strong performance on both classes despite 
the imbalance. The ROC curve and confusion matrix for 
the model are reported.

Second layer for  separating the  MI and  CAD sam‑
ples Different models were investigated to achieve the 
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highest classification performance. To do so, SVM (with 
linear, polynomial, and RBF kernels), logistic regression 
(LR), random forests (RF), k-nearest neighbor (kNN), gra-
dient boosting (GB), XGBoost (XGB) and decision tree 
(DT) models were trained. All models were trained with 
their preset parameters using 10-fold cross-validation. 
The criteria for selecting the best model were the highest 
accuracy and AUC-ROC for the test set. The best model 
was hypertuned using the scikit-opt package [31] for the 
best classification performance. The ROC curve and con-
fusion matrix for the best model are reported.

miRNAs with the highest AUC‑ROC
As in the previous approach, a two-layer strategy was 
employed. The first layer classified samples into healthy 
and not-healthy, and the second layer separated the MI 
and CAD samples. However, to keep the number of miR-
NAs as low as possible, miRNAs were selected from the 
second layer and their performance was evaluated in the 
first layer. The AUC-ROC of all miRNAs for classifying 
MI and CAD samples was calculated, and miRNAs with 
AUC-ROC > 0.8 were selected. ROC curves for each 
selected miRNA for separating healthy samples from not-
healthy samples and MI from CAD samples were also 
plotted for further comparison.

First layer for  the  isolation of  healthy and  not‑healthy 
samples An SVM model with an RBF kernel is trained 
using the selected set of miRNAs. Additionally, the model 
was hypertuned to find the hyperparameters for the high-
est AUC-ROC and accuracy. The same sample weights as 
in the previous approach (1 for healthy and 0.5 for not-
healthy samples) were used. The ROC curve and confu-
sion matrix for the model were reported.

Second layer for  separating the  MI and  CAD sam‑
ples The selected miRNA set was used to train differ-
ent algorithms to determine the best model. Similar to 
the previous approach, the SVM (with linear, polynomial, 
and RBF kernels), LR, RF, kNN, GB, XGB, and DT models 
were trained. All models were trained with their preset 
parameters using 10-fold cross-validation. The models 
with the highest AUC-ROC and accuracy on the test set 
were selected and hypertuned using the scikit-opt pack-
age [31]. The ROC curve and confusion matrix for the 
best model were reported.

Results
Preprocessing
The PCA plots of the samples are shown in Fig.  1A, B. 
Healthy samples were separated from the CAD or MI 
samples in the primary data and after conducting fRMA. 

In the RLE plot, there was a distinct difference between 
the dataset means for all samples before fRMA was per-
formed (Fig. 1C). All datasets were rearranged to approx-
imately 0 in the RLE plot after fRMA was conducted 
(Fig.  1D). Moreover, there was an apparent change in the 
interquantile distances, but the values were still greater 
than 0.1.

Differential expression analysis
According to the cutoff criterion of FDR < 0.05 , there 
were 860 DEGs between MI and healthy samples. Among 
them, 323 were up-regulated, and 537 were down-regu-
lated in the MI group compared to the healthy group. In 
the CAD and healthy group comparison, we found 670 
DEGs, of which 262 and 408 DEGs were up- and down-
regulated, respectively, in CAD samples. In the MI and 
CAD groups, the number of DEGs was 260, and the 
numbers of up- and down-regulated genes in MI samples 
were 144 and 116, respectively, compared to CAD sam-
ples. The data are summarized in Table  2.

The Venn diagram in Fig.  2 shows that the CAD and 
MI samples shared most of their DEGs. From 860 DEGs 
of MI/healthy and 670 DEGs of CAD/healthy, 531 genes 
were common, which is 62% of MI/healthy DEGs and 
79% of CAD/healthy DEGs.

Differentially expressed miRNAs
Among the DEGs for MI/healthy and CAD/healthy com-
parison, hsa-miR-186-5p, hsa-miR-32-3p, and hsa-miR-
21-3p were identified as differentially expressed miRNAs. 
The only differentially expressed miRNA in MI/CAD 
comparison was hsa-miR-186-5p (Table  2). The expres-
sion profiles of the three miRNAs are shown in Fig. 5.

GO and KEGG enrichment analyses of the DEGs
To explore the biological classification of the DEGs, we 
performed GO and KEGG pathway enrichment analy-
ses on the MI/healthy and CAD/healthy DEGs. For MI/
healthy, GO enrichment analysis in the BP category 
suggested that the DEGs were enriched in “immune 
response-regulating signaling pathway,” “lymphocyte 
differentiation,” “immune response-regulating cell sur-
face receptor signaling pathway,” and “leukocyte acti-
vation involved in immune response” (Fig.   3A). In the 
CC category, DEGs were enriched in “secretory gran-
ule membrane,” “azurophil granule,” “ficolin-1-rich 
granule,” “tertiary granule,” and “ficolin-1-rich granule 
membrane” (Fig.  3B). In the MF category, DEGs were 
involved in “cadherin binding” and “MHC class I protein 
binding” (Fig.   3C). KEGG pathway analysis indicated 
that the DEGs were related to the following pathways: 
“Chemokine signaling pathway,” “Lipid and atherosclero-
sis,” and “Hematopoietic cell lineage” (Fig. 3D).
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The enrichment results for the CAD/healthy DEGs 
were as follows. In the BP category, GO enrichment sug-
gested that the DEGs were enriched in “positive regula-
tion of defense response,” “positive regulation of innate 
immune response,” “mononuclear cell differentiation,” 
and “positive regulation of response to external stimulus” 
(Fig.   4A). In the CC category, DEGs were enriched in 
“azurophil granule,” “ficolin-1-rich granule,” and “ficolin-
1-rich granule membrane” (Fig. 4B). In the MF category, 
DEGs were involved in “lipoprotein particle receptor 

binding” and “NF-κ B binding” (Fig. 4C). KEGG pathway 
analysis showed that the DEGs were related to the fol-
lowing pathways: “Chemokine signaling pathway,” “Lipid 
and atherosclerosis,” and “Hematopoietic cell lineage” 
(Fig. 4D).

