
Mirjalili et al. Cardiovascular Diabetology          (2023) 22:200  
https://doi.org/10.1186/s12933-023-01939-9

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cardiovascular Diabetology

An innovative model for predicting coronary 
heart disease using triglyceride-glucose index: 
a machine learning-based cohort study
Seyed Reza Mirjalili1  , Sepideh Soltani1  , Zahra Heidari Meybodi1  , Pedro Marques‑Vidal2, 
Alexander Kraemer3 and Mohammadtaghi Sarebanhassanabadi1*   

Abstract 

Background Various predictive models have been developed for predicting the incidence of coronary heart disease 
(CHD), but none of them has had optimal predictive value. Although these models consider diabetes as an important 
CHD risk factor, they do not consider insulin resistance or triglyceride (TG). The unsatisfactory performance of these 
prediction models may be attributed to the ignoring of these factors despite their proven effects on CHD. We decided 
to modify standard CHD predictive models through machine learning to determine whether the triglyceride‑glucose 
index (TyG‑index, a logarithmized combination of fasting blood sugar (FBS) and TG that demonstrates insulin resist‑
ance) functions better than diabetes as a CHD predictor.

Methods Two‑thousand participants of a community‑based Iranian population, aged 20–74 years, were investigated 
with a mean follow‑up of 9.9 years (range: 7.6–12.2). The association between the TyG‑index and CHD was investi‑
gated using multivariate Cox proportional hazard models. By selecting common components of previously validated 
CHD risk scores, we developed machine learning models for predicting CHD. The TyG‑index was substituted for dia‑
betes in CHD prediction models. All components of machine learning models were explained in terms of how they 
affect CHD prediction. CHD‑predicting TyG‑index cut‑off points were calculated.

Results The incidence of CHD was 14.5%. Compared to the lowest quartile of the TyG‑index, the fourth quartile had 
a fully adjusted hazard ratio of 2.32 (confidence interval [CI] 1.16–4.68, p‑trend 0.04). A TyG‑index > 8.42 had the high‑
est negative predictive value for CHD. The TyG‑index‑based support vector machine (SVM) performed significantly 
better than diabetes‑based SVM for predicting CHD. The TyG‑index was not only more important than diabetes in pre‑
dicting CHD; it was the most important factor after age in machine learning models.

Conclusion We recommend using the TyG‑index in clinical practice and predictive models to identify individuals 
at risk of developing CHD and to aid in its prevention.
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Introduction
CHD is a major public health challenge and contributes 
to the global disease burden. Despite improved preven-
tion methods and treatment techniques [1, 2], it is still 
the leading cause of morbidity and mortality worldwide, 
representing 32% of all deaths [3], and an enormous 
stress on the national health finances [4, 5]. Thus, CHD 
risk assessment is a global public health priority.

Various CHD predictive models such as Framingham 
[6], Systematic COronary Risk Evaluation (SCORE) [7], 
Reynolds [8], American College of Cardiology/American 
Heart Association (ACC/AHA) [9], Joint British Socie-
ties’ consensus recommendations for the prevention of 
cardiovascular disease (JBS3) [10], Multi-Ethnic Study of 
Atherosclerosis (MESA) [11], QRISK [12] and prediction 
for atherosclerotic cardiovascular risk in China (China-
PAR) [13], have been developed for predicting CHD inci-
dence, but none has optimal predictive value [14]. All 
such models consider diabetes as an important CHD risk 
factor, but not one considers either insulin resistance or 
TG [14–17].

A better prediction of CHD may be possible by con-
sidering insulin resistance, which occurs years or even 
decades before diabetes [18]. Previous Mendelian rand-
omized analyses, systematic reviews, and meta-analyses 
have advocated the association between insulin resistance 
and CHD by altering vascular wall responses for insulin 
and promoting atherosclerosis [19–21]. The hyperin-
sulinemic-euglycemic clamp test is the gold standard of 
insulin resistance measurement, but it is not applicable 
in clinical studies because of its invasive, complicated, 
and expensive protocol [22, 23]. Another validated index 
is the homeostasis model assessment of insulin resist-
ance (HOMA-IR) calculated by dividing serum glucose 
by insulin concentrations. Circulating insulin concentra-
tion is not routinely measured in primary care. Moreover, 
it has limited value in subjects receiving subcutaneous 
insulin. Therefore, HOMA-IR is not a suitable index 
for primary prevention strategies [23]. The TyG-index 
is a logarithmized product of FBS and TG. It has been 
shown to correlate highly with the hyperinsulinemic-
euglycemic clamp and HOMA-IR [24]. Moreover, it is a 
simple, low-cost protocol that can be used in all subjects 
regardless of their insulin treatment status [23]. Addi-
tionally, it contains TG, another risk factor for CHD [25, 
26] as indicated by several studies; nonetheless, it has not 
been considered in previous models [6–13]. Therefore, 
it seems sensible to modify these models with the TyG-
index and then evaluate their effectiveness.

