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Abstract
Background  Clinical observations suggest a complex relationship between obesity and coronary artery disease 
(CAD). This study aimed to characterize the intermediate metabolism phenotypes among obese patients with CAD 
and without CAD.

Methods  Sixty-two participants who consecutively underwent coronary angiography were enrolled in the discovery 
cohort. Transcriptional and untargeted metabolomics analyses were carried out to screen for key molecular changes 
between obese patients with CAD (CAD obese), without CAD (Non-CAD obese), and Non-CAD leans. A targeted 
GC-MS metabolomics approach was used to further identify differentially expressed metabolites in the validation 
cohorts. Regression and receiver operator curve analysis were performed to validate the risk model.

Results  We found common aberrantly expressed pathways both at the transcriptional and metabolomics levels. 
These pathways included cysteine and methionine metabolism and arginine and proline metabolism. Untargeted 
metabolomics revealed that S-adenosylhomocysteine (SAH), 3-hydroxybenzoic acid, 2-hydroxyhippuric acid, 
nicotinuric acid, and 2-arachidonoyl glycerol were significantly elevated in the CAD obese group compared to the 
other two groups. In the validation study, targeted cysteine and methionine metabolomics analyses showed that 
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Background
Coronary artery disease (CAD) is a main cause of heart 
disease-related death, and the prevalence of CAD is 
increasing because of increases in obesity and diabetes 
[1]. Clinical evidence has revealed that obesity is an inde-
pendent risk factor for cardiovascular diseases [2]. Obe-
sity is defined as excessive fat accumulation or abnormal 
distribution, and it is essentially a chronic endocrine met-
abolic disease. Recent studies demonstrated that there 
is significant heterogeneity and various metabolic phe-
notypes among obese individuals, such as metabolically 
abnormal obese(thought as healthy obese) and metaboli-
cally healthy obese, and the potential risk for CAD differs 
between these obesity subphenotypes [3, 4]. However, it 
remains controversy about the metabolic and cardiovas-
cular events risk of healthy obese individuals over time 
[5]. Hence, fast growing studies focus on characterizing 
the subset of obese individual with or without CAD, and 
the differences in metabolic profiles in Non-CAD obese 
compared to Non-CAD lean control.

Recent studies have demonstrated that metabolically 
abnormal obesity is closely associated with poor car-
diovascular outcomes. Patients with obesity with two 
or more cardiovascular risk factors, including increased 
waist circumference (WC), high C-reactive protein, and 
low high-density lipoprotein cholesterol (HDL-C), had a 
higher risk of cardiovascular mortality [6]. Hwang et al. 
showed that excess visceral fat deposition is associated 
with increased metabolic abnormality and risk of mor-
tality [7]. However, measuring entire visceral fat using 
computed tomography may not be clinically practical. 
Isabelle et al. reported that the hypertriglyceridemic-
waist phenotype, which is classified by increased fasting 
triglyceride (TG) levels and WC, presents an increased 
risk for CAD compared with low TG levels and WC 
(odds ratio of 3.6) [8]. Therefore, early identification of 
patients with obesity who are at high risk for CAD may 
improve patient survival, guide tailored therapy, and pro-
vide a better understanding of the risk stratification and 
consequences of obesity.

RNA sequencing (RNA-seq) is a transcriptome 
sequencing technology that identifies all RNA molecules 

with coding ability including mRNA, small RNA and 
noncoding RNA from the transcriptome through high-
throughput next-generation DNA sequencing (NGS) 
technologies which allow RNA analysis through cDNA 
sequencing at massive scale [9]. Metabolomics, an emerg-
ing analytical technique used in the systemic determina-
tion of metabolite profiles in biofluids, cells and tissues, 
is routinely applied as a tool for investigating biomarker 
for a specific disease [10]. Marked metabolic distur-
bances are typically present in obese individuals. Metab-
olomics is useful for understanding metabolic changes in 
obesity-related cardiovascular diseases at the individual 
level [11]. Nevertheless, few studies have assessed the 
differences in transcriptomics and metabolomics profil-
ing between CAD obese and Non-CAD obese individu-
als, and also few studies revealed metabolic differences 
between Non-CAD obese and Non-CAD lean individu-
als. The present study used exosomes RNA sequencing 
(RNA-seq) and GC-MS-based untarget metabolomic to 
initially determine the differences of transcriptomics and 
metabolomic profile in the CAD obese, Non-CAD obese 
and Non-CAD leans. We then applied target metabolo-
mic approaches aimed at further characterizing the inter-
mediate metabolism phenotypes associated with CAD 
obese and Non-CAD obese individuals and improving 
the ability to identify obese individuals at high risk for 
CAD beyond the traditional risk factors,

Methods
Study design and study population
Human clinical samples and data were collected from the 
Department of Cardiovascular Intern Medicine, the Sec-
ond Affiliated Hospital of Guangzhou Medical University 
(GMU). All experiments were conducted in accordance 
with the study protocol approved by the Institutional 
Ethics Committee of the Second Affiliated Hospital of 
GMU (2016-ks-02; 2023-BKS-ks-01), and informed con-
sent was obtained from all participants.