Machine learning
Differentially expressed miRNAs
The ROC curves of each miRNA in each layer are pre-
sented in Fig. 6. Using the logistic regression model, the 
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Fig. 1 Principal component analysis plots for A primary data and B the data after fRMA, and the relative log expression plots for C primary data and 
D the data after fRMA
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AUC-ROC values of hsa-miR-21-3p, hsa-miR-32-3p, and 
hsa-miR-186-5p for separating healthy and not-healthy 
samples were 0.98, 0.99, and 0.90, respectively (Fig. 6A). 
The accuracy of each miRNA for classifying the sam-
ples into healthy and not-healthy groups on the test set 
for hsa-miR-21-3p, hsa-miR-32-3p, and hsa-miR-186-5p 
was 0.92, 0.98, and 0.89, respectively. The ROC curve of 
each miRNA for classifying MI and CAD samples is pre-
sented in Fig. 6B. The AUC-ROC and accuracy for hsa-
miR-21-3p, hsa-miR-32-3p, and hsa-miR-186-5p in the 
test set were 0.85; 0.70; and 0.86, and 0.78; 0.67; and 0.74, 
respectively.

First layer for  the  isolation of  healthy and  not‑healthy 
samples Although single miRNAs had an acceptable 
performance for this layer, their predictive value could be 
further improved by using them as a set. The ROC curve 

for the SVM model with an RBF kernel trained with all 
three miRNAs is presented in Fig. 7A. The model had a 
better performance in classification than single miRNAs.
The AUC-ROC for the model was 1, and its accuracy on 
the test set was also 1. In Fig.  8A, the confusion matrix for 
the model is presented.

Second layer for  separating the  MI and  CAD sam‑
ples Different models were trained using the expres-
sion values of three differentially expressed miRNAs. The 
models’ AUC-ROC and the accuracy of the test set are 
shown in Fig. 9. The best model from both the AUC-ROC 
and accuracy points of view was the SVM model with a 
linear kernel. The AUC-ROC and accuracy for this model 
with its preset values were 0.93 and 0.82, respectively. The 
model was hypertuned for C and gamma hyperparame-
ters, and therefore the model showed better performance. 
The ROC curve of the hypertuned model is presented in 
Fig. 7B. For this model, the AUC-ROC reached 0.95, and 
the accuracy was improved to 0.85 (Table 4). Moreover, 
the sensitivity and specificity for the model on the test set 
were 0.91 and 0.71, respectively. The confusion matrix for 
the hypertuned model is illustrated in Fig. 8B.

AUC‑ROC approach
After calculating the AUC-ROC for each miRNA to clas-
sify of MI and CAD samples, the miRNAs with AUC-
ROC > 0.8 were selected. The miRNAs selected were 
hsa-miR-29a-5p, hsa-miR-197-5p, hsa-miR-186-5p, hsa-
miR-21-3p, and hsa-miR-296-5p. The expression levels of 
these miRNAs in healthy, CAD, and MI samples are pre-
sented in Fig. 5. The ROC curves of the selected miRNAs 
in both layers are shown in Fig. 6.

First layer for  the  isolation of  healthy and  not‑healthy 
samples Using the selected set, an SVM model with 
an RBF kernel was trained to separate healthy and not-
healthy samples. The ROC curve for the model is pre-
sented in Fig. 10A, and the confusion matrix is illustrated 
in Fig.  11A. Both the AUC-ROC and accuracy of the 
model on the test set were 1.

Second layer for  separating the  MI and  CAD sam‑
ples To find the best model for this set of miRNAs, 
different models were trained using their preset values. 
The AUC-ROC and accuracy results for the test set are 
presented in Fig.  12. The best model from the AUC-
ROC point of view was the SVM with a linear kernel, 
and from the accuracy point of view, it was the SVM 
model with an RBF kernel. For the SVM-linear model, 
the AUC-ROC and accuracy were 0.93 and 0.82, respec-
tively; and for the SVM-RBF, the values were 0.92 and 

Table 2 Total, up-, and down-regulated DEGs and differentially 
expressed miRNAs

Total DEGs Up-regulated 
DEGs

Down-
regulated 
DEGs

miRNAs

MI vs. 
Healthy

860 323 537 hsa-miR-
186-5p, hsa-
miR-21-3p, 
hsa-miR-
32-3p

CAD vs. 
Healthy

670 262 408 hsa-miR-
186-5p, hsa-
miR-21-3p, 
hsa-miR-
32-3p

MI vs. CAD 260 144 116 hsa-miR-
186-5p

CAD/Healthy MI/Healthy

MI/CAD

59 238

47

489

80 91
42

Fig. 2 Venn diagram for DEGs in CAD/Healthy, MI/Healthy, and MI/
CAD
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0.84, respectively. Both models were hyper-tuned, 
and the ROC curve for their best performance is pre-
sented in Fig. 10B, C. The AUC-ROC and accuracy for 
the SVM-linear model were modified to 0.92 and 0.88, 
respectively. For the SVM-RBF, these values increased 
to 0.96 and 0.94, respectively (Table 5). The sensitivities 
for the SVM-linear and SVM-RBF models were 0.91 and 
0.97, respectively; and their specificities were 0.79 and 
0.86, respectively. The confusion matrix for both models 
is illustrated in Fig. 11B and C.