Machine learning algorithms have been demonstrated 
to be extremely useful in predicting cardiovascular dis-
ease [27]. Their ability to capture complex interactions 

and nonlinear relationships between variables and 
outcomes makes them superior to standard statistical 
models [28]. Several studies have shown that machine 
learning algorithms outperform traditional models [29–
31]. Despite this, no study has explored the impact of 
TyG-index on the prediction of CHD through machine 
learning. For these reasons, machine learning models 
should be chosen to fully assess how TyG-index and dia-
betes impact and interact with other variables when pre-
dicting CHD.

In view of the above, the primary objective of the cur-
rent study was to investigate the association between 
the TyG-index and CHD in a 10-year prospective cohort 
study. The ultimate objective was to modify standard 
CHD predictive models through machine learning to 
determine whether the TyG-index functions better than 
diabetes as a CHD predictor.

Methods
Study population
This cohort study was conducted using data from Yazd 
Healthy Heart Project (YHHP) a population-based epide-
miological study evaluating cardiovascular diseases and 
metabolic disorders [32].

In YHHP, 100 clusters and 20 families from each clus-
ter were defined, and one adult (aged 20–74 years) from 
each family was randomly selected for participation and 
evaluation in the first phase conducted in 2005–2006 
(n = 2000, men = 1000, women = 1000) [32].

After 10  years of follow-up (2015–2016), the partici-
pants were re-invited to Yazd Cardiovascular Research 
Centre (YCRC) to be re-evaluated [32].

Included participants
From the 2000 participants, 17 were omitted from the 
study due to loss during the second phase; from the 1983 
individuals participating in the baseline examination, 62 
were excluded due to diagnosis of CHD at baseline, 78 
due to death during the study, and 308 due to missing 
data. The remaining 1552 participants (804 men, mean 
age 48.6 ± 14.7 years) were included in the present study 
(Fig. 1).

Ethical approval
The present study was approved by the Shahid Sadoughi 
University of Medical Sciences ethics committee (eth-
ics code: IR.SSU.REC.1401.069) and conducted based 
on the Declaration of Helsinki on medical research 
[33]. Informed consent was obtained from study par-
ticipants during the initial and follow-up phases. The 
present research is reported based on strengthening the 
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reporting of observational studies in the epidemiology 
(STROBE) statement [34].

Biochemical analysis
Blood samples for laboratory tests were collected after 
overnight fasting. After centrifugation, serum uric 
acid (SUA), glucose, and TG were assessed using Pars 
Azmoon kits (Pars Azmoon Inc., Tehran, Iran). Bionic 
kits (Bionic Company, Tehran, Iran) were used to ana-
lyse lipid profiles (total cholesterol, low-density lipo-
protein [LDL] and high-density lipoprotein [HDL]). All 
analyses were conducted using a biochemical auto-ana-
lyser (BT 3000, Italy) [32].

Anthropometric and blood pressure measurements
Height was measured in both phases using a stadiom-
eter fixed on a wall with no dents or bumps. While the 
participants were standing barefoot, their heels, hips, 
shoulders, and head touching the wall, and their head 
fixed horizontally to the nearest 0.5  cm. Participants 
were weighed to the nearest 0.1  kg in the first phase 

using a digital scale (Seca, Germany) with minimal 
clothing and in the second phase using another digi-
tal scale (Model BF511, Omron Co. Karada body scan, 
Osaka, Japan). The superior border of the iliac crest and 
widest part of the buttock were considered to measure 
waist and hip circumferences, respectively, to the near-
est 0.1 cm using a non-stretchable tape.