The inclusion criteria were as follows: subjects aged 
40–65 years old with chest symptoms admitted to the 
hospital and who received coronary angiography; no 
CAD history; and a stable body weight for six months 

homocysteine (Hcy), SAH, and choline were significantly increased in the CAD obese group compared with the 
Non-CAD obese group, while betaine, 5-methylpropanedioic acid, S-adenosylmethionine, 4-PA, and vitamin B2 (VB2) 
showed no significant differences. Multivariate analyses showed that Hcy was an independent predictor of obesity 
with CAD (hazard ratio 1.7; 95%CI 1.2–2.6). The area under the curve based on the Hcy metabolomic (HCY-Mtb) index 
was 0.819, and up to 0.877 for the HCY-Mtb.index plus clinical variables.

Conclusion  This is the first study to propose that obesity with hyperhomocysteinemia is a useful intermediate 
metabolism phenotype that could be used to identify obese patients at high risk for developing CAD.
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prior to the study. For Chinese population, the cutoffs of 
body mass index (BMI) for obesity, overweight and nor-
mal weight were ≥ 28  kg/m2, 24-27.9  kg/m2, and 18.5–
23.9  kg/m2 respectively according to the China Obesity 
Working Group classification [12]. Participants were 
classified into the following three subgroups: CAD obese, 
Non-CAD obese, and Non-CAD lean.

CAD obese group: Body mass index (BMI) ≥28 kg/m2

The presence of CAD was confirmed using coronary 
angiography (CAG), and CAD was defined as one or 
more lesions leading to a more than 50% lumen stenosis 
of any of four vessels (right coronary, left main coronary, 
left circumflex and left anterior descending) [13].

Non-CAD obese group: BMI ≥28 kg/m2

The absence of CAD was confirmed using CAG.

Non-CAD lean group: BMI 18.5–24.9 kg/m2

The absence of CAD was confirmed using CAG.
The exclusion criteria were as follows: patients with 

signs, symptoms, or clinical history of heart failure, peri-
cardial or valve disorders, cerebrovascular or pulmo-
nary diseases, serious renal or liver disorders, malignant 
tumors, and drug abuse.

For the prospective validation study, another 59 con-
secutive patients were prospectively enrolled indepen-
dently and divided into the Non-CAD obese and CAD 
obese groups. The inclusion and exclusion criteria were 
the same as above.

Sample collection
Blood was collected in the morning prior to breakfast. 
The blood samples were placed into EDTA tubes and 
centrifuged at 4,000 rpm at 4℃ for 10 min to separate the 
plasma. The separated samples were stored at -80℃ until 
later use.

Exosome purification
Three samples were randomly selected from each group 
for transcript analysis. The process of exosome purifica-
tion was described previously, with minor modifications. 
Plasma samples (10 mL) were added into conical tubes 
and centrifuged at 1000 g at 4℃ for 15 min to remove cell 
fragments and lipids. The serum was further centrifuged 
at 1500 rpm at 4℃ using the exosomes isolation kit Exo-
Quick (System Bioscience), and the residual supernatant 
was carefully aspirated. The precipitate containing the 
exosomes was resuspended in 200 uL PBS and stored 
at -80℃. Total RNA isolation was performed using the 
QIAzol Lysis Reagent (Qiagen, Germany).

Small RNA isolation
Adding 700uL of QIAzol Lysis Reagent to the exosome’s 
suspension before then with 140 µL of chloroform/iso-
amyl alcohol (24:1), the mixture was then incubated at 
room temperature for 2 ~ 3  min. The sample was then 
centrifuged at 12,000×g for 8 min at 4 ℃. Next, the entire 
sample was pipetted into a spin column placed in a 2 mL 
collection tube. The RNeasy MinElute spin column was 
transferred into a new 2 mL collection tube. The RNeasy 
MinElute spin column was loaded with the sample, and 
RNase-free water was added directly to the center of the 
spin column membrane. After a 1-minute incubation at 
room temperature, the column was centrifuged at full 
speed to elute the RNA.

Library construction and sequencing for mRNA and lncRNA
DNase was used to remove DNA contamination from the 
RNA samples. Subsequently, cDNA libraries were syn-
thesized using the TruSeq RNA Sample Prep Kit v2 (Illu-
mina, USA) following standard protocols, starting from 
300 ng of total RNA. The pre-prepared first-strand and 
second-strand synthesis reaction mixture were added to 
the fragmented RNAs to synthesize cDNAs. Next, a Poly-
merase Chain Reaction (PCR) reaction system was set 
up to amplify the cDNAs. Following PCR amplification, 
single-stranded PCR products were generated via dena-
turation. Single-stranded circle DNA molecules were 
then replicated via rolling cycle amplification, resulting 
in the creation of DNA nanoballs (DNBs) which con-
tains multiple copies of the target DNA. Sufficient quality 
DNBs were then loaded into patterned nanoarrays using 
high-intensity DNA nanochip technique and sequenced 
through combinatorial Probe-Anchor Synthesis (cPAS).

RNA-seq transcript analysis
Data filtering
The sequencing data was filtered with SOAPnuke by 
removing adapters and low-quality reads. Afterwards, 
clean reads were obtained and stored in FASTQ format. 
The subsequent analysis and data mining were performed 
using Dr. Tom multi-omics data mining system (https://
biosys.bgi.com). Clean reads were mapped to the refer-
ence genome using HISAT2 (Version 2.1.0). Ericscript 
(v0.5.5) and rMATS (V3.2.5) were used to detect fusion 
genes and differential splicing genes (DSGs), respectively.