Discussion
The prevalence of MI can lead to high mortality rates 
in the clinical setting. However, early diagnosis and the 
application of suitable treatment protocols can reduce 
mortality and improve MI prognosis ([1, 3, 32]). Studies 
have suggested that changes in miRNA expression may 
play a significant role in the progression of MI and the 
subsequent remodeling [33]. It is believed that miRNA 
expression is altered during the various biological pro-
cesses correlated with MI within the myocardium or 
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other related tissues [34]. Although several studies have 
focused on examining free circulating miRNAs in serum 
samples for the detection of cardiac tissue injuries [7], 
more information is needed to fully comprehend the 
miRNAs found in different blood subcomponents, such 
as plasma, platelets, and PBMCs. Based on previous find-
ings, PBMCs play a crucial role in the destabilization 
and rupture of plaques as well as in the initial inflam-
matory reactions in individuals experiencing myocar-
dial infarction (MI) [15, 35]. Moreover, PBMCs have 
specific miRNA profiles that are altered under certain 

pathological conditions, making them great candidates as 
disease biomarkers [15].

PBMCs can respond to several insulting conditions, 
such as MI, in the shortest possible time with notable 
changes in their miRNA profile [15]. Considering their 
regulatory roles, subtle changes in the transcription of 
miRNAs can be monitored even before alterations in 
mRNA and protein levels [4]. These features make miR-
NAs a valid early-stage diagnostic tool for the detection 
of minor and major cell injuries. To date, few studies have 
compared the miRNA profiles in PBMCs from patients 
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with MI and other CADs and healthy samples to find a 
robust set of identical miRNAs to differentiate these 
pathological conditions.

In this study, we combined three GEO datasets for 
healthy, CAD, and MI samples. Having these sample 
sets alongside bioinformatics analysis and ML meth-
ods enabled us to identify potential biomarker sets and 
effective therapeutic targets. The results of the DEG 
analysis (Table   2 and Fig.  2) prove the close relation-
ship between the MI and CAD samples. Interestingly, 
functional enrichment analysis demonstrated that DEGs 
in both CAD/healthy and MI/healthy were strongly cor-
related with the immune cell response, which is a major 
part of PBMCs. Two sets of miRNAs were selected as 

biomarker sets for sample classification. Hsa-miR-21-3p; 
hsa-miR-32–3p; and hsa-miR-186–5p were selected as 
differentially expressed miRNAs, and hsa-miR-186–5p; 
hsa-miR-21–3p; hsa-miR-29a-5p; hsa-miR-197–5p; and 
hsa-miR-296–5p were selected based on their AUC-ROC 
values. As shown in Fig. 6, all miRNAs selected with both 
approaches had AUC-ROCs > 0.9 for isolating healthy 
and not-healthy samples except for hsa-miR-296–5p and 
hsa-miR-29a-5p. The data confirmed that the real chal-
lenge was to classify CAD and MI samples because of 
the close overlap. Of the six miRNAs under investigation 
in both approaches, except for hsa-miR-32–3p, all miR-
NAs had an AUC-ROC > 0.8 for the discrimination of 
CAD and MI samples. As expected, the high AUC-ROC 

Table 3 Investigated miRNAs log fold-change and adjusted p-values for CAD samples relative to healthy, MI samples relative to 
healthy, and MI samples relative to CAD

CAD/Healthy MI/Healthy MI/CAD

logFC adj. p-value logFC adj. p-value logFC adj. p-value

hsa-miR-186-5p 1.4 3.60e-25 0.9 6.76e-20 −0.5 1.05e-09

hsa-miR-21-3p 1.4 1.31e-17 2.3 2.07e-47 0.8 2.96e-11

hsa-miR-32-3p 2.5 8.39e-43 2.2 3.10e-59 −0.3 7.60e-04

hsa-miR-197-5p 0.5 2.95e-20 0.7 1.59e-47 0.2 8.58e-09

hsa-miR-29a-5p 0.7 7.76e-29 0.1 1.70e-01 −0.5 2.14e-10

hsa-miR-296-5p −0.1 5.00e-02 0.1 2.00e-02 0.2 6.15e-06

Fig. 5 Expression profile of all miRNAs in two approaches in different sample classes
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values of the miRNAs confirmed their high potential as 
biomarkers.

ML models trained with miRNA sets selected by both 
DEG and AUC-ROC approaches, showed better clas-
sification performance than each miRNA. To avoid 
unwanted complexity and poor predictive values, a 
two-layer architecture was designed. The first layer was 
used to discriminate between healthy and not-healthy 
samples, and the second layer was was used to sepa-
rate CAD from MI candidates. As expected, in both 

approaches, a hypertuned SVM model could flawlessly 
separate healthy and not-healthy samples using dis-
tinct miRNA sets. ML models are also capable of effec-
tively separating CAD from MI patients. Although both 
miRNA sets had nearly the same AUC-ROC using the 
best model, their accuracy, sensitivity, and specificity 
were different. The model trained with AUC-selected 
miRNAs showed better performance in all predictive 
values, which is logical because of the higher number of 
miRNAs in the set.

A B

Fig. 6 ROC curve for single miRNAs on test set classification for A healthy and not-healthy samples and B CAD and MI samples

A B

Fig. 7 ROC curve for the model trained with differentially expressed miRNAs on test set classification; A An SVM model with RBF kernel for healthy 
and not-healthy and B An SVM model with linear kernel for CAD and MI sample classification
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Numerous studies have reported that different bio-
logical processes can affect the miRNA expression in 
PBMCs. However, the exact role of miRNAs in the func-
tion of immune cells and the correlation between specific 
pathological conditions and miRNA profiles remain con-
troversial. Several studies have proven the activation of 
particular miRNA types in PBMCs under cardiovascular 
events [36]. For instance, there is evidence that elevation 
of hsa-miR-186–5p suppresses the expression of cysta-
thionine-γ-lyase, leading to the subsequent secretion of 
pro-inflammatory cytokines and cellular lipid accumula-
tion. In addition, macrophage-derived hsa-miR-186–5p 
may promote atherosclerotic plaque formation [37]. In 
line with this claim, we found that hsa-miR-186–5p was 
up-regulated in both CAD and MI candidates compared 
to their control counterparts. Surprisingly, the obtained 
data indicated that the expression of hsa-miR-186–5p 
was higher in patients with CAD than in patients with MI 
(Fig.  5). Specifically, hsa-miR-186–5p was the only dif-
ferentially expressed miRNA between CAD and MI, with 
a clear up-regulation in CAD, indicating its main role in 
the promotion of atherosclerosis.

