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Abstract
Background Agonism at the receptor for the glucose-dependent insulinotropic polypeptide (GIPR) is a key 
component of the novel unimolecular GIPR:GLP-1R co-agonists, which are among the most promising drugs in 
clinical development for the treatment of obesity and type 2 diabetes. The therapeutic effect of chronic GIPR agonism 
to treat dyslipidemia and thus to reduce the cardiovascular disease risk independently of body weight loss has not 
been explored yet.

Methods After 8 weeks on western diet, LDL receptor knockout (LDLR-/-) male mice were treated with daily 
subcutaneous injections of long-acting acylated GIP analog (acyl-GIP; 10nmol/kg body weight) for 28 days. Body 
weight, food intake, whole-body composition were monitored throughout the study. Fasting blood glucose and 
intraperitoneal glucose tolerance test (ipGTT) were determined on day 21 of the study. Circulating lipid levels, 
lipoprotein profiles and atherosclerotic lesion size was assessed at the end of the study. Acyl-GIP effects on fat depots 
were determined by histology and transcriptomics.

Results Herein we found that treatment with acyl-GIP reduced dyslipidemia and atherogenesis in male LDLR-/- mice. 
Acyl-GIP administration resulted in smaller adipocytes within the inguinal fat depot and RNAseq analysis of the latter 
revealed that acyl-GIP may improve dyslipidemia by directly modulating lipid metabolism in this fat depot.

Conclusions This study identified an unanticipated efficacy of chronic GIPR agonism to improve dyslipidemia and 
cardiovascular disease independently of body weight loss, indicating that treatment with acyl-GIP may be a novel 
approach to alleviate cardiometabolic disease.
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Background
Alterations in lipid and cholesterol metabolism are major 
risk factors for the development of cardiovascular dis-
ease (CVD) in patients with obesity and type-2 diabetes 
(T2D). Albeit best known for its ability to enhance glu-
cose-stimulated insulin secretion, the glucose-dependent 
insulinotropic polypeptide (GIP) also stimulates white 
adipose tissue (WAT) lipid disposal and reduces inflam-
mation in the brain and WAT [1]. Unimolecular co-
agonists at the receptors for GIP and the glucagon-like 
peptide-1 (GLP-1) are among the most promising drugs 
in clinical development for the treatment of obesity and 
diabetes [2]. Notably, GLP-1/GIP co-agonists not only 
reduce body weight and improve glucose metabolism 
with greater efficacy relative to GLP-1 receptor (GLP-
1R) agonism in preclinical [3] and clinical studies [2], but 
also outperform GLP-1R monotherapy in reducing tri-
glyceride and cholesterol levels [4]. However, the thera-
peutic effect of GIP receptor (GIPR) agonism to treat 
dyslipidemia and reduce CVD-risk is not well defined yet 
and thus subject of intense ongoing investigations. Par-
ticularly, it warrants clarification whether GIP may even 
improve lipid metabolism independent of its ability to 
reduce obesity and hyperglycemia.

GIP is secreted from enteroendocrine K-cells espe-
cially in response to dietary lipids and glucose. The bio-
logical function of GIP to potentiate glucose-dependent 
beta cell insulin secretion (incretin effect) is well estab-
lished [for review see 5]. GIP’s extra-pancreatic actions 
are less known and especially its pro- or anti-obesogenic 
effects are controversially discussed [6]. In brief, GIP 
might have an indirect role in atherosclerosis, via the 
regulation of macrophage-driven inflammation and foam 
cell formation, vascular smooth muscle cell prolifera-
tion and arterial remodelling. However, it has also been 
shown that increased plasma levels of GIP are associ-
ated with atherosclerosis in humans [7]. Recent suc-
cess of GIP as add-on therapy to glucagon-like peptide 
1 (GLP-1) in unimolecular dual incretins to glucose and 
body weight improvements in pre-clinical and clinical 
studies indicate GIP-dependent contributions [3, 8, 9]. 
In line with this notion, a long-acting fatty acylated GIP 
(acyl-GIP) was recently shown to decrease body weight 
and food intake by acting on the CNS GIPR [10]. And 
while the GIPR:GLP-1R co-agonist MAR709 decreased 
body weight with superior potency over a pharmacoki-
netically-matched GLP-1 control in wildtype mice, the 
superiority of MAR709 over GLP-1 vanished in mice 
with neuronal loss of GIPR [10]. In addition, GLP-1/GIP 
co-agonists lowered fasting cholesterol and triglyceride 
levels more efficiently than comparable benchmarked 
GLP-1 mono-agonist treatments in phase 2 clinical trials 
with T2D patients [8, 9].