RNA identification and differential expression analysis
Bowtie2 was applied to align the clean reads to the 
gene set. The expression level of the gene was calcu-
lated by RSEM (v1.3.1). The heatmap was drawn by 
pheatmap (v1.0.8) according to the gene expression dif-
ference in different samples. The mRNA and lncRNA 
data were aligned in a NONCODE database [14]. We 
used transcripts per million (TPM) for within-sample 

https://biosys.bgi.com
https://biosys.bgi.com
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normalization for the RNA-seq data. Differential expres-
sion analysis was performed using DESeq2 (v1.4.5) with 
Q value ≤ 0.05 (or FDR ≤ 0.001).

Gene annotation
To gain insights into the changes of phenotype, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis on annotated dif-
ferentially expressed genes were performed using Phy-
per-based Hypergeometric test. The significant levels of 
terms and pathways were corrected using a Q value with 
a rigorous threshold (Q value ≤ 0.05). This correction 
accounts for multiple testing and helps identify only the 
most relevant and significant terms and pathways associ-
ated with the observed changes in phenotype.

Metabolite extraction
To extract 100 µL metabolite samples, 300 µL of pre-
cooled methanol and acetonitrile (2:1, v/v) was directly 
added using an internal standard mix of L-Leucine-d3, 
L-Phenylalanine (13C9, 99%), L-Tryptophan-d5, and 
Progesterone-2,3,4-13C3 as quality control (QC). The 
samples were vortexed for 1  min, inclubated for 2  h at 
-20  °C, and centrifuged for 20  min at 4,000  rpm. The 
supernatant was transferred for vacuum freeze drying. 
To prepare the metabolites for liquid chromatography 
with tandem mass spectrometry (LC-MS) analysis, the 
sample was resuspended in 150 µL of 50% methanol and 
then centrifuged for 30 min at 4,000 rpm. The resulting 
supernatants were subsequently placed into autosampler 
vials. QC samples were made by combining an equivalent 
volume from every sample, and the reproducibility of the 
entire LC-MS analysis was assessed.

Metabolite detection
A Waters 2D UPLC (Waters Corp., USA) was used to 
analyze the samples, followed by a heated electrospray 
ionization (HESI) source for coupling them to a Q Exac-
tive mass spectrometer (Thermo Fisher Scientific, USA). 
Finally, an Xcalibur 2.3 software program (Thermo Fisher 
Scientific, USA) was used to assess QC. Chromato-
graphic separation was done using a Waters ACQUITY 
UPLC BEH C18 Column at 45℃ (1.7  μm, 2.1  mm x 
100  mm; Waters Corp., USA). The mobile phase was 
comprised of 0.1% formic acid (A) along with acetonitrile 
(B) in the positive mode, as well as 10 mM ammonium 
formate (A) along with acetonitrile (B) in the negative 
mode. The gradient conditions were as follows: 0–1 min, 
2% B; 1–9 min, 2–98% B; 9–12 min, 98% B; 12–12.1 min, 
98% B to 2% B; and 12.1–15 min, 2% B, adjusting the flow 
rate to 0.35 mL/min and using 5 µL injection volume.

The mass spectrometer was adjusted for positive/
negative ionization modes as follows: 3.8/−3.2  kV spray 
voltage; 40 arbitrary units (arb) sheath gas flow rate; 10 

arb aux gas flow rate; 350℃ aux gas heater temperature; 
and 320℃ capillary temperature. For MS acquisitions, 
the automatic gain control (AGC) target was 3e6 with a 
100 ms maximum ion injection time, and the whole scan 
range was 70–1050 m/z at a 70,000 resolution. For sub-
sequent MSMS fragmentation, the top three precursors 
were chosen with a 50 ms maximum ion injection time 
and 30,000 resolution, with 1e5 AGC. Collision energies 
were adjusted and stepped between 20, 40, and 60 Ev, 
with the interspersion of a QC sample every 10 samples.

LC-MS/MS analysis
The method of LC-MS/MS analysis are described previ-
ously [15]. In brife, a Compound Discoverer 3.1 (Thermo 
Fisher Scientific, USA) was utilized to extract peaks, cor-
rect retention times, label background peaks, and iden-
tify metabolites from the raw LC-MS/MS data file. For 
each QC sample, the variation coefficient of the rela-
tive peak area was calculated, and the compounds with 
a variation coefficient above 30% were deleted. Metabo-
lites were identified from various databases including 
the BGI Metabolome Database (BMDB), KEGG, and 
LIPID MAPS. The main metabolite identification param-
eters were as follows: Precursor Mass Tolerance < 5 
ppm, Fragment Mass Tolerance < 10 ppm, and RT Tol-
erance < 0.2 min. Five levels of confidence were assigned 
to the metabolite identification levels, with an orderly 
reduction of credibility of levels 1 to 5.

Plasma homocysteine (Hcy) analysis
Plasma samples (3 mL) were added into conical tubes and 
centrifuged at 1000  g at 4℃ for 15  min to remove cell 
fragments and lipids. The serum concentrations of Hcy 
were measured using a microparticle chemiluminescence 
immunoassay(MCIA) (ARCHITECT H0413R02A, USA) 
as previously described [16].