As mentioned before, hsa-miR-21–3p was also up-
regulated in both MI and CAD patients compared to 
healthy controls. Moreover, the expression value of hsa-
miR-21–3p was significantly higher in the MI group than 
in the CAD group (Table  3). It is thought that the up-
regulation of hsa-miR-21–3p in PBMCs is a compensa-
tory reaction to reduce the T reg lymphocyte number in 
response to the reduction in TGFβ1 secretion into the 

A B

Fig. 8 Confusion matrix for the model trained with differentially expressed miRNAs on test set classification; A An SVM model with RBF kernel 
for healthy and not-healthy and B An SVM model with linear kernel for CAD and MI sample classification

Fig. 9 Area under the receiver operating characteristic curve 
and accuracy of different models trained with three differentially 
expressed miRNAs

Table 4 AUC-ROC and accuracy for SVM with a linear kernel as 
the best model trained with differentially expressed miRNAs on 
the training and test sets before and after hypertuning

Model Metrics Preset parameters Hypertuned

Train Test Train Test

SVM-linear AUC-ROC 0.91 0.93 0.92 0.95

Accuracy 0.83 0.82 0.84 0.85
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plasma through a TGFβ1/smad-independent pathway. In 
line with the previous and present data, hsa-miR-21–3p 
can modulate the activity of PBMCs following the occur-
rence of cardiovascular diseases [38].

Recent data have supported the elevation of hsa-
miR-32–3p levels in CAD samples with calcification 
of the coronary artery. Notably, hsa-miR-32–3p pro-
motes vascular smooth muscle calcification in mice by 
controlling the activity of several proteins, including 
bone morphogenetic protein-1, runt-related transcrip-
tion factor-2 (RUNX2), osteopontin, and bone-specific 

phosphoprotein matrix GLA protein [39]. Likewise, some 
reports are associated with the activity of hsa-miR-32–3p 
in PBMCs in several pathologies [40, 41]. The exact role 
of hsa-miR-32–3p in PBMCs after cardiovascular events 
remains unclear.

Molecular analyses have indicated the regulatory role 
of miRNAs selected using the AUC-ROC approach 
in PBMCs after a cardiovascular event. The biological 
importance of two common miRNAs in the DEGs and 
AUC-ROC approaches, hsa-miR-21–3p and hsa-miR-
186–5p, have already been discussed. Based on numerous 

A B

C

Fig. 10 ROC curve for models trained with the set of miRNAs selected by AUC-ROC on test set classification; A SVM with RBF kernel for healthy 
and not-healthy samples classification. B SVM with linear kernel for CAD and MI sample classification. C SVM with RBF kernel for CAD and MI sample 
classification



Page 14 of 17Samadishadlou et al. Cardiovascular Diabetology          (2023) 22:247 

reports, hsa-miR-29a-5p can be activated in different dis-
eases [42]. Data analysis indicated that hsa-miR-29a-5p 
was significantly up-regulated in CAD patients compared 
to the healthy and MI groups (Table  3). Increased hsa-
miR-29a-5p is associated with the progression of athero-
sclerosis, and the combination of hsa-miR-29a-5p and 
ox-LDL has been suggested as a valid biomarker set for 
paraclinical classification [43]. However, the role of hsa-
miR-29a-5p in the function of PBMCs from patients with 
CAD has not been thoroughly examined.

The data indicated that hsa-miR-197–5p was signifi-
cantly up-regulated in both the CAD/healthy and MI/
healthy groups. Previous studies have demonstrated that 
hsa-miR-197–5p may play a crucial role in controlling 
the anti-inflammatory response of IL-35 by influenc-
ing the secretion of cytokines that can either promote 
or suppress inflammation, the ratio of M1/M2 mac-
rophages, and the proliferation of T reg lymphocytes, 
which are responsible for suppressing immune responses 
[44]. Alongside our findings, it can be concluded that 

A B

C

Fig. 11 Confusion matrix for models trained with the set of miRNAs selected by AUC-ROC on test set classification; A SVM with RBF kernel 
for healthy and not-healthy samples classification. B SVM with linear kernel for CAD and MI sample classification. C SVM with RBF kernel for CAD 
and MI sample classification
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hsa-miR-197–5p could be a useful diagnostic tool for 
predicting adverse cardiovascular events.

The findings of this study demonstrate the potential of 
hsa-miR-296–5p as a biomarker with high discriminatory 
power to distinguish between samples from individuals 
with MI and CAD. Hsa-miR-296–5p has been identi-
fied as a key regulator in the development and advance-
ment of atherosclerosis by controlling the expression of 
target genes associated with various biological processes, 
including angiogenesis, cholesterol metabolism, inflam-
mation, cellular proliferation, hypertension, and apopto-
sis [36]. In a previous study, hsa-miR-296–5p expression 
levels were found to be significantly increased in the 
PBMCs of CAD patients compared to healthy controls, 
suggesting its involvement in regulating proinflammatory 
cytokines such as IL-6 and TNF-α [45]. These findings 
suggested that hsa-miR-296–5p may have a significant 
impact on the pathogenesis of atherosclerosis and could 

potentially serve as a diagnostic biomarker for CAD or 
MI.