Comprised of anatomically distinct depots, white adi-
pose tissue is essential for lipid deposition. Fat accu-
mulation in subcutaneous fat harbors little to no risk to 
develop metabolic complications, whereas expansion of 
visceral depots predisposes to the metabolic syndrome 
[11]. In WAT, GIPR is expressed in macrophages, peri-
cytes endothelial and mesothelial cells. GIPR signaling 
enhances fat tissue blood flow, lipoprotein lipase activ-
ity, insulin action, glucose and fatty acid uptake, de novo 
lipogenesis and lipolysis. GIP also modulates macro-
phage-dependent inflammation in WAT [6].

The pharmacological potential of GIPR mono-agonism 
to improve systemic lipid metabolism and to reduce 
CVD-risk has not been fully explored yet. Particularly, 
it is unclear whether GIP reduces hypercholesterolemia 
and atherosclerotic plaque formation independent of 
its ability to decrease body weight and hyperglycemia. 
Herein we tested whether a body weight neutral dose of 
a previously published long acting acylated GIP analog 
(acyl-GIP) improves dyslipidemia and atherogenesis in 
male LDL receptor knock out (LDLR-/-) mice.

Materials and methods
Animals and diet
LDLR-/- male mice were purchased from Jackson Labo-
ratories (https://www.jax.org/strain/002207; ME, USA) 
and double-housed and maintained at 22+/-2  °C, 55 
+/- 10% relative humidity, and a 12-h light/dark cycle 
with free access to food and water. Mice were randomly 
assigned to treatment groups matched for body weight 
and fat mass. All procedures were approved by the local 
Animal Use and Care Committee and the local authori-
ties of Upper Bavaria, Germany in accordance with Euro-
pean and German animal welfare regulations.

Compound synthesis
The synthesis, purification, and characterization of the 
fatty-acylated GIP mono-agonist acyl-GIP was described 
previously and was used without any further chemical 
modification or change in formulation [3].

Rodent pharmacological and metabolic studies
8-week old male LDLR-/- mice were fed a western diet 
high in calories and cholesterol (21% fat, 0.2% cholesterol, 
SNIFF, Germany) for 8 weeks to induce atherogenic dys-
lipidemia prior treatment start and were maintained on 
this diet during daily subcutaneous injections of vehicle 
or acyl-GIP (10nmol/kg body weight) in the middle of the 
light phase. Body weight and food intake was measured 
daily. Whole-body composition (fat and lean mass) was 
measured via nuclear magnetic resonance technology 
(EchoMRI, TX, USA). Fasting blood glucose and intra-
peritoneal glucose tolerance test (ipGTT) were deter-
mined after a 6  h-fast and 20  h after the last acyl-GIP 
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injection. For ipGTT, 6-h fasted animals were injected 
intraperitoneally with 2  g glucose per kg body weight. 
Blood glucose was subsequently measured at time points 
0, 15, 30, 60, and 120 min using a handheld glucometer 
(FreeStyle) as described previously [12].

Biochemical analysis
Tail blood prior ipGTT was collected after a 6 h fast using 
EDTA-coated microvette tubes (Sarstedt, Germany) and 
immediately chilled on ice. Mice were euthanized using 
CO2 after a 4 h fast and at least 16 h after the last vehicle 
or compound injection. Sac blood was mixed with EDTA 
and immediately kept on ice. Plasma was separated by 
centrifugation at 5000 g at 4 °C for 10 min. Plasma levels 
of insulin (Crystal Chem, IL, USA), cholesterol (Thermo 
Fisher Scientific, MA, USA) and triglycerides (Wako 
Chemicals, Germany) were measured according to the 
manufacturers’ instructions. For lipoprotein separation, 
samples were pooled and analyzed via fast-performance 
liquid chromatography gel filtration as described previ-
ously [13].