An automatic digital blood pressure monitor (Omron, 
M6 comfort, Osaka, Japan) was used to measure blood 
pressure of the participants’ right arms, while they were 
in the sitting position. Blood pressure measurements 
were taken by a trained nurse twice, with an interval of 
5 min [32].

Data collection
Data including demographic features, education, physi-
cal activity, smoking habits, family history of premature 
CHD, and dietary habits were collected by completing 
questionnaires.

Trained interviewers completed questionnaires to 
assess physical activity, educational attainment, die-
tary habits and smoking status, in the first phase of the 
study. For educational attainment, participants were cat-
egorized as having a primary, high school, or academic 
education. Physical activity was assessed using the Inter-
national Physical Activity Questionnaire (IPAQ) [35]. 
Participants were categorized as having low, moderate, 
or vigorous level of activity if their activity was < 600, 
600–1200, or  > 1200 kilocalories/week, respectively. Par-
ticipants were divided into groups of smokers or non-
smokers based on their current smoking status. CHD 
occurrence in either father or brother less than 45 years 
of age, or mother or sister less than 55 years of age was 
defined as a family history of premature CHD [32]. A 
questionnaire was used to determine the use of fried 
foods, salt, removing poultry skin, eating out, meat con-
sumption, and removing fat from meat.

CHD events were defined as occurrences of fatal or 
non-fatal CHD, myocardial infarction (MI), percutane-
ous coronary intervention (PCI), coronary artery bypass 
grafting (CABG), and new angina. The diagnosis of new 
angina was based on positive findings from the Rose 
angina questionnaire [36] in addition to positive electro-
cardiogram changes, elevated cardiac enzymes, and posi-
tive exercise tolerance test or coronary artery angiogram.

The time of outcome for fatal or non-fatal CHD, MI, 
CABG, positive exercise test, positive cardiac enzymes, 
and PCI was determined based on medical records. All 
Rose angina questionnaires [36] and electrocardiograms 
were investigated by an expert medical practitioner.

Fig. 1 Flow diagram of participants attending the 10‑year follow‑up 
study
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Statistical analysis
Statistical analyses were performed with SPSS version 
24.0 (IBM Corp., Armonk, NY, USA), Python 3, and R 
version 4.2.2 (www.R- proje ct. org). Continuous variables 
were described as mean ± standard deviation (SD) and 
compared by independent T-test or ANOVA. Categori-
cal variables were described as numbers (percentage) and 
compared using chi-square tests.

The TyG-index, the primary exposure variable of inter-
est, was defined as:

and analysed as quartiles based on sex-specific distribu-
tions and as continuous measures. Multivariable Cox 
proportional hazard models were used to estimate the 
risk of CHD development. Four models were evaluated: 
model I was adjusted for age and sex; model II was fur-
ther adjusted for physical activity, education, family his-
tory of premature CHD, and smoking; model III was 
further adjusted for total cholesterol, HDL, body mass 
index (BMI), waist-to-hip ratio, blood pressure, SUA, and 
LDL; and, model IV was further adjusted for consum-
ing fried foods, adding salt, removing poultry skin, using 
high fat dairy products, dining out, meat consumption, 
and removing fat from meat. Finally, medication use was 
adjusted in our models for investigating whether it could 
modify the association.

The “OptimalCutpoints” [37] R package was used to 
assess TyG-index cut-off points that can predict CHD. 
We stratified these cut-points based on sex and diabetes 
status.

In accordance with previous studies [31, 38], we 
selected several machine-learning models to construct 
CHD-prediction models (logistic regression, decision 
tree, random forest, K nearest neighbor (KNN), and 
SVM). To simulate previous standard CHD predictor 
models, we investigated the literature and selected the 
common components between Framingham risk scores 
[6], SCORE CVD death risk score [7], QRISK risk cal-
culator [12], Reynolds CVD risk score [8], ACC/AHA 
pooled cohort hard CVD risk calculator [9], JBS3 risk 
score [10], MESA risk score [11], and China-PAR risk 
predictor [13]. As a result of these investigations, age, 
sex, blood pressure, total cholesterol, HDL, waist-to-
hip ratio, diabetes, smoking status, and family history 
of premature heart disease were considered in simulat-
ing a standard CHD prediction model. As part of the 
preprocessing of data, all missing values and evaluated 
outliers and highly correlated features were excluded. 
Because of imbalanced outcome data (14.5% incidence), 
we used SMOTE (over-sampling method) [39], which 