Conclusion
In summary, we derived a set of miRNA biomarkers 
by comparing MI samples with both healthy and CAD 
samples. We found that the SVM model performed 
best in both the first layer, which separated healthy and 
unhealthy samples, and the second layer, which classi-
fied the MI/CAD samples. The set of miRNAs selected 
based on their AUC-ROC values performed better 
in the second layer. Overall, our two-layer structure 
achieved an accuracy of 0.96. This demonstrates the 
potential of combining bioinformatics and machine 
learning techniques to identify novel biomarkers and 
gain a deeper understanding of myocardial infarction.

Abbreviations
CVD  Cardiovascular disease
MI  Myocardial infarction
cTn  Cardiac troponin
miRNA  MicroRNA
ACS  Acute coronary syndrome
PBMC  Peripheral blood mononuclear cell
ML  Machine learning
GEO  Gene expression omnibus
PCA  Principal component analysis
RLE  Relative log expression
FDR  False discovery rate
DEG  Differentially expressed gene
KEGG  Kyoto encyclopedia of genes and genomes
GO  Gene ontology
BP  Biological process
CC  Cellular component
MF  Molecular function
SVM  Support vector machine
LR  Logistic regression
RF  Random forests
kNN  K-nearest neighbor
GB  Gradient boosting
XGB  XGBoost
DT  Decision tree
AUC-ROC  Area under the receiver operating characteristic curve

Author contributions
FB and KK conceived the idea and coordinated the project. MS researched, 
collected the data, performed the analyzes, assembled the results, and drafted 
the manuscript. ZP and MEcontributed to data analyze. Ç.BA was foreign 
supervisor and collaborator. FB, R.R. and K.K. edited and revised the manu-
script. FB and KK are author responsible for contact and ensures communica-
tion. All authors read the content of final manuscript.

Funding
This is a report of result from Ph.D. thesis registered in Tabriz University of 
Medical Sciences with the Number 66,372. This work was extracted from 
Mehrdad Samadishadlou’s thesis titled “Developing and manufacturing of 
a paper-based Nanobiosensor in order to diagnosing myocardial infarction 
using a set of blood microRNAs”.

Availability of data and materials
The datasets generated and/or analysed during the current study are available 
in the Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/), 

Fig. 12 Area under the receiver operating characteristic curve 
and accuracy of different models trained with AUC-selected miRNAs

Table 5 AUC-ROC and accuracy for SVM with the linear and RBF 
kernels as the best models trained with miRNAs selected based 
on their AUC-ROC on the train and test sets before and after 
hypertuning

Model  Metrics Preset parameters Hypertuned

Train Test Train Test

SVM-linear AUC-ROC 0.91 0.93 0.93 0.92

Accuracy 0.85 0.82 0.90 0.88

SVM-RBF AUC-ROC 0.90 0.92 0.96 0.96

Accuracy 0.86 0.84 0.96 0.94

https://www.ncbi.nlm.nih.gov/geo/


Page 16 of 17Samadishadlou et al. Cardiovascular Diabetology          (2023) 22:247 

reference numbers GSE59867, GSE56609 and GSE54475. All data generated or 
analysed during this study are included in this published article.

Declarations

Ethics approval and consent to participate
The study was approved by the research ethics committee of Tabriz University 
of Medical Sciences (approval ID: IR.TBZMED.VCR.REC.1399.388, date of 
approval: 2021/1/11).

Consent for publication
All authors gave consent for the publication of the article.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Medical Nanotechnology, Faculty of Advanced Medi-
cal Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. 2 Stem Cell 
Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. 3 Depart-
ment of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz 
University of Medical Sciences, Tabriz, Iran. 4 Laboratory of Complex Biological 
Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute 
of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran. 5 Medi-
cal Bioengineering Department, Faculty of Advanced Medical Sciences, Tabriz 
University of Medical Sciences, Tabriz, Iran. 6 Medical Biology Department, 
School of Medicine, Ege University, İzmir, Türkiye. 7 Drug Applied Research 
Center, Tabriz University of Medical Sciences, Tabriz, Iran. 

Received: 26 June 2023   Accepted: 10 August 2023

References
 1. Cardiovascular diseases (CVDs). https:// www. who. int/ news- room/ fact- 

sheets/ detail/ cardi ovasc ular- disea ses- (cvds). Accessed 12 Mar 2023.
 2. Yap J, Irei J, Lozano-Gerona J, Vanapruks S, Bishop T, Boisvert WA. Mac-

rophages in cardiac remodelling after myocardial infarction. Nat Rev 
Cardiol. 2023. https:// doi. org/ 10. 1038/ s41569- 022- 00823-5.

 3. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White 
HD. The Executive Group on behalf of the Joint European Society of 
Cardiology (ESC)/American College of Cardiology (ACC)/American Heart 
Association (AHA)/World Heart Federation (WHF) Task Force for the 
Universal Definition of Myocardial Infarction. Fourth Universal Definition 
of Myocardial Infarction (2018). Circulation. 2018. https:// doi. org/ 10. 1161/ 
CIR. 00000 00000 000617.

 4. Schulte C, Barwari T, Joshi A, Zeller T, Mayr M. Noncoding RNAs 
versus protein biomarkers in cardiovascular disease. Trends Mol Med. 
2020;26(6):583–96. https:// doi. org/ 10. 1016/j. molmed. 2020. 02. 001.

 5. Schulte C, Karakas M, Zeller T. microRNAs in cardiovascular disease - clini-
cal application. Clin Chem Lab Med (CCLM). 2017. https:// doi. org/ 10. 
1515/ cclm- 2016- 0576.

 6. Kalayinia S, Arjmand F, Maleki M, Malakootian M, Singh CP. MicroRNAs: 
roles in cardiovascular development and disease. Cardiovasc Pathol. 
2021;50: 107296. https:// doi. org/ 10. 1016/j. carpa th. 2020. 107296.