Histology
Atherosclerotic lesion size was assessed by analyzing 
cryosections of the aortic root by staining for lipid depo-
sitions with Oil-Red-O as described by previously [14]. In 
brief, hearts with the aortic root were embedded in Tis-
sue-Tek O.C.T. compound (Sakura Finetek USA Inc, CA, 
USA) for cryosectioning. Oil-Red-O + atherosclerotic 
lesions were quantified in 4  μm transverse sections and 
averages were calculated from 3 sections. The thoraco-
abdominal aorta was fixed with 4% paraformaldehyde 
and opened longitudinally, mounted on glass slides and 
stained enface with Oil-Red-O. Aortic arches with the 
main branch points (brachiocephalic artery, left subcla-
vian artery and left common carotid artery) were fixed 
with 4% paraformaldehyde and embedded in paraffin. 
Lesion size was quantified after Hematoxylin and Eosin 
(H&E)-staining of 4 μm transverse sections and averages 
were calculated from 3 to 4 sections.

RNA sequencing
Total RNA was extracted from liver, inguinal (subcutane-
ous) and gonadal (visceral) white adipose tissue (iWAT 
(n = 4/treatment) and gWAT (n = 5/treatment), respec-
tively of vehicle and Acyl-GIP vehicle treated LDLR-/- 
mice (n = 5) using Qiazol according to the manufacturer’s 
instructions (Qiazol Lysis Reagent, QIAGEN, Germany). 
The quality of the RNA was determined with the Agilent 
2100 BioAnalyzer (RNA 6000 Nano Kit, Agilent, CA, 
USA). All samples with an RNA integrity number (RIN) 
had a value greater than 7. For library preparation, 1 µg 
of total RNA per sample was used. RNA molecules were 
poly(A) selected, fragmented, and reverse transcribed 

with the Elute, Prime, Fragment Mix (EPF, Illumina, 
CA, USA). End repair, A-tailing, adaptor ligation, and 
library enrichment were performed as described in the 
TruSeq Stranded mRNA Sample Preparation Guide (Illu-
mina, CA, USA). RNA libraries were assessed for qual-
ity and quantity with the Agilent 2100 BioAnalyzer and 
the Quant-iT Pico-Green dsDNA Assay Kit (Life Tech-
nologies, CA, USA). Strand-specific RNA libraries were 
sequenced as 150  bp paired-end runs on an Illumina 
HiSeq4000 platform. The STAR aligner* (v 2.4.2a)57 with 
modified parameter settings (–twopassMode = Basic) 
was used for split-read alignment against the mouse 
genome assembly mm10 (GRCm38) and UCSC known 
Gene annotation. To quantify the number of reads map-
ping to annotated genes we used HTseq-count (v0.6.0). 
For differentially testing we followed guidelines reported 
by Law et al. [15]. Briefly, we excluded genes with zero 
counts in all samples and further removed genes with 
cumulative counts per million in less than five samples. 
We used the edgeR package for data pre-processing, fol-
lowed by the limma package with its voom method, lin-
ear modelling and empirical Bayes moderation to assess 
differential expression. We used EnrichR web interface 
for gene and pathway enrichment. As input, genes with a 
p-value < 0.05 and a logFC > 0.75 were used.

Statistics
Statistical analyses were performed using GraphPad 
Prism8. The Kolmogorov-Smirnov test was used to assess 
for normality of residuals. The unpaired Student two-
tailed t-test was used to detect significant differences. A 
Grubbs test (α < 0.05) was used to detect significant outli-
ers, which were then excluded from subsequent statisti-
cal analysis and figure drawing. P < 0.05 was considered 
statistically significant. All results are mean ± SEM unless 
otherwise indicated.