TyG − index = ln

(

Tg
(

mg/dL
)

× fasting glucose
(

mg/dL
)

2

)

has been proven reliable for CHD [38]. After standard-
izing continuous variables and randomly splitting data 
into 70/30, we trained models on the larger part of the 
dataset and evaluated their performance on the smaller 
part. Afterward, we modified our dataset, by substitut-
ing the TyG-index for diabetes, and repeated the previ-
ous steps. For demonstrating the comparison of true 
positive, true negative, false negative, and false posi-
tive values of models, we used confusion matrices. We 
chose to use different color spectra to help illustrate the 
comparison, and make it easier to understand. To report 
model performance we calculated area under the curves 
(AUC), sensitivity, specificity, Cohen-kappa score Mat-
thew’s correlation coefficient, and F1-score. We used the 
generally accepted AUC index [31] and DeLong test [40] 
to compare the performance of these models. In order 
to make sense of machine learning models and counter 
the black box character of machine learning models, we 
used the “Dalex” library [41] to determine how much the 
performance of a model changes when a selected explan-
atory variable is removed.

Results
Additional file 1: Table S1 summarizes the baseline char-
acteristics of the study participants according to the 
follow-up process. Participants lost to follow-up were 
significantly older and less frequently male than partici-
pants who completed the follow-up.

Additional file 1: Table S2 explains the baseline charac-
teristics of the study participants based on their gender.

The baseline characteristics of participants according 
to TyG-index quartiles are presented in Table 1. Partici-
pants in the highest quartile of serum TyG-index lev-
els (TyG-index > 9.32) were older and had higher total 
cholesterol, TG, SUA, and fasting blood glucose levels, 
higher diabetes rates, blood pressure and anthropometric 
indices, lower HDL levels, and less education.

TyG‑index and incidence of CHD
The overall incidence of new-onset CHD in the second 
visit was 14.5%. The incidence of CHD was 6.4%, 11.1%, 
14%, and 26% in quartiles 1 to 4, respectively.

Compared with the Q1 group, the hazard ratio (HR) 
and 95% CI of CHD incidence in model I were 1.51 
(0.91–2.51), 1.68 (1.03–2.74), and 2.63 (1.67–4.15) in Q2, 
Q3, and Q4 groups, respectively. After final adjustment 
(model IV), HR in Q4 was slightly decreased but still sig-
nificant. Adjusted HR levels per 1-unit increase in TyG-
index were 1.87 (1.59–2.21), 1.70 (1.35–2.14) and 2.16 
(1.69–2.77) in the total sample, in men, and in women, 
respectively (Table 2).

http://www.R-project.org
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When stratifying for gender, the association between 
TyG-index and risk of CHD in men was no longer sig-
nificant after adjusting for laboratory markers and die-
tary patterns, yet it was still significantly associated with 
CHD in women: HR 4.65 (1.34–16.1) for Q4 compared 
to Q1. Diabetes medications confounded the association 
between TyG-index and CHD but dyslipidaemia treat-
ment did not. A TyG-index higher than 9.07 in women 
and 8.92 in men had the highest sensitivity and specificity 
simultaneously for predicting CHD (Table 3).

Table  4 shows the statistical functions, as well as 
the confusion matrices for predicting models con-
sisting of true positive, false positive, true negative, 
and false negative values. Random forest models had 
the highest sensitivity and specificity. A significant 
improvement was seen in the SVM model after modi-
fication with the TyG-index. Other models showed no 
significant changes. In Fig.  2, all the components of 
these models are compared in terms of their impact 
on prediction. Eliminating diabetes decreased AUC 

Table 1 Baseline clinical characteristics and biological variables of the participants according to serum TyG‑indexa quartiles

a Triglyceride-glucose index
b Body mass index
c Coronary heart disease
d Fasting blood sugar
e Low-density lipoprotein
f Triglyceride
g High-density lipoprotein
h Serum uric acid

First Second Third Fourth p‑value

Number of participants 358 386 386 392

Age (years) 41.2 ± 15.7 48.2 ± 14.7 50.2 ± 13.6 53.8 ± 11.7  < 0.001

Mean follow‑up (years) 9.9 ± 1.0 9.8 ± 1.0 9.9 ± 1.0 9.9 ± 1.3 0.29

Male (%) 171 (47.8) 219 (56.7) 195 (50.5) 200 (51) 0.09

Education (%)  < 0.001

 Primary 159 (47.2) 211 (55.8) 238 (62.6) 277 (71.8)