 7. Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, 
Dayan N, Landry T, Pilote L. Systematic review of microRNA biomarkers in 
acute coronary syndrome and stable coronary artery disease. Cardiovasc 
Res. 2020;116(6):1113–24. https:// doi. org/ 10. 1093/ cvr/ cvz302.

 8. Tanase DM, Gosav EM, Ouatu A, Badescu MC, Dima N, Ganceanu-Rusu AR, 
Popescu D, Floria M, Rezus E, Rezus C. Current knowledge of MicroRNAs 
(miRNAs) in acute coronary syndrome (ACS): ST-elevation myocardial 
infarction (STEMI). Life. 2021;11(10):1057. https:// doi. org/ 10. 3390/ life1 
11010 57.

 9. Wang G, Zhu J-Q, Zhang J-T, Li Q, Li Y, He J, Qin Y-w, Qin Y-W, Jing Q. Circu-
lating microRNA: a novel potential biomarker for early diagnosis of acute 
myocardial infarction in humans. Eur Heart J. 2010;31(6):659–66. https:// 
doi. org/ 10. 1093/ eurhe artj/ ehq013.

 10. Schulte C, Barwari T, Joshi A, Theofilatos K, Konstantinos Theofilatos 
Zampetaki A, Barallobre-Barreiro J, Singh B, Sörensen Nils A, Sörensen NA, 
Neumann JT, Neumann Johannes T, Tanja Zeller Zeller T, Dirk Westermann 
Westermann D, Westermann D, Stefan Blankenberg Blankenberg S, 
Marber MS, Liebetrau C, Mayr M. Comparative analysis of circulating non-
coding RNAs versus protein biomarkers in the detection of myocardial 
injury. Circ Res. 2019;125(3):328–40. https:// doi. org/ 10. 1161/ circr esaha. 
119. 314937.

 11. Zhelankin AV, Stonogina DA, Vasiliev SV, Babalyan KA, Sharova EI, Doludin 
YV, Shchekochikhin D, Generozov EV, Generozov EV, Akselrod AS. Circulat-
ing extracellular miRNA analysis in patients with stable CAD and acute 
coronary syndromes. Biomolecules. 2021;11(7):962. https:// doi. org/ 10. 
3390/ biom1 10709 62.

 12. Wang B, Li Y, Hao X, Yang J, Han X, Li H, Li T, Wang D, Teng Y, Ma L, Li Y, 
Zhao M, Wang X. Comparison of the clinical value of miRNAs and con-
ventional biomarkers in AMI: a systematic review. Front Genet. 2021;12: 
668324. https:// doi. org/ 10. 3389/ fgene. 2021. 668324.

 13. Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic biomarkers in 
cardiovascular diseases. Front Genet. 2019;10(2019):950. https:// doi. org/ 
10. 3389/ fgene. 2019. 00950.

 14. Gao J, Liu J, Zhang Y, Guan B, Qu H, Chai H, Wang W, Ma X, Shi D. PBMCs-
derived microRNA signature as a prethrombotic status discriminator in 
stable coronary artery disease. Thromb Haemostasis. 2020;120(01):121–
31. https:// doi. org/ 10. 1055/s- 0039- 17005 18.

 15. Mosallaei M, Ehtesham N, Rahimirad S, Saghi M, Vatandoost N, Khosravi 
S. PBMCs: a new source of diagnostic and prognostic biomarkers. Arch 
Physiol Biochem. 2022;128(4):1081–7. https:// doi. org/ 10. 1080/ 13813 455. 
2020. 17522 57.

 16. Torun FM, Virreira Winter S, Doll S, Riese FM, Vorobyev A, Mueller-Reif JB, 
Geyer PE, Strauss MT. Transparent exploration of machine learning for 
biomarker discovery from proteomics and omics data. J Proteome Res. 
2023;22(2):359–67. https:// doi. org/ 10. 1021/ acs. jprot eome. 2c004 73.

 17. Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning 
approaches for multi-omics data analysis: a review. Biotechnol Adv. 
2021;49: 107739. https:// doi. org/ 10. 1016/j. biote chadv. 2021. 107739.

 18. R Core Team: R: a language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria 2022;. R Foundation 
for Statistical Computing. https:// www.R- proje ct. org/

 19. RStudio Team: RStudio: Integrated development environment for R. 
RStudio, PBC., Boston, MA. RStudio, PBC. 2020; http:// www. rstud io. com/

 20. Wickham H. Ggplot2: elegant graphics for data analysis. New York: 
Springer; 2016. https:// doi. org/ 10. 1007/ 978-3- 319- 24277-4.

 21. Maciejak A, Kiliszek M, Michalak M, Tulacz D, Opolski G, Matlak K, 
Dobrzycki S, Segiet A, Gora M, Burzynska B. Gene expression profiling 
reveals potential prognostic biomarkers associated with the progression 
of heart failure. Genome Med. 2015;7(1):26. https:// doi. org/ 10. 1186/ 
s13073- 015- 0149-z.

 22. Matone A, O’Grada CM, Dillon ET, Morris C, Ryan MF, Walsh M, Gibney ER, 
Brennan L, Gibney MJ, Morine MJ, Roche HM. Body mass index mediates 
inflammatory response to acute dietary challenges. Mol Nutr Food Res. 
2015;59(11):2279–92. https:// doi. org/ 10. 1002/ mnfr. 20150 0184.

 23. Canali R, Natarelli L, Leoni G, Azzini E, Comitato R, Sancak O, Barella L, 
Virgili F. Vitamin C supplementation modulates gene expression in 
peripheral blood mononuclear cells specifically upon an inflammatory 
stimulus: a pilot study in healthy subjects. Genes Nutr. 2014;9(3):390. 
https:// doi. org/ 10. 1007/ s12263- 014- 0390-x.