Targeted GS-MS analysis
To validate the LC-MS/MS analysis, a subset of metabo-
lites that were different between the groups in the study’s 
untargeted experiment was further assessed using the 
standard addition method. The UPLC-MS/MS system 
(ACQUITY UPLC-Xevo TQ-S) was utilized for targeted 
LC-MS analysis. Standards were acquired from Sigma-
Aldrich (USA), Steraloids (USA), and TRC Chemicals 
(Canada). A total of 5.0 mg·mL − 1 individual stock solu-
tion was obtained by precisely weighing and preparing all 
the standards in an appropriate solution. Stock calibra-
tion solutions were created by mixing proper volumes of 
each stock solution. The preparation and measurement of 
the serum samples relied on earlier reported methods.

The mobile phases consisted of (A) 0.1% formic acid 
in water and (B) acetonitrile-methanol at a 70:30 ratio. 
Moreover, the ACQUITY BEH C18 Column (1.7  μm, 
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100 × 2.1  mm) (Waters) was injected with 5 µL of each 
sample at 40 °C; adjusting the flow rate at 0.40 mL·min − 1 
with the mobile-phase gradient. The mass spectrometer 
was operated in the negative mode with a 2.0  kV capil-
lary voltage and in the positive mode with a 1.5 kV capil-
lary voltage. Temperatures were 150 °C at the source, and 
550 °C at desolvation.

Statistical analysis
 	• Values are reported as mean ± standard deviation 

(SD). The χ2 and Mann–Whitney test was used to 
compare clinical variables between groups. Welch’s 
t-test for unequal variances was utilized to test 
group differences for metabolites. Multivariate 
logistic regression analysis was conducted 
using the Guassian elimination method. Hcy 
metabolomic (HCY-Mtb) index was calculated 
as previously described [17]. Brifely, the selected 
metabolic variables(such as: Hcy, SAH and 
choline) were included as independent variables 
in the logistic regression analysis to generate 
regression coefficients(β) for each variable, and 
then the variables were multiplied by the regression 
coefficients to form a combined index regression 
equation.

 	• Area under receiver operating characteristic (ROC) 
curves were utilized to assess the indicators or 

risk model accuracy. The incremental predictive 
values were determined by performing the net 
reclassification improvement (NRI) and integrated 
differentiation improvement (IDI) risk models [18]. 
Results are represented as odds ratios (OR) with 
95% confidence intervals (CI). A P-value < 0.05 or 
0.01 (two-sided) indicated significant differences. 
Analyses were carried out using the SPSS package 
(IBM SPSS statistic 26, SPSS Inc) and R 4.2.1.

Results
Baseline characteristics of the participants in the CAD 
obese, Non-CAD obese, and Non-CAD lean groups
For the discovery cohorts, 62 participants were prospec-
tively enrolled in the final analysis using a single standard 
protocol from January 2021 to May 2022. There were no 
significant differences in age, BMI (kg/m2), WC, hip cir-
cumference, hypertension, diabetes, uric acid, and serum 
lipids between the Non-CAD obese and the CAD obese 
groups, except for the history of smoking and male gen-
der. Table 1 shows the general clinical characteristics of 
the three groups.

Metabolic pathways were the most differentially expressed 
pathways in the transcriptomics data analysis
The identification of isolated plasma-derived exosomes 
is shown in Figure S1. Differential expression analysis 
results showed that 272 mRNAs and 53 LncRNAs were 
identified as remarkably differentially expressed in the 
CAD obese group compared with the Non-CAD obese 
group. The numbers of differentially expressed genes 
between the three groups are shown in Fig. 1B, C.

As expected, pathway enrichment analysis of the Non-
CAD obese and CAD obese groups revealed that the 
top 20 altered canonical KEGG pathways were mainly 
involved in fatty acid biosynthesis metabolism, cysteine 
and methionine metabolism, and arginine and proline 
metabolism (Fig.  1D-F). KEGG pathway analysis indi-
cated that metabolic pathways were the most differen-
tially expressed pathways between the groups. The next 
step will be to use metabolomics to identify differentially 
expressed metabolites.

Untargeted metabolomic profiling of sera from CAD obese, 
Non-CAD obese, and Non-CAD lean groups
Sixty-two serum samples were analyzed using LC-MS/
MS in both the positive and negative ion modes. The 
significant aggregation of QC samples indicates good 
stability and repeatability based on principal compo-
nent analysis (PCA) (Fig. S1). Figure  2  A shows a sche-
matic diagram of the study design and Fig. 2B shows the 
results of the partial least squares discriminant analysis 
(PLS-DA) model. There was a clear distinction between 

Table 1  Clinical characteristics of the participants in the CAD 
obese and Non-CAD obese groups in the validation cohorts

CAD Obs 
(n = 23)

Non-CAD 
Obs (n = 22)

Lean 
control 
(n = 17)

Male, n(%) 20(86.90)*£ 11(50.00) 5(29.40)

Age, years 54.10 ± 6.81 52.42 ± 7.40 55.46 ± 8.50

BMI(kg/m2) 29.20 ± 2.53£ 30.40 ± 3.40 21.55 ± 1.50

Waist(cm) 101.50 ± 6.92£ 103.30 ± 8.82 85.20 ± 6.52

Hip (cm) 102.90 ± 6.72£ 104.20 ± 7.4 91.50 ± 7.02

Waist-to-hip ratio 0.98 ± 0.05 0.98 ± 0.06 0.94 ± 0.09

Hypertension, n (%) 13(56.50) 19(86.30) 7(41.10)

Diabetes, n (%) 10(43.40)£ 5(22.70) 0(0.00)