 High school 144 (42.7) 116 (30.7) 102 (26.9) 87 (22.5)

 Academic 34 (10.1) 51 (13.5) 40 (10.5) 22 (5.7)

Anthropometry

 Weight (Kg) 65.4 ± 12.4 71.1 ± 11.9 73.5 ± 12.8 74.7 ± 12.5  < 0.001

 Weight/hip ratio 0.8 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.95 ± 0.1  < 0.001

 Waist circumference (cm) 85.9 ± 12.2 92.6 ± 10.8 96.9 ± 10.9 99.0 ± 10.5  < 0.001

  BMIb (Kg/m2) 23.9 ± 4.3 25.8 ± 4.1 27.2 ± 4.2 27.4 ± 4.0  < 0.001

Current smokers (%) 55 (15.4) 79 (20.5) 71 (18.4) 69 (17.6) 0.34

Physical activity (%) 0.01

 Low 142 (61.5) 163 (63.2) 187 (70.3) 209 (74.6)

 Moderate 78 (33.7) 81 (31.4) 69 (25.9) 56 (20.0)

 Vigorous 11 (4.8) 14 (5.4) 10 (3.8) 15 (5.4)

Blood pressure (mm Hg)

 Systolic 120.9 ± 13.9 127.4 ± 14.8 129.7 ± 14.6 134.1 ± 15.8  < 0.001

 Diastolic 79.2 ± 7.9 82.1 ± 8.2 83.9 ± 9.1 84.9 ± 8.6  < 0.001

Diabetes (%) 5 (1.4) 20 (5.2) 43 (11.1) 187 (47.7)  < 0.001

Family history of  CHDc 39 (11.0) 48 (12.6) 68 (18.2) 65 (16.8) 0.02

Blood levels (mg/dL)

  FBSd 81.4 ± 11.3 87.8 ± 14.9 96.2 ± 25.7 145.2 ± 69.6  < 0.001

 Total cholesterol 172 ± 38.9 192.3 ± 39.2 207.1 ± 37.4 223.8 ± 47.8  < 0.001

  LDLe 95.3 ± 33.1 110.0 ± 35.4 116.4 ± 33.0 114.6 ± 42.1  < 0.001

  TGf 77.5 ± 19.6 128.5 ± 23.5 187.9 ± 40.9 305.7 ± 127.6  < 0.001

  HDLg 58.0 ± 14.6 55.7 ± 12.7 52.2 ± 12.6 50.8 ± 14.2  < 0.001

  SUAh 4.0 ± 1.1 4.4 ± 1.2 4.6 ± 1.3 4.6 ± 1.3  < 0.001



Page 6 of 12Mirjalili et al. Cardiovascular Diabetology          (2023) 22:200 

by around 2% in the decision tree, whereas in other 
models, it did not affect AUC. Depending on the 
model, TyG-index removal decreased AUC from 1 to 
22%. The current study showed that the TyG-index 
was much better than diabetes in predicting CHD; 
overall, it was the second most important factor after 
age.

Discussion
The results of this prospective cohort study in a com-
munity-based Iranian population followed for 9.9  years 
indicate that higher a TyG-index is associated with a 
higher risk of CHD. This association was more evident in 
females. Additionally, TyG-index outperformed diabetes 
in CHD prediction models.

Table 2 Risk of  CHDa according to quartiles of TyG‑indexb, overall and stratified by gender

Results are expressed as hazard ratio and (95%  CIc). Model I: adjusted for age and sex; Model II: Adjusted for age, sex, smoking, physical activity, education, and family 
history; Model III: model II plus  SUAd,  HDLe, total cholesterol,  BMIf, Waist to hip ratio,  SBPg,  DBPh,  LDLi; Model IV: model III plus using fried food, adding salt, removing 
poultry skin, using high fat dairy products, dining out, meat consumption and removing its fat
a Coronary heart disease
b Triglyceride-glucose index
c Confidence interval
d Serum uric acid
e High-density lipoprotein
f Body mass index
g Systolic blood pressure
h Diastolic blood pressure
i Low density lipoprotein