 24. McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis 
(fRMA). Biostatistics. 2010;11(2):242–53. https:// doi. org/ 10. 1093/ biost atist 
ics/ kxp059.

 25. Lazar C, Meganck S, Taminau J, Steenhoff D, Coletta A, Molter C, Weiss-
Solis DY, Duque R, Bersini H, Nowe A. Batch effect removal methods for 
microarray gene expression data integration: a survey. Briefings Bioin-
form. 2013;14(4):469–90. https:// doi. org/ 10. 1093/ bib/ bbs037.

 26. McCall MN, Uppal K, Jaffee HA, Zilliox MJ, Irizarry RA. The Gene Expression 
Barcode: leveraging public data repositories to begin cataloging the 
human and murine transcriptomes. Nucleic Acids Res. 2011;39:1011–5. 
https:// doi. org/ 10. 1093/ nar/ gkq12 59.

 27. Yu G, Wang L-G, Han Y, He Q-Y. clusterprofiler: an r package for compar-
ing biological themes among gene clusters. OMICS: A J Integr Biol. 
2012;16(5):284–7. https:// doi. org/ 10. 1089/ omi. 2011. 0118.

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-%28cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-%28cvds)
https://doi.org/10.1038/s41569-022-00823-5
https://doi.org/10.1161/CIR.0000000000000617
https://doi.org/10.1161/CIR.0000000000000617
https://doi.org/10.1016/j.molmed.2020.02.001
https://doi.org/10.1515/cclm-2016-0576
https://doi.org/10.1515/cclm-2016-0576
https://doi.org/10.1016/j.carpath.2020.107296
https://doi.org/10.1093/cvr/cvz302
https://doi.org/10.3390/life11101057
https://doi.org/10.3390/life11101057
https://doi.org/10.1093/eurheartj/ehq013
https://doi.org/10.1093/eurheartj/ehq013
https://doi.org/10.1161/circresaha.119.314937
https://doi.org/10.1161/circresaha.119.314937
https://doi.org/10.3390/biom11070962
https://doi.org/10.3390/biom11070962
https://doi.org/10.3389/fgene.2021.668324
https://doi.org/10.3389/fgene.2019.00950
https://doi.org/10.3389/fgene.2019.00950
https://doi.org/10.1055/s-0039-1700518
https://doi.org/10.1080/13813455.2020.1752257
https://doi.org/10.1080/13813455.2020.1752257
https://doi.org/10.1021/acs.jproteome.2c00473
https://doi.org/10.1016/j.biotechadv.2021.107739
https://www.R-project.org/
http://www.rstudio.com/
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1186/s13073-015-0149-z
https://doi.org/10.1186/s13073-015-0149-z
https://doi.org/10.1002/mnfr.201500184
https://doi.org/10.1007/s12263-014-0390-x
https://doi.org/10.1093/biostatistics/kxp059
https://doi.org/10.1093/biostatistics/kxp059
https://doi.org/10.1093/bib/bbs037
https://doi.org/10.1093/nar/gkq1259
https://doi.org/10.1089/omi.2011.0118


Page 17 of 17Samadishadlou et al. Cardiovascular Diabetology          (2023) 22:247  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 28. Harris CR, Millman KJ, Walt SJ, Gommers R, Virtanen P, Cournapeau D, 
Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, Kerkwijk 
MH, Brett M, Haldane A, Río JF, Wiebe M, Peterson P, Gérard-Marchant P, 
Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE. Array 
programming with NumPy. Nature. 2020;585(7825):357–62. https:// doi. 
org/ 10. 1038/ s41586- 020- 2649-2.

 29. McKinney: Data Structures for Statistical Computing in Python. In: Walt, 
Millman (eds.) Proceedings of the 9th Python in Science Conference. 
2010;pp. 56–61. https:// doi. org/ 10. 25080/ Majora- 92bf1 922- 00a

 30. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, 
Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine 
learning in python. J Mach Learn Res. 2011;12:2825–30.

 31. Hea, T, Kumar M, Nahrstaedt H, Louppe G, Shcherbatyi I. Scikit-optimize/
scikit-optimize. https:// doi. org/ 10. 5281/ zenodo. 55650 57 .

 32. ...Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, 
Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, 
Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan 
SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mus-
solino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, 
Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, 
Wang N-Y, Yaffe K, Martin SS. on behalf of the American Heart Associa-
tion Council on Epidemiology and Prevention Statistics Committee and 
Stroke Statistics Subcommittee: Heart Disease and Stroke Statistics-2022 
Update: a report from the American Heart Association. Circulation. 2022. 
https:// doi. org/ 10. 1161/ CIR. 00000 00000 001052.

 33. Laggerbauer B, Engelhardt S. MicroRNAs as therapeutic targets in cardio-
vascular disease. J Clin Investig. 2022;132(11): 159179. https:// doi. org/ 10. 
1172/ JCI15 9179.

 34. Khan AA, Gupta V, Mahapatra NR. Key regulatory miRNAs in lipid homeo-
stasis: implications for cardiometabolic diseases and development of 
novel therapeutics. Drug Discov Today. 2022;27(8):2170–80. https:// doi. 
org/ 10. 1016/j. drudis. 2022. 05. 003.

 35. Hapke N, Heinrichs M, Ashour D, Vogel E, Hofmann U, Frantz S, Campos 
Ramos G. Identification of a novel cardiac epitope triggering T-cell 
responses in patients with myocardial infarction. J Mol Cell Cardiol. 
2022;173:25–9. https:// doi. org/ 10. 1016/j. yjmcc. 2022. 09. 001.

 36. Li H, Li H, Ouyang X-P, Jiang T, Zheng X-L, Xi-Long Zheng He P-P, Zhao G-J. 
MicroRNA-296: a promising target in the pathogenesis of atherosclerosis. 
Mol Med. 2018;24(1):12–12. https:// doi. org/ 10. 1186/ s10020- 018- 0012-y.