Metabolic syndrome 12(52.17)£ 14(60.86) 0(0.00)

Frequency of current 
smokers, n (%)

17(73.90)*£ 6(27.20) 3(17.60)

Current alcohol, n(%) 3(13.00) 2(9.00) 0(0.00)

CAD family history, n(%) 4(17.30) 7(31.80) 1(5.80)

Hyperuricemia, n(%) 10(43.40) 16(72.70) 5(29.40)

Total cholesterol(TC), 
mg/dL

4.62 ± 1.24 4.59 ± 0.92 4.3 ± 1.00

HDL cholesterol,mg/dL 0.95 ± 0.16 1.02 ± 0.18 1.05 ± 0.26

LDL cholesterol, mg/dL 3.12 ± 1.10 2.83 ± 0.97 2.77 ± 0.87

Triglycerides(TG), mg/dL 1.93 ± 0.67 1.78 ± 1.27 1.49 ± 0.64
1. Data are shown as mean ± standard deviation unless noted otherwise

2. Differences in continuous variables among the groups were analyzed using 
one-way analysis of variance, and categorical data were analyzed using χ2 tests

3. *Significantly different from the Non-CAD obese group
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the CAD obese, Non-CAD obese, and Non-CAD lean 
groups.

Metabolomics screening identified 4,139 peaks, of 
which 1,716 were named metabolites. Among them, 230 
significantly differentially expressed metabolomics were 
detected in the plasma of the CAD obese and Non-CAD 
obese groups, with 154 upregulated and 76 downregu-
lated metabolites (P < 0.05). A volcano map and heat map 

of the differentially expressed metabolites of the three 
groups are shown in Fig. 2C–H. Our results showed that 
SAH, 3-hydroxybenzoic acid, 2-hydroxyhippuric acid, 
nicotinuric acid, and 2-arachidonoyl glycerol were sig-
nificantly elevated, and Dl-dipalmitoylphosphatidylcho-
line and valine were significantly reduced in the CAD 
obese group compared to the Non-CAD obese and Non-
CAD lean groups,  these above differentially expressed 

Fig. 2  Non-targeted metabolomics profiling of plasma from the CAD obese, Non-CAD obese, and Non-CAD lean groups in the discovery 
cohort. (A) Schematic diagram of the study design; (B) PLS-DA of the untargeted metabolomics among the three groups; (C, E & G) Heatmap of the 
selected metabolites with a false discovery rate < 0.05 in the comparison of the CAD obese, Non-CAD obese, and Non-CAD lean groups, respectively; (D, 
F & H) Volcano plots highlighting the serum metabolites that were increased (red) or decreased (blue), with a false discovery rate < 0.05 and a log2 fold 
change > 0.25 or < − 0.25

 

Fig. 1  Transcript profiling of the plasma deprived exosomal mRNA and LncRNA from the CAD obese, Non-CAD obese, and Non-CAD lean 
groups. (A) Schematic diagram of the transcript and metabolomic study design; (B) The numbers of differentially expressed exosomal mRNAs and 
LncRNAs between the three groups; (C) Venn diagram of the three groups; (D-F) Top 20 altered canonical enriched KEGG pathways between the three 
groups. The size of the spot indicates the gene numbers in the enriched pathway, and the color indicates the significance level of the enriched pathway
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metabolites showed no significant difference between 
the Non-CAD obese and the Non-CAD lean groups 
shown in Fig. 3A–G. When adjusted for gender, smoking 
history, hypertension, and diabetes, multivariate logis-
tic regression analysis showed 2-hydroxyhippuric acid, 
nicotinuric acid, and valine were significantly associated 
with CAD (P ≤ 0.05). The statistical analyses for the dif-
ferentially expressed metabolites of the three groups are 
shown in Table S1.

Plasma Hcy level significantly was increased in the CAD 
obese group
SAH and Hcy are important intermediate metabolites 
in the metabolic pathway of methionine. Because Hcy 
could not be detected in the untargeted metabonomics 
analyisis, serum concentrations of Hcy were measured 
using MCIA. The results showed that the level of Hcy in 
the CAD obese group was significantly more than Non-
CAD obese and Non-CAD lean groups. However, no sig-
nificant difference was detected between the other two 
groups (Fig. 3H).

Cysteine and methionine metabolism were significantly 
altered at both the metabolomic and transcriptomics 
expression levels
When comparing the Non-CAD obese and CAD obese 
groups, KEGG pathway enrichment analysis revealed the 
enrichment of 17 canonical pathways that are involved 
in the biosynthesis of amino acids, cysteine and methio-
nine metabolism, glycine, serine and threonine metab-
olism, cholesterol metabolism, arginine and proline 

metabolism, and bile secretion (Fig. S2). Two pathways 
were significantly altered at both the metabolomic and 
transcriptomics expression levels in the CAD obese and 
Non-CAD obese groups (Fig.  4A), including cysteine 
and methionine metabolism, and arginine and proline 
metabolism.

Targeted metabolomic analysis revealed alterative 
metabolites in the CAD obese and Non-CAD obese groups
Hcy metabolic targeted metabonomics was next con-
ducted to determine if cysteine and methionine metab-
olism pathway-related key molecules or nutrients were 
significantly different between the Non-CAD obese and 
CAD obese groups. A schematic diagram of cysteine and 
methionine metabolism is shown in Fig. 4B, and changes 
in choline, Hcy, SAH, 5-methylpropanedioic acid (MMA, 
related to Vitamin B12), betaine, S-adenosylmethionine 
(SAM), 4-Pyridoxic acid (4-PA, a product of vitamin 
B6), vitamin B2 (VB2), and 5-methyltetrahydrofolic acid 
(5-MTHF, active form of folic acid) were measured.