Results
GIPR-agonist acyl-GIP ameliorates dyslipidemia and 
atherosclerotic plaque formation in male LDLR-/- mice 
independently of weight loss
We used LDLR-/- mice to test chronic acyl-GIP treat-
ment in a mouse model of dyslipidemia-induced athero-
sclerosis. Recently, Mroz et al. showed that optimized 
long-acting GIP peptide analogs reduce body weight of 
diet-induced obese (DIO) mice [16]. To assess whether 
acyl-GIP affects lipid metabolism and atherosclerotic 
plaque formation independently of weight loss, we used 
a dose of acyl-GIP (10 nmol/kg) that is subthreshold for 
reducing body weight and for improving glucose metab-
olism. Consistent with this, body weight (Fig. 1A), body 
composition (Fig. 1B) and food intake (Fig. 1C) remained 
similar between vehicle and acyl-GIP treated LDLR-
/- mice. Glucose metabolism of LDLR-/- mice was only 
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marginally impaired and could not be improved further 
by acyl-GIP (Fig. 1D-E). Fasting insulin levels were simi-
lar between vehicle and acyl-GIP treated mice at study 
end (Fig. 1F).

Acyl-GIP treatment for 28 days remarkably reduced 
fasting plasma triglycerides and total cholesterol levels 
in LDLR−/− mice (Fig. 2A-B). This GIP-mediated reduc-
tion of plasma lipid levels was mainly attributable to a 
decrease of the VLDL and LDL lipoprotein fractions, 

while HDL levels remained similar to vehicle treated 
mice (Fig.  2C). Acyl-GIP induced alterations in lipid 
metabolism were thus independent of changes in glucose 
metabolism. Similarly to human trials [17], we observed 
that the acyl-GIP-mediated improvement of dyslipidemia 
in LDLR-/- mice was independent of changes in insulin 
metabolism. Assessing effects of chronic acyl-GIP treat-
ment on liver metabolism we found that liver weights 
were not altered in acyl-GIP treated mice compared to 

Fig. 2 Acyl-GIP ameliorates dyslipidemia and atherosclerotic plaque formation in LDLR-/- male mice. Plasma (A) triglycerides, (B) cholesterol and (C) 
lipoprotein fractions as well as (D and E) the percentage of plaque area in aortic arches and valves and along the descending aorta of male LDLR-/- mice 
treated daily with either vehicle or acyl-GIP via subcutaneous injections for 28 days. n = 7. Blood lipids were determined from sac plasma at the end of the 
study. Data represent means ± SEM. *P < 0.05, **P < 0.01, *** P < 0.001, determined by unpaired two-sided t-test

 

Fig. 1 Body weight neutral dose of acyl-GIP in LDLR-/- mice. (A) Body weight, (B) change of body composition, (C) cumulative food intake, (D) fasting 
blood glucose, (E) interperitoneal glucose tolerance and (F) fasting insulin levels of male LDLR-/- mice treated daily with either vehicle or acyl-GIP via 
subcutaneous injections for 27 days. n = 7. Except for ipGTT (performed at study day 21), plasma parameters were measured from sac blood at study end 
(day 27). Data represent means ± SEM
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vehicle treated mice (Figure S1A) and that GIPR was only 
marginally expressed in hepatic tissue (Figure S1B), indi-
cating an indirect effect of acyl-GIP treatment on liver 
metabolism. RNAsequencing analysis in livers of chroni-
cally acyl-GIP treated mice revealed significantly altered 
gene expression changes compared to vehicle treated 
mice (Figure S1C). In line with decreased plasma lipids, 
genes associated with cholesterol and triglyceride metab-
olism were among the most significantly down regulated 
pathways in livers after acyl-GIP treatment (Figure S1D). 
Interestingly, pathways related to cholesterol biosynthe-
sis were up regulated by acyl-GIP treatment. This may 
indicate that acyl-GIP-mediated cholesterol lowering 
stimulates the synthesis of genes involved in cholesterol 
biosynthesis as a feed-back mechanism. Most impor-
tantly, acyl-GIP treatment was accompanied by reduced 
atherosclerotic plaque formation within the aortic valve 
(Fig. 2G-H) and decreased fat streaks along the descend-
ing aorta (Fig. 2I).

