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Abstract
Background The atherogenic index of plasma (AIP) can reflect the burden of atherosclerosis. Hyperglycemia is one 
of the leading causes of atherosclerosis. However, the relationship between AIP and prediabetes is rarely studied. 
Therefore, we aimed to explore the relationship between AIP and prediabetes.

Methods This retrospective cohort study recruited 100,069 Chinese adults at the Rich Healthcare Group from 2010 
to 2016. AIP was calculated according to Log10 (triglyceride/high-density lipoprotein cholesterol) formula. Cox 
regression method, sensitivity analyses and subgroup analyses were used to examine the relationship between 
AIP and prediabetes. Cox proportional hazards regression with cubic spline functions and smooth curve fitting 
was performed to explore the non-linearity between AIP and prediabetes. The two-piece Cox proportional hazards 
regression model was used to determine the inflection point of AIP on the risk of prediabetes.

Results After adjusting for confounding covariates, AIP was positively associated with prediabetes (HR: 1.41, 
95%CI: 1.31–1.52, P < 0.0001). The two-piecewise Cox proportional hazards regression model discovered that the 
AIP’s inflection point was 0.03 (P for log-likelihood ratio test < 0.001). AIP was positively associated with the risk of 
prediabetes when AIP ≤ 0.03 (HR: 1.90, 95%CI: 1.66–2.16, P < 0.0001). In contrast, When AIP > 0.03, their association was 
not significant (HR: 1.04, 95%CI: 0.91–1.19, P = 0.5528).

Conclusion This study shows that AIP was positively and non-linearly associated with the risk of prediabetes after 
adjusting for other confounding factors. When AIP ≤ 0.03, AIP was positively associated with the risk of prediabetes.
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Background
Prediabetes is defined as a condition in which blood 
glucose parameters are above normal but below the 
threshold for diabetes, and it is a high-risk state for devel-
oping diabetes [1]. The International Diabetes Federation 
reported that prevalence rates of prediabetes were 7.7% 
worldwide in 2017, which affected around 374  million 
people [2]. It is predicted by the International Diabetes 
Federation that 548  million adults will have prediabe-
tes by 2045, representing 8.6% of adults worldwide [3]. 
Approximately 5–10% of adults with prediabetes develop 
diabetes each year, and about 70% of adults with pre-
diabetes become diabetes finally [4]. Some research 
reported that individuals with prediabetes are at higher 
risk for cardiovascular disease, which indicates that 
the pathogenic effects of impaired glucose may begin 
even before people develop diabetes [5, 6]. The increas-
ing prevalence of prediabetes worldwide and its com-
plications make blood glucose disorder a serious public 
health problem. In order to prevent and treat diabetes 
in its early stages, many studies explored the risk factors 
for prediabetes and diabetes [7–10]. While prediabetes 
may represent a transient intermediary phase, its pres-
ence substantially heightens the likelihood of subsequent 
development of both type 2 diabetes and cardiovascular 
ailments [11, 12]. Furthermore, when patients with pre-
diabetes have dyslipidemia, the risk of developing diabe-
tes and cardiovascular disease is markedly amplified [13, 
14]. Evidence from previous studies also pointed out that 
lifestyle changes, medication, and control of dyslipidemia 
can prevent prediabetes from developing into diabetes 
[15, 16]. Therefore, it is crucial to screen for risk factors 
for prediabetes and to treat these conditions as early as 
possible to prevent the disease from progressing and suf-
fering negative effects.

Prediabetes is associated with a higher prevalence 
of dyslipidemia [17]. Similar to type 2 diabetes mellitus 
(T2DM), decreased high-density lipoprotein choles-
terol (HDL-C), hypertriglyceridemia and increased small 
dense low-density lipoprotein (LDL) particles make up 
the characteristic pattern of dyslipidemia in prediabetes 
[18]. Although guidelines encourage intensive manage-
ment of lipid parameters in individuals with diabetes, 
therapy of dyslipidemia in prediabetes is rarely men-
tioned [19]. Recently, it has been proposed that the ath-
erogenic index of plasma (AIP), which is the logarithm 
of the ratio between the triglyceride (TG) and HDL-C in 
molar concentration, is connected to the burden of ath-
erosclerosis [20]. Additionally, AIP can reflect the sever-
ity of insulin resistance, which is related to dysfunctional 
glucose metabolism [21]. Previous studies proposed that 
AIP was a useful lipid parameter to assess the risk of 
T2DM [22]. However, in the realm of academic literature, 
prior investigations concerning the association between 

TG/HDL-C and prediabetes have predominantly relied 
on cross-sectional study designs [23–25]. Evidence of evi-
dence-based medicine is lower in cross-sectional studies 
compared to cohort studies. To fill the current research 
gap, our study aimed to quantitatively investigate the 
exact relationship between AIP and the risk of develop-
ing prediabetes in large Chinese subjects.

Methods
Data source
In the Dryad Digital Repository, researchers can down-
load original data for free and cite them. We downloaded 
the raw data uploaded by Chen et al. [26]. Data includ-
ing 211,833 Chinese people were downloaded from the 
Dryad data repository (dataset: https://datadryad.org/
stash/dataset/doi:10.5061%2Fdryad.ft8750v). Under Dry-
ad’s terms of service, researchers can use the data for sec-
ondary analysis. A secondary investigation of a medical 
examination program with public data was conducted in 
our study.