For the validation study, another 59 consecutive 
patients were prospectively enrolled independently from 
May 2022 to March 2023. Table 2 shows the basic clinical 
characteristics of the two groups. Only the basic charac-
teristics of smoking history, creatinine, and HDL-C dem-
onstrated significant differences between the two groups 
(P < 0.05). Targeted metabonomics showed that the levels 
of choline, Hcy, and SAH in the CAD obese group signifi-
cantly increased, while MMA, betaine, SAM, 4-PA, VB2, 
5-MTHF, and the SAM/SAH ratio were not significantly 
different between the two groups (Fig. 5A-I). In addition, 

Fig. 3  Metabolites showing differences in the m/zRT intensities normalized to the internal standard in the CAD obese, Non-CAD obese, and 
Non-CAD lean control groups in the discovery cohort. The box plot includes the median (horizontal line), and all points from the minimum and maxi-
mum data values, unless outliers are present; (A–G) Differences between the patients in the CAD obese, Non-CAD obese, and Non-CAD lean groups; * 
Significantly different from the Non-CAD obese group; # significantly different from the Non-CAD lean control group; ns: not significant. (H) Differences 
in the plasma Hcy levels tested using MCIA between patients in the CAD obese, Non-CAD obese, and Non-CAD lean groups
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Person correlation analysis showed that the levels of 
SAH and choline were positively correlated with Hcy in 
all obese participants (Fig.  5J–K). Univariable logistic 
regression analysis also demonstrated that smoking, male 
gender, HDL-C, choline, Hcy, SAH, and creatinine were 
statistically significant variables, and multivariate analy-
sis showed that only Hcy was an independent predictor 
of obesity with CAD (OR:1.7; 95%CI:1.2–2.6; P = 0.008) 
after adjusting for smoking, gender, diabetes, and hyper-
tension (Fig. 6A-B). CAD obese group had higher choline 
levels than the Non-CAD obese group, and that choline 
was positively associated with Hcy concentration. How-
ever, multivariate logistic regression analysis showed 
there was no significant association between choline and 
CAD(P>0.05).

Obesity is often accompanied by metabolic syn-
drome (MS), and MS significantly increases the risk of 
CAD [19]. To assess the effect of MS on the association 
between Hcy and CAD incidence, a separate model was 
fitted with MS×Hcy interaction terms. The diagnosis of 
MS was determined according to the ATP III classifica-
tion [19]. The results showed there was no MS-Hcy inter-
action (P = 0.066).

Combination of Hcy Metabolomic index and clinic 
variables improved the ability for discrimination and 
reclassification
The ROC curve showed that Hcy had an area under 
curve(AUC) of 0.819 (95%CI:0.715–0.923) for predicting 
CAD in obese patients. For a threshold of 10.67 µmoL/L, 
the sensitivity and specificity were 0.710 and 0.714, 
respectively, and the positive and negative predictive val-
ues were 0.830 and 0.600, respectively. To study the com-
bined predictive value of the significant metabolites, the 
authors established a Hcy metabolomic index (HCY-Mtb.
index) based on the linear combination of choline, Hcy, 
and SAH. The ROC AUC based on the HCY-Mtb.index 

alone was 0.840. Furthermore, the AUC improved from 
0.791 for the most predictive clinical variables (smoking 
and male gender) to 0.877 for the clinical variables plus 
the Hcy-Mtb.index (Fig. 6C). And the inclusion of clinic 
risk factors in the Hcy metabolomic index model signifi-
cantly improved the ability for discrimination and reclas-
sification (category INR = 0.172, 95%CI: 0.028–0.315, 
p = 0.019; IDI = 0.062, 95%CI: 0.001–0.122, p = 0.046).

Discussion
This is the first study, to our knowledge, that systemati-
cally provides a comprehensive view of metabolic char-
acterization between Non-CAD obese and CAD Chinese 
obese individuals aged 40–65 years. Transcriptomics and 
metabolomics profiling indicated that the cysteine and 
methionine metabolism pathway is involved in the occur-
rence of CAD in obese individuals. The authors proposed 
clinical prediction models using the Hcy metabolic path-
way and clinical data, providing a first-step approach to 
identify a subgroup of obese individuals at higher risk of 
developing CAD.

Our untargeted metabolomics analysis identified 230 
differentially expressed metabolites between Non-CAD 
obese and CAD obese individuals compared to between 
Non-CAD obese and lean-healthy individuals, demon-
strating a pronounced metabolic profiling shift when 
CAD occurs in obese patients. Among these differential 
metabolites, some were related to cardiovascular dis-
eases, such as SAH, nicotinuric acid, and 2-AG. A pre-
vious study showed that higher SAH levels and a lower 
SAM:SAH ratio are better indicators of cardiovascular 
disease than Hcy [20, 21]. Our findings demonstrated a 
significant elevation in SAH, but no significant change 
in the SAM:SAH ratio in CAD obese patients. Several 
previous studies have shown that urine nicotinuric acid 
was higher in subjects with diabetes than in those with-
out diabetes through a metabolomics-based approach. 