 37. Yao Y, Zhang X, Chen H-p, Li L, Xie W, Lan G, Zhao Z-w, Zheng X-L, Wang 
Z-B, Tang C-K. MicroRNA-186 promotes macrophage lipid accumulation 
and secretion of pro-inflammatory cytokines by targeting cystathionine 
γ-lyase in THP-1 macrophages. Atherosclerosis. 2016;250:122–32. https:// 
doi. org/ 10. 1016/j. ather oscle rosis. 2016. 04. 030.

 38. Li S, Fan Q, He S, Tang T, Liao Y, Xie J. MicroRNA-21 negatively regulates 
treg cells through a TGF-=β1/Smad-Independent pathway in patients 
with coronary heart disease. Cell Physiol Biochem. 2015;37(3):866–78. 
https:// doi. org/ 10. 1159/ 00043 0214.

 39. Liu J, Xiao X, Shen Y, Chen L, Xu C, Zhao H, Wu Y, Zhang Q, Zhong J, Tang 
Z, Liu C, Zhao Q, Zheng Y, Cao R, Zu X. MicroRNA-32 promotes calcifica-
tion in vascular smooth muscle cells: implications as a novel marker for 
coronary artery calcification. PLOS ONE. 2017;12(3):0174138. https:// doi. 
org/ 10. 1371/ journ al. pone. 01741 38.

 40. Zeng Z, Zhu Q, Zhao Z, Zu X, Liu J. Magic and mystery of microRNA-32. 
J Cell Mol Med. 2021;25(18):8588–601. https:// doi. org/ 10. 1111/ jcmm. 
16861.

 41. Wang D, Zeng T, Lin Z, Yan L, Wang F, Tang L, Wang L, Tang D, Chen P, Yang 
M. Long non-coding RNA SNHG5 regulates chemotherapy resistance 
through the miR-32/DNAJB9 axis in acute myeloid leukemia. Biomed 
Pharmacother. 2020;123: 109802. https:// doi. org/ 10. 1016/j. biopha. 2019. 
109802.

 42. Horita M, Farquharson C, Stephen LA. The role of miR-29 family in disease. 
J Cell Biochem. 2021;122(7):696–715. https:// doi. org/ 10. 1002/ jcb. 29896.

 43. Huang Y-Q, Cai A-P, Chen J-Y, Huang C, Li J, Feng Y-Q. The relationship of 
plasma miR-29a and oxidized low density lipoprotein with atheroscle-
rosis. Cell Physiol Biochem. 2016;40(6):1521–8. https:// doi. org/ 10. 1159/ 
00045 3202.

 44. Bhansali S, Yadav AK, Bakshi C, Dhawan V. Interleukin-35 mitigates ox-LDL-
induced proatherogenic effects via modulating miRNAs associated with 

Coronary Artery Disease (CAD). Cardiovasc Drugs Ther. 2022. https:// doi. 
org/ 10. 1007/ s10557- 022- 07335-x.

 45. Fard TK, Tavakoli S, Ahmadi R, Moradi N, Fadaei R, Mohammadi A, Fallah S. 
Evaluation of IP10 and miRNA 296-a Expression Levels in Peripheral Blood 
Mononuclear Cell of Coronary Artery Disease Patients and Controls. DNA 
Cell Biol. 2020;39(9):1678–84. https:// doi. org/ 10. 1089/ dna. 2020. 5650.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/zenodo.5565057
https://doi.org/10.1161/CIR.0000000000001052
https://doi.org/10.1172/JCI159179
https://doi.org/10.1172/JCI159179
https://doi.org/10.1016/j.drudis.2022.05.003
https://doi.org/10.1016/j.drudis.2022.05.003
https://doi.org/10.1016/j.yjmcc.2022.09.001
https://doi.org/10.1186/s10020-018-0012-y.
https://doi.org/10.1016/j.atherosclerosis.2016.04.030
https://doi.org/10.1016/j.atherosclerosis.2016.04.030
https://doi.org/10.1159/000430214
https://doi.org/10.1371/journal.pone.0174138
https://doi.org/10.1371/journal.pone.0174138
https://doi.org/10.1111/jcmm.16861
https://doi.org/10.1111/jcmm.16861
https://doi.org/10.1016/j.biopha.2019.109802
https://doi.org/10.1016/j.biopha.2019.109802
https://doi.org/10.1002/jcb.29896
https://doi.org/10.1159/000453202
https://doi.org/10.1159/000453202
https://doi.org/10.1007/s10557-022-07335-x
https://doi.org/10.1007/s10557-022-07335-x
https://doi.org/10.1089/dna.2020.5650

	Unlocking the potential of microRNAs: machine learning identifies key biomarkers for myocardial infarction diagnosis
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Microarray data collection
	Preprocessing
	Differential expression analysis
	Differentially expressed miRNAs

	Functional and pathway enrichment analyses
	ML procedure
	Differentially expressed miRNAs
	First layer for the isolation of healthy and not-healthy samples 
	Second layer for separating the MI and CAD samples 

	miRNAs with the highest AUC-ROC
	First layer for the isolation of healthy and not-healthy samples 
	Second layer for separating the MI and CAD samples 



	Results
	Preprocessing
	Differential expression analysis
	Differentially expressed miRNAs

	GO and KEGG enrichment analyses of the DEGs
	Machine learning
	Differentially expressed miRNAs
	First layer for the isolation of healthy and not-healthy samples 
	Second layer for separating the MI and CAD samples 

	AUC-ROC approach
	First layer for the isolation of healthy and not-healthy samples 
	Second layer for separating the MI and CAD samples 



	Discussion
	Conclusion
	References