Study population
The original study was approved by the Rich Healthcare 
Group Review Board. Hence, ethical approval was not 
required for this secondary analysis. Additionally, the ini-
tial study was completed according to principals of the 
Declaration of Helsinki. All procedures followed relevant 
guidelines and regulations.

The original study recruited 685,277 Chinese adults > 20 
years old with at least two visits, covering 32 sites and 
11 cities in China. Exclusion criteria were as follows: [1] 
diagnosis of diabetes at baseline and follow-up; [2] not 
defined diabetes status at follow-up; [3] abnormal body 
mass index (BMI), defined as a BMI > 55 or < 15  kg/m2; 
[4] missing data for weight, height, sex, HDL-C, TG, or 
fasting plasma glucose (FPG) at baseline, or FPG during 
follow-up; [5] had an FPG > 5.6mmol/L at baseline and 
an FPG > 6.9mmol/L during follow-up; [6] had a follow-
up time of fewer than two years; [7] abnormal AIP (three 
standard deviations above or below the mean). Finally, 
100,069 participants were finally included in the study. 
The study design and process were described in Fig. 1.

Data collection
Trained staff collected and sorted the data. A standard-
ized setting was used in the initial study to collect labora-
tory data and standardized practices were used to process 
the data. Demographic information was gathered by the 
skilled personnel, including age, systolic blood pressure 
(SBP), diastolic blood pressure (DBP), height and weight. 
Professional trainees measured individuals’ height and 
weight without light clothing and shoes. BMI was cal-
culated in kg/m2 by dividing weight by height squared. 
Using a conventional mercury sphygmomanometer, 
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trained staff members measure blood pressure. Addition-
ally, the skilled team measured clinical data using a Beck-
man 5800 autoanalyzer, including FPG, HDL-C, TG, LDL 
cholesterol (LDL-C), total cholesterol (TC), blood urea 

nitrogen (BUN), serum creatinine (Scr), alanine amino-
transferase (ALT) and aspartate aminotransferase (AST). 
Log10 (TG/HDL-C) was the formula used to calculate 
AIP in detail. The target independent was AIP at baseline, 

Fig. 1 Study Population
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while the dependent variable was incident prediabetes 
during follow-up.

Definition
The definition of prediabetes was impaired fasting glu-
cose levels (FPG: 5.6–6.9 mmol/l).

Statistical analysis
We performed statistical analyses by using R software 
version 3.6.1 (http://www.R-project.org/) and Empower 
Stats (R) version 2.2 (www.empowerstats.com, X&Y 
Solutions, Inc., Boston, MA).

AIP was divided into four groups based on quartiles: 
Q1 ≤ -0.299; -0.299 < Q2 ≤ -0.111; -0.111 < Q3 ≤ 0.098; 
Q4 > 0.098. Mean with standard deviation was used to 
represent continuous variables that followed a normal 
distribution, while median with interquartile range was 
used to represent continuous variables with skewed dis-
tribution. The percentages of various groups were used 
to represent categorical variables. One-way ANOVA or 
Kruskal-Wallis was performed to compare continuous 
variables and chi-square test was conducted to compare 
categorical variables. We used person-years and cumula-
tive incidence rates to express incidence. Kaplan-Meier 
method was applied to compare survival and cumula-
tive event rates. Using the log-rank test, we analyzed the 
Kaplan-Meier hazard ratios (HR) of adverse events.

Due to the excessive number of missing values for 
AST, smoking status, and drinking status, we first trans-
formed the AST categorical variables based on tertiles. 
Then the missing values for smoking status, drinking sta-
tus, and AST were treated as a separate group (i.e., Not 
recorded group). There were 13 (0.013%), 13 (0.013%), 
162 (0.161%), 1 (0.001%), 2307 (2.289%), 1216 (1.205%), 
and 372 (0.369%) individuals with missing data for SBP, 
DBP, LDL-C, TC, BUN, Scr, and ALT, respectively. Our 
study used the interpolation model to deal with missing 
data for multiple variables, including age, gender, BMI, 
alcohol drinking status, smoking status, DBP, SBP, TC, 
LDL-C, AST, ALT, Scr, BUN, FPG and family history of 
diabetes. We used linear regression and 10 iterations to 
create the interpolation model. Analysis of missing data 
was based on the assumption of random missingness.

The effect of each variable on the risk of prediabetes 
was assessed using the univariate Cox regression method. 
The precise relationship between the AIP and the risk of 
prediabetes was also analyzed using the multivariate Cox 
regression analysis. Besides, we conducted non-adjusted 
model, minimally-adjusted model and fully-adjusted 
model to further study the relationship of AIP with the 
risk of developing prediabetes. When these covariances 
were added to the adjusted model, we only made adjust-
ments for them if the HR varied by at least 10%.