First Second Third Fourth P for trend

All participants

 Crude 1 1.94 (1.17–3.23) 2.20 (1.35–3.59) 4.04 (2.57–6.36)  < 0.001

 Model I 1 1.51 (0.91–2.51) 1.68 (1.03–2.74) 2.63 (1.67–4.15)  < 0.001

 Model II 1 1.79 (0.99–3.23) 1.71 (0.95–3.10) 2.92 (1.70–5.04)  < 0.001

 Model III 1 1.76 (0.95–3.25) 1.65 (0.89–3.09) 2.45 (1.29–4.66) 0.007

 Model IV 1 1.86 (0.96–3.61) 1.72 (0.87–3.41) 2.32 (1.16–4.68) 0.04

Non‑Diabetic

 Crude 1 1.95 (1.16–3.28) 1.99 (1.18–3.34) 3.18 (1.90–5.34)  < 0.001

 Model I 1 1.58 (0.94–2.66) 1.60 (0.95–2.69) 2.39 (1.42–4.02) 0.001

 Model II 1 1.86 (1.00–3.43) 1.61 (0.85–3.06) 2.67 (1.44–4.93) 0.003

 Model III 1 1.89 (0.99–3.6) 1.48 (0.73–2.97) 2.19 (0.98–4.91) 0.18

 Model IV 1 1.89 (0.94–3.81) 1.54 (0.72–3.29) 2.07 (0.84–5.12) 0.14

Diabetic

 Crude 1 1.26 (0.64–2.46) 1.06 (0.53–2.13) 1.29 (0.67–2.48) 0.27

 Model I 1 1.28 (0.65–2.51) 1.15 (0.57–2.31) 1.45 (0.75–2.82) 0.12

 Model II 1 1.33 (0.62–2.86) 1.2 (0.54–2.69) 1.71 (0.78–3.75) 0.07

 Model III 1 0.82 (0.34–1.99) 0.78 (0.30–2.03) 0.74 (0.26–2.14) 0.6

 Model IV 1 0.63 (0.24–1.66) 0.56 (0.19–1.67) 0.45 (0.13–1.53) 0.1

Men

 Crude 1 1.70 (0.93–3.10) 1.64 (0.89–3.01) 3.06 (1.75–5.33)  < 0.001

 Model I 1 1.59 (0.87–2.92) 1.56 (0.85–2.86) 2.45 (1.40–4.28) 0.001

 Model II 1 1.96 (0.99–3.88) 1.69 (0.83–3.45) 2.84 (1.49–5.41) 0.001

 Model III 1 2.02 (0.99–4.12) 1.45 (0.68–3.09) 1.88 (0.90–3.91) 0.02

 Model IV 1 2.35 (1.06–5.20) 1.31 (0.57–3.04) 1.30 (0.56–3.01) 0.11

Women

 Crude 1 2.13 (0.84–5.41) 3.42 (1.47–7.93) 6.23 (2.81–13.8)  < 0.001

 Model I 1 1.37 (0.53–3.51) 1.91 (0.81–4.49) 3.02 (1.34–6.82)  < 0.001

 Model II 1 1.38 (0.41–4.68) 1.66 (0.54–5.10) 3.05 (1.04–8.93) 0.001

 Model III 1 1.28 (0.35–4.60) 2.01 (0.61–6.56) 4.44 (1.26–15.7) 0.001

 Model IV 1 1.20 (0.32–4.54) 2.14 (0.64–7.20) 4.65 (1.34–16.1) 0.004
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CHD and TyG‑index association
An association between the TyG-index and CHD was 
previously confirmed in both observational [23, 42–49] 
and meta-analyses studies [19, 50, 51], but the incon-
sistency in predictive values, the incompleteness of 

confounding factors (especially diet and medications), 
and the need to investigate the association in non-dia-
betic patients in observational studies and heterogeneity 
in meta-analyses prompted the current study [19].