Fig. 4  Common alteration KEGG pathways at the metabolomic and transcriptomics expression. (A) Cysteine and methionine metabolism in a 
common alteration pathway; (B) Schematic diagram of cysteine and methionine metabolism
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Thus, nicotinuric acid has been proposed to be a poten-
tial marker of metabolic syndrome [22, 23]. Another 
previous study reported that circulating 2-AG levels are 
positively associated with visceral fat and fasting glucose 
and increased in individuals with obesity and type 2 dia-
betes [24–26]. However, these above metabolites showed 
no significant difference between the Non-CAD obese 
and the Non-CAD lean control groups, which meant 
that these metabolites biomarkers might not be unique 
to obese population. It is necessary to introduce the 
forth group CAD lean to confirm these results, further 
research is needed to determine whether these metabo-
lites causatively participate in the pathogenesis of CAD 
in obese patients.

Our pathway enrichment analysis of different exosome-
derived small RNA and metabolites suggested a signifi-
cant change in cysteine and methionine metabolism in 
the CAD obese group. Hcy, a intermediate product of 
cysteine and methionine metabolism, is an important 
indicator of cardiocerebrovascular diseases, and Hcy 
has been proposed to contribute to the formation of 
plaques by generating reactive oxygen species [27]. Sev-
eral articles have reported the high Hcy levels increased 
the risk of CAD in obese individuals compared to non-
obese individuals [28, 29], and higher Hcy levels were 
eleveated in obese subjects with hyperinsulinemic or 
metabolic syndrome compared to those without [30, 31]. 
But few studies have assessed the effects of changes in 
Hcy levels and the risk of developing CAD within differ-
ent obese subgroups. This is the first study showing that 
serum Hcy levels are significantly elevated in CAD obese 
individuals compared with Non-CAD obese individuals, 
and that every 1 umol/L rise in Hcy is linked to a 74% 
increase in the risk of CAD in obese individuals, however 
the relationship between Hcy and CAD did not vary in 
the presence of metabolic syndrome. Similarly, a prior 
study showed that each additional 5 µmol/L increase in 
Hcy was associated with an approximate 20% increase 
in cardiovascular events [32]. In addition, there was no 
significant difference in Hcy and SAH levels between 
the Non-CAD obese and Non-CAD lean groups in this 
study, suggesting that not all of obese individuals exhibit 
an increase in serum Hcy levels. These findings are con-
sistent with prior studies in which the plasma Hcy and 
SAH levels in obese subjects without atherosclerosis and 
impaired renal function did not differ from healthy sub-
jects [33]. Thus, Hcy screening may be useful to exclude 
the possibility of CAD and avoid additional unnecessary 
tests for obese individuals with or without diabetes and 
hypertension.

The Hcy metabolic pathway depends on the proper 
functioning of methylene, tetrahydrofolate reductase 
enzyme, VB2, vitamin6 (VB6), vitamin12 (VB12), cho-
line, betaine, and folic acid, which are all closely associ-
ated with circulating Hcy levels and cardiovascular and 
cerebrovascular events [34–37]. However a previous 
meta-analysis showed no evidence to support the use of 
Hcy-lowering interventions (including folate, betaine, 
and B-complex vitamins:VB2, VB6, and VB12) to pre-
vent cardiovascular events [38]. Therefore, prescription 
of these interventions is not justified, and the relation-
ship between these factors and hyperhomocysteinemia in 
CAD obese patients requires further research.

Our findings showed that plasma Hcy levels were sig-
nificantly elevated, but there were no significant changes 
in 5-MTHF, betaine, VB2, and 4-PA in the CAD obese 
group compared with the Non-CAD obese group. In 
parallel, there was no linear correlation between these 

Table 2  Clinical characteristics of participants in the CAD obese, 
Non-CAD obese, and Non-CAD lean groups in the discovery 
cohorts

CAD Obs
(n = 31)

Non-CAD 
Obs
(n = 28)

P- 
value

Male, n(%) 24(77.40) 16(57.10) 0.96

Age, years 55.30 ± 6.25 53.50 ± 7.16 0.34

BMI(kg/m2) 29.50 ± 3.24 30.25 ± 2.70 0.79

Waist(cm) 101.50 ± 7.60 98.80 ± 7.60 0.29

Hip (cm) 103.30 ± 6.50 102.12 ± 8.00 0.64

Waist-to-hip ratio 0.98 ± 0.05 0.96 ± 0.04 0.32

Hypertension status, n (%) 22(70.90) 15(53.60) 0.17

Blood pressure, mmHg

Systolic 135 ± 14 131 ± 9 0.56

Diastolic 85 ± 8 78.45 ± 8 0.45

Diabetes, n (%) 15(48.40) 8(28.50) 0.12

Frequency of current smokers, 
n (%)