Acyl-GIP targets subcutaneous adipose tissue of LDLR-/- 
male mice
Based on the fact that GIP has been shown to modu-
late lipid disposal in adipose tissue [6], we investigated 

whether our long-acting acyl-GIP agonist also affects 
adipocyte size and gene transcription in visceral 
(gonadal; gWAT) and/or subcutaneous (inguinal; iWAT) 
of our treated LDLR-/- male mice. We performed RNA 
sequencing of gWAT and iWAT of LDLR-/- mice to 
explore treatment induced transcriptional changes at 
study end (Tables S1-2). Despite higher GIPR expres-
sion in gWAT compared to iWAT (Fig.  3A), acyl-GIP 
treatment resulted in more pronounced gene expression 
changes in iWAT than gWAT and reduced adipocyte size 
in subcutaneous but not visceral depots (Fig.  3B-E). In 
line with decreased plasma lipids, genes associated with 
cholesterol and triglyceride metabolism were among the 
most significantly down regulated pathways in iWAT 
after acyl-GIP treatment (Fig.  3F). Moreover, acyl-GIP 
treatment decreased the expression of genes within the 
complement and coagulation cascades as well as the 
fibrinolysis pathway (Fig.  3F). In addition, our findings 
that chronic acyl-GIP treatment predominately changed 
adipocyte size and gene transcription in targeted subcu-
taneous fat and to a lesser extent in visceral fat of male 
LDLR-/- mice may suggest a fat depot preference of our 
GIP-agonist. To test if these observations derive from 
a direct effect of acyl-GIP on fat cells or result from an 

Fig. 3 Acyl-GIP regulates adipocyte size and gene expression in subcutaneous fat of LDLR-/- mice. (A) Relative gWAT and iWAT GIPR gene expression of 
vehicle (gWAT n = 5; iWAT n = 4) and acyl-GIP treated LDLR-/- mice (gWAT n = 5; iWAT n = 4). (B) Volcano plot showing differential expression and its signifi-
cance (-log10(p-Value), limma-trend) and (C) frequency distribution of adipocyte cell sizes (µm2) of gWAT from acyl-GIP (RNA sequencing n = 5; histology 
n = 7) versus vehicle (RNA sequencing n = 5; histology n = 6) treated LDLR-/- mice. (D) Volcano plot showing differential expression and its significance 
(-log10(p-Value), limma-trend) and (E) frequency distribution of adipocyte cell sizes (µm2) of iWAT from acyl-GIP (RNA sequencing n = 5; histology n = 4) 
versus vehicle treated LDLR-/- mice (RNA sequencing n = 5; histology n = 4). (F) Gene ontologies (p < 0.0001) and KEGG pathways (Pvalue < 0.001) that are 
down regulated by acyl-GIP in sc fat. Representative terms from Supplementary Table 2 are depicted

 



Page 6 of 8Sachs et al. Cardiovascular Diabetology          (2023) 22:217 

indirect mechanism affecting adipocytes requires further 
examinations.

Discussion
Herein we identified an unanticipated efficacy of chronic 
acyl-GIP administration to improve dyslipidemia and 
CVD in a western diet-induced mouse model of athero-
sclerosis independently of body weight loss, indicating 
a specific acyl-GIP-induced effect within the treatment 
spectrum of clinically advancing novel poly-pharmaco-
logical approaches for obesity and T2D. These findings 
might initiate future studies to explore the potential of 
GIP mono- or poly-pharmacology to treat disturbances 
of lipid metabolism, which contributes to reduced car-
diovascular mortality.

Although GLP-1/GIP co-agonists are one of the most 
promising drugs to treat obesity and diabetes and have 
been shown to reduce fasting cholesterol and triglycer-
ides in T2D patients [8, 9], GIP-dependent contributions 
to metabolic benefits achieved with this combinatorial 
therapy remain unclear. GIP plays a physiologic role in 
the disposition of ingested fat by stimulating lipid uptake 
in subcutaneous adipose tissue [17–21]. This effect is 
pronounced in lean individuals and blunted in obese 
and T2D subjects [22]. Moreover, high fasting plasma 
GIP levels were associated with low plasma LDL choles-
terol in both, men and women, and low plasma triglyc-
erides in women at risk for developing T2D [17]. These 
associations were independent of fasting plasma insu-
lin levels. Taking into account the fact that the herein 
observed acyl-GIP-induced improvement of dyslipid-
emia in LDLR-/- mice was also independent of changes 
in plasma insulin levels points to a direct effect of acyl-
GIP on adipocyte metabolism. In addition, our findings 
that chronic acyl-GIP treatment predominately targeted 
subcutaneous fat and to a lesser extent visceral fat in 
male LDLR-/- mice suggests a fat depot preference of our 
GIP-agonist. Of note, our RNAseq analysis indicated that 
pathways such as the complement and coagulation cas-
cade or fibrinolysis were significantly down regulated by 
acyl-GIP compared to vehicle treatment in western diet 
fed male LDLR-/- mice. These findings are of interest as 
alterations in the hemostatic system are associated with 
WAT dysfunction and the prothrombotic state observed 
in obesity [23] and thus may suggest an ulterior acyl-GIP-
mediated effect in adipose tissue. It should be mentioned 
at this point that higher fasting GIP levels have been 
reported in correlation with an unhealthy fat distribu-
tion as indicated by a higher visceral to subcutaneous 
fat distribution exclusively in men, but not women [17]. 
Thus, potential sex-specific differences of GIP action on 
visceral and subcutaneous adipose tissue physiology war-
rants further examination.