Table 3 TyG‑indexa cut‑off points

a Triglyceride-glucose index
* Positive diagnostic ratio; a particular value for the Positive Diagnostic Likelihood Ratio
* Negative diagnostic ratio value; a particular value for the Negative Diagnostic Likelihood Ratio

Cut‑Off‑points Maximum sensitivity and specificity 
simultaneously

Youden Negative diagnostic ratio 
value

Positive 
diagnostic ratio 
value

Men 8.92 9.19 8.36 9.54

Women 9.07 8.94 9.04 9.10

Diabetic 9.73 9.46 8.79 10.67

Non‑Diabetic 8.81 9.12 8.33 9.40

Total population 8.99 9.12 8.42 9.28

Table 4 Comparison of the primary and TyG‑indexa‑modified* versions of  CHDb predictive models using machine learning
Primary predic�ng model TyG-index-modified version* P-value

Lo
gi

s�
c R

eg
re

ss
io

n

Accuracy 73.2 Accuracy 73.0
Sensitivity 74.0 Sensitivity 76.1
specificity 72.9 specificity 72.2
Cohen-kappa score (%) 46.4 Cohen-kappa score (%) 47.8
Matthew's correlation coefficient 46.4 Matthew's correlation coefficient 47.7
F1-score (%) 73.5 F1-score (%) 74.1

AUCa (%)
73.2

AUC (%)
73.8

0.77

De
cis

io
n 

Tr
ee

Accuracy 82.3 Accuracy 79.1
Sensitivity 82.8 Sensitivity 81.9
specificity 82.1 specificity 77.1
Cohen-kappa score (%) 64.7 Cohen-kappa score (%) 58.2
Matthew's correlation coefficient 64.7 Matthew's correlation coefficient 58.3
F1-score (%) 82.4 F1-score (%) 79.4

AUC (%)
82.3

AUC (%)
79.1

0.22

SV
M

b

Accuracy 70.9 Accuracy 79.7
Sensitivity 80.2 Sensitivity 87.9
specificity 67.7 specificity 75.2
Cohen-kappa score (%) 41.7 Cohen-kappa score (%) 59.6
Matthew's correlation coefficient 42.5 Matthew's correlation coefficient 60.4
F1-score (%) 73.4 F1-score (%) 81.1

AUC (%)
70.8

AUC (%)
80.0

<0.001

Ra
nd

om
 Fo

rr
es

t

Accuracy 88.0 Accuracy 87.9
Sensitivity 91.0 Sensitivity 91.3
specificity 85.9 specificity 85.1
Cohen-kappa score (%) 76.1 Cohen-kappa score (%) 75.8
Matthew's correlation coefficient 76.0 Matthew's correlation coefficient 76.0
F1-score (%) 88.3 F1-score (%) 88.1

AUC (%)
88.0

AUC (%)
87.9

0.98

KN
Nc

Accuracy 86.5 Accuracy 87.5
Sensitivity 95.4 Sensitivity 91.9
specificity 81.0 specificity 84.2
Cohen-kappa score (%) 72.9 Cohen-kappa score (%) 75.0
Matthew's correlation coefficient 74.1 Matthew's correlation coefficient 75.3
F1-score (%) 87.6 F1-score (%) 87.8

AUC (%)
86.4

AUC (%)
87.5

0.51

a Triglyceride-glucose index
b Coronary heart disease
c High-density lipoprotein
d Area under the curve
e Support vector machine
f K nearest neighbor
* primary models were designed based on age, sex, blood pressure, smoking status, total cholesterol,  HDLc, waist/hip ratio, family history of CHD and diabetes. In 
modified models diabetes was replaced by TyG-index
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Fig. 2 Impact of different components of machine learning models on predicting CHD
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Previous studies have suggested TyG-index cut-
off points of 9 and 9.323 for preventing CHD [52]. The 
results of the current study will aid healthcare providers 
in our region to screen their patients for a TyG-index 
of ≥ 8.42, which our results showed as having the highest 
negative predictive value, and to consider pharmacologi-
cal treatment for values of ≥ 9.28, which had the highest 
positive predictive value in the current study, and to con-
trol those under 8.99, which had the highest sensitivity 
and specificity simultaneously.

Mechanisms
FBS and TG are reflections of insulin resistance in the 
liver and adipocytes, respectively [53]. A combination 
of these two factors, the TyG-index demonstrated 96.5% 
sensitivity and 85% specificity for detecting insulin resist-
ance, a better performance than that of HOMA-IR [51]. 
Resistance to insulin can trigger inflammatory processes, 
lipid metabolism deregulations, sympathetic nervous 
system over-activation, endothelial dysfunction, and 
eventually, thrombosis and CHD [43, 45, 46, 51, 54–57]. 
Therefore, the TyG-index can serve as a simple, practi-
cal, cost-effective, reproducible, and reliable surrogate 
marker for insulin resistance measurement in CHD pre-
vention plans [54].