16(51.60)* 6(21.40) 0.02

Current alcohol, n(%) 3(9.60) 3(10.70) 0.54

CAD family history, n(%) 7(22.60) 7(25.00) 0.83

Hyperuricemia, n(%) 14(45.10) 14(50.00) 0.71

Total cholesterol, mg/dL 4.50 ± 0.98 4.55 ± 0.96 0.83

HDL cholesterol,mg/dL 0.91 ± 0.16* 1.05 ± 0.31 0.01

LDL cholesterol, mg/dL 2.98 ± 0.84 2.93 ± 0.98 0.19

Triglycerides, mg/dL 1.84 ± 0.89 1.45 ± 0.62 0.06

Alanine aminotransferase (U/L) 28.23 ± 29.99 21.14 ± 11.35 0.24

HbAc1(%) 6.45 ± 1.51 6.28 ± 1.26 0.64

Creatinine(umol/L) 89.16 ± 19.01* 75.50 ± 16.14 0.00

Metabolic syndrome 21(67.74) 17(60.71) 0.68

Medical use

Anti-platelet 12(38.70) 9(29.03) 0.78

Stains 10(32.25) 6(21.42) 0.39

β-blockers 18(58.06) 10(5.71) 0.12

AECI/ARB 19(61.29) 12(42.85) 0.19

Folic acid or VB12 0(0.00) 0(0.00) -
1. Data are shown as mean ± standard deviation unless noted otherwise

2. Differences in the continuous variables among the groups were analyzed 
using one-way analysis of variance, and categorical data were analyzed using 
×2 tests

3. *Significantly different from the Non-CAD obese group
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factors and Hcy levels in the obese participants in our 
study. It is interesting that the CAD obese group had 
higher choline levels than the Non-CAD obese group, 
and that choline was positively associated with Hcy 
concentration. However, multivariate logistic regres-
sion analysis showed that it was not significantly associ-
ated with CAD (P>0.05), further research is needed to 
increase the sample size to determine whether choline 
act as a risk factor. These results suggest that CAD obese 
patients with hyperhomocysteinemia may not necessar-
ily present with folic acid, betaine, and complex vitamin 
B deficiency, and supplementation with these nutritions 
may have little to no benefit. Thus, other underlying 
mechanisms leading to hyperhomocysteinemia should be 
investigated. Although recent findings pointed towards 
new novel pharmacological targets to lower Hcy levels in 
vitro [39, 40], further investigation is warranted to con-
firm the beneficial effect on human subjects.

Only a few studies have assessed a risk model for pre-
dicting cardiovascular complications in different obese 
subgroups. Isabelle and colleagues reported that elevated 
TG levels increased the risk of CAD in obese individu-
als with a WC > 90 cm (with an OR of 2.4) [8]. However, 
the present study found that the TG level did not predict 
CAD in obese individuals, probably owing to the small 

sample size and different study populations. The study 
did reveal that increased Hcy levels predicted CAD in 
obese patients with high accuracy (0.82). Hyperhomo-
cysteinemia is defined as > 15 µmol/L, but an increasing 
number of studies suggest that Hcy levels are still asso-
ciated with adverse cardiovascular events even within 
the normal plasma range, and meta-analysis showed that 
serum Hcy levels > 8 umol/L led to the development of 
atheromatous plaque [41]. Our study demonstrated that 
the cutoff point for hyperhomocysteinemia to predict 
CAD was 10.67 µmol/L, which had an optimum sensitiv-
ity and specificity of 71.0% and 71.4%, respectively. The 
Hcy-Mtb.index (combined with choline, Hcy, and SAH) 
slightly improved the predictive power. When the Hcy-
Mtb.index combined with smoking and male gender, the 
diagnostic accuracy significantly increased to 0.88, which 
could be used as an inexpensive screening model to iden-
tify obsess patients at high risk for developing CAD.

This prospective study has several limitations that 
should be acknowledged. First, transcriptomics analysis 
showed many of these KEGG pathways only involved a 
few genes and many of Q values were>0.05, this was pos-
sibly because the numbers of exosome differentially genes 
between groups were relatively small, we need to increase 
the sample size to confirm these results. However the 

Fig. 5  Targeted metabolomics profiling of plasma from the CAD obese and the Non-CAD obese groups in the validation cohort. The box plot 
includes the median (horizontal line), and all points from the minimum and maximum data values, unless outliers are present; (A–I) Differences between 
patients in the CAD obese and Non-CAD obese groups;. (J–K) Person correlation analysis was performed between plasma Hcy and SAH or choline
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transcriptomics results still revealed some useful clues 
that pathways related to metabolism and diseases were 
most frequently affected. Second, the study cohort was 
small and larger cohorts are warranted. Despite this, 
the high consistency of the results from the discovery 
and validation studies supports the findings. Third, the 
cohorts had some important characteristics that were not 
matched. For example, in the validation cohorts, there 
were significant differences between the groups regard-
ing smoking history, and previous studies demonstrated 
smoking can elevate Hcy and reduce folate levels in 
humans [42]. This creates a potential bias that should be 
considered when interpreting results. Nevertheless, after 
adjusting for smoking history, Hcy was still an indepen-
dent risk factor for CAD in obese individuals.

Conclusion
Considerable heterogeneity exists among the different 
subtypes of obesity, which has a significant impact on 
prognosis. It is essential to understand the different met-
abolic phenotypes of obese patients. We discovered that 
cysteine and methionine metabolism might be involved 
in the pathogenesis of obesity complicated with CAD, 
and obesity with hyperhomocysteinemia may be a use-
ful intermediate metabolism phenotype to screen obese 
patients who are at high risk for developing CAD. This 
study demonstrated that folic acid, betaine, VB2, and 
VB6 had no significant correlation with hyperhomocys-
teinemia in CAD patients with obesity. Thus, there is an 
urgent need to identify novel therapeutic targets to lower 
elevated plasma Hcy levels in obese patients.
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