Interestingly, there is evidence in the literature that 
body weight loss by caloric restriction re-sensitized obese 
individuals to GIP action in subcutaneous fat [24]. Hence, 
one can assume that GLP-1/GIP mediated weight loss 
could actually prime GIP action to improve dyslipidemia.

It is very difficult to assess GIPR receptor occupancy 
by acyl-GIP, also because it would be different based on 
which tissue is under examination. The herein used acyl-
GIP requires 60–100 nmol/kg to affect body weight and 
food intake in diet induced obese rodents [10]. Thus, the 
applied dose of 10 nmol/kg was hence clearly subthresh-
old to affect body weight, food intake and also glycemia. 
Together with the known effect of GIP to regulate lipid 
metabolism in adipocytes [25] our findings might initiate 
future studies to explore the potential of GIP mono- or 
poly-pharmacology to treat disturbances of lipid metabo-
lism and potentially reducing cardiovascular mortality. 
It is important here to state that our findings have been 
observed in a rodent model for cardio-metabolic disease 
and thus it is impossible at this point to extrapolate to 
humans without further investigations. It is important to 
note that disorders in triglyceride and cholesterol metab-
olism are major risk factors for the development of lethal 
atherosclerotic cardiovascular complications in obese 
individuals and T2D patients. Besides body weight and 
glucose management, this is particularly relevant in light 
of the recent consensus in the field that the growing prev-
alence of cardio-metabolic disease will perhaps be the 
greatest health challenge throughout the world and that 
therefore multifaceted interventions and treatments in a 
new era of precision medicine will be required to provide 
the best possible comprehensive care for patients with 
cardiometabolic disease [26–28].

We just recently showed that Tirzepatide is only a weak 
and partial agonist at the mouse GIPR with a 75-fold 
less potency at the mouse relative to human GIPR [29]. 
Based on these findings it seems plausible that Tirzepa-
tide is not suitable to assess the mode of action of GIPR 
agonism and GIPR:GLP-1R co-agonism in mice and was 
hence omitted herein.

Regarding future obesity treatment strategies imple-
menting novel GIP/GPL-1 co-agonists that are emerging 
it is unclear whether every co-agonist will be as beneficial 
as and superior to single GLP-1R agonism. For example, 
the metabolic effect of NNC0090-2746 relative to lira-
glutide has been tested at a single dose for only 12-wks 
of treatment [8]. This study design seems suboptimal in 
many different aspects due to the lack of multiple higher 
doses which are crucial for e.g. Tirzepatide to maximize 
weight loss. In addition, the study duration of 12 wks may 
not have been long enough in light of the SURPASS tri-
als showing that much longer treatment durations are 
required to see the maximal effects on weight loss and 
improvement in glucose control.



Page 7 of 8Sachs et al. Cardiovascular Diabetology          (2023) 22:217 

Conclusions
GLP-1/GIP co-agonists are one of the most promis-
ing drugs to treat obesity and diabetes and have been 
shown to reduce fasting cholesterol and triglycerides in 
T2D patients. Here we show that the long-acting GIP 
mono-agonist acyl-GIP reduced hyperlipidemia and 
atherosclerotic lesion formation in male LDLR-/- mice 
independently of body weight loss indicating an effect 
exclusively mediated by GIP signaling. Mono-agonistic 
treatment with acyl-GIP may thus be a novel approach to 
alleviate cardiometabolic disease without changing body 
composition.
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