TyG‑index and gender
Studies have shown that the TyG-index plays a signifi-
cant role in CHD incidence in women [42, 43, 45, 46, 54, 
58, 59]. Nonetheless, one study reported a greater role 
in men [60], and another found no differences between 
genders [55]. The current study found an association in 
both genders which persisted only in women after multi-
variable adjustment. This finding may be explained by the 
fact that nearly half of the female participants were over 
50 years of age and susceptible to menopause at the base-
line. Insulin resistance and higher CHD risks can occur 
after menopause because of decreasing estrogen levels 
[45, 46, 54, 55, 59]. Furthermore, the TyG-index was an 
independent risk factor for CHD until model II in non-
diabetic participants. The lack of association in diabetic 
participants may have been due to lifestyle changes and 
medication consumption during the 10  years of follow-
up [61]. Our analysis showed that diabetes treatment 
made the association non-significant. The first line of 
diabetes treatment is metformin which can decrease 
insulin resistance [62], confirming the insignificant asso-
ciation between the TyG-index and CHD in diabetic 
participants.

Prediction of CHD based on TyG‑index
Previous studies have suggested that the TyG-index 
predicts cardiovascular events more accurately than 

hemoglobin  A1c [23]. In addition, several studies have 
implicated that adding the TyG-index to the Framing-
ham risk score can increase its predictive power [48, 
49] Previous studies concluded that SVM and random 
forest were the most effective model for predicting 
CHD [38, 63, 64], the current study found that random 
forest achieved the highest AUC. In both random for-
est and SVM models, diabetes played no role, while 
the TyG-index was the second most influential compo-
nent. The current study found that the use of the TyG-
index instead of diabetes in machine learning models 
can significantly improve the predictive power of CHD 
predicting models. Machine learning models demon-
strated that the TyG-index was not only more impor-
tant than diabetes in predicting CHD, but it also was 
the most important factor after age. To the best of our 
knowledge, the TyG-index is not used in any clinical 
guideline [19], but the American Diabetes Association 
(ADA) suggested in 2022 that patients with elevated 
TG levels (≥ 150  mg/dL [1.7  mmol/L]) should imple-
ment enhanced lifestyle interventions and optimal gly-
cemic control [65]. Our findings advocate the inclusion 
of the TyG-index in future CHD prevention guidelines.

Strengths and limitations
The following strengths of the current study should be 
noted. This study is the first to evaluate the predictive 
power of TyG-index in CHD using machine-learning 
techniques. To the best of our knowledge, the optimal 
cut-off points had not previously been evaluated in the 
Iranian population. The community-based prospec-
tive nature of our study and definite outcome determi-
nation minimize the chance of reverse causation and 
recall bias. Including both old and young populations 
was another advantage the current study had over oth-
ers, as most previous studies recruited middle-aged and 
older adults. Furthermore, the current study attempted 
to ameliorate the adjustment of confounders by add-
ing family history of premature CHD, medication use, 
dietary habits, complete lipid profile components and 
all anthropometric features to our models. The long 
follow-up time in the present study acts as a double-
edged sword; indeed, it can reflect the lifetime risk of 
CHD, but on the other hand, our inability to evaluate 
and control voluntarily health check-ups or lifestyle 
changes during the ten-year study period may have 
affected our findings. Compared to previous studies, we 
had an identical method for defining of CHD by inves-
tigating ECGs, cardiac enzymes, using the Rose angina 
questionnaire, exercise tolerance test, and coronary 
artery angiogram.
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This study had several limitations. First, it was embed-
ded in an observational setting, and despite a wide range 
of adjustments, we cannot rule out the possibility of 
unmeasured confounders. Single baseline TyG-index 
investigation may incline our results to intra-individual 
variation. Second, we may have observed gender-specific 
results due to the lack of data on menopausal status. 
Third, only Iranian subjects were included, so our find-
ings might not be generalizable to other countries.

Conclusion
The TyG-index can be used in clinical practice and pre-
dictive models as a highly valuable index for predicting 
and preventing CHD, but further studies are needed to 
validate our findings.
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