A variety of sensitivity analyses were conducted to 
check whether the conclusions were reliable. Based 
on the quartile, AIP was converted into a categorical 
variable. The P for the trend was calculated in order to 
confirm the findings for AIP as the continuous variable 
and evaluate for nonlinearity. The elderly and obesity 
were connected with a higher incidence of prediabetes. 
To investigate the relationship between AIP and pre-
diabetes risk, we excluded people with age ≥ 60 years or 
BMI ≥ 25 kg/m2 for further sensitivity analyses. A gener-
alized additive model (GAM) was performed to test the 
validity of the results, which incorporated continuous 
variables as curves in the equation. We also calculated 
E-values to examine the possibility of unmeasured con-
founding between AIP and the risk of prediabetes [27].

We used Cox proportional hazards regression with 
cubic spline functions and smooth curve fitting to 
explore the nonlinear relationship between AIP and pre-
diabetes. To address nonlinearity, our approach involves 
an academic methodology. Initially, we employ a recur-
sive algorithm to determine the inflection point. The 
recursive algorithm commences with an arbitrary initial-
ization and subsequently undergoes a series of filtering 
and smoothing steps in order to identify the inflection 
point accurately. Following this, we construct a two-piece 
Cox proportional hazards regression model, separately 
analyzing the data on either side of the inflection point. 
This rigorous analytical framework allows us to effec-
tively account for and interpret the nonlinear relationship 
in the data. The log-likelihood ratio was used to identify 
the most suitable model for describing the link between 
AIP and prediabetes risk.

In order to analyze the subgroups (age, sex, family 
history of diabetes, BMI, SBP, DBP, drinking status and 
smoking status), the Cox proportional hazard model was 
also performed. According to the clinical cut point, age 
(< 60, ≥ 60 years), BMI (< 25, ≥ 25 kg/m2), SBP (< 140, ≥ 
140 mmHg) and DBP (< 90, ≥ 90 mmHg) were converted 
into categorical variables. In addition to the stratifica-
tion variables, every stratification was subjected to a fully 
adjusted analysis. We conducted a likelihood ratio test 
to confirm the interactions between subgroups. P val-
ues ≤ 0.05 were considered statistically significant.

Results
Baseline characteristics of participants
In the present study, 100,069 individuals without pre-
diabetes at baseline were included. The average age was 
42.90 ± 12.45 years and 51.86% of individuals were male. 
12,292 individuals eventually got prediabetes after a 
follow-up of an average of 3.12 years. Table  1 displays 
fundamental indicators, laboratory tests, and other fac-
tors. AIP quartiles (Q1 ≤ -0.299; -0.299 < Q2 ≤ -0.111; 
-0.111 < Q3 ≤ 0.098; Q4 > 0.098) were used to divide the 

http://www.R-project.org/
http://www.empowerstats.com
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subjects into four groups. Compared to the other three 
groups, the Q4 group had higher age, SBP, DBP, BMI, 
AST, ALT, TG, LDL-C, TC, BUN, Scr and FPG. Addition-
ally, there were more men, smokers and drinkers in the 
Q4 group. In comparison to the other three groups, the 
Q1 group had higher HDL-C. There was no significant 
difference in the proportion of family history of diabetes 
among the four groups.

The incidence rate of prediabetes
Table  2 displays the incidence rate of prediabetes in 
100,069 individuals over the duration of follow-up. 
In total, all people had an incidence rate of 12.28% 

Table 1 The Baseline Characteristics of Participants
AIP Q1(≤-0.299) Q2(-0.299 to ≤-0.111) Q3(-0.111 to ≤ 0.098) Q4(> 0.098) P-

value
Participants 25,017 25,016 25,016 25,020

Gender < 0.001

 Male 6457 (25.81%) 11,221 (44.86%) 15,112 (60.41%) 19,101 (76.34%)

 Female 18,560 (74.19%) 13,795 (55.14%) 9904 (39.59%) 5919 (23.66%)

Age(years) 39.46 ± 10.92 41.97 ± 12.34 44.26 ± 12.90 45.91 ± 12.61 < 0.001

Drinking status

 Current-drinker 63 (0.25%) 116 (0.46%) 187 (0.75%) 272 (1.09%)

 Ex- drinker 595 (2.38%) 1005 (4.02%) 1245 (4.98%) 1688 (6.75%)

 Never- drinker 5158 (20.62%) 5416 (21.65%) 5669 (22.66%) 6131 (24.50%)

 Not recorded 19,201 (76.75%) 18,479 (73.87%) 17,915 (71.61%) 16,929 (67.66%)

Smoking status < 0.001

 Current-smoker 454 (7.81%) 920 (14.07%) 1483 (20.88%) 2451 (30.29%)

 Ex-smoker 110 (1.89%) 224 (3.43%) 338 (4.76%) 411 (5.08%)

 Never-smoker 5252 (20.99%) 5393 (21.56%) 5280 (21.11%) 5229 (20.90%)

 Not recorded 19,201 (76.75%) 18,479 (73.87%) 17,915 (71.61%) 16,929 (67.66%)

Family history of diabetes 0.882

 No 24,480 (97.85%) 24,466 (97.80%) 24,471 (97.82%) 24,457 (97.75%)

 Yes 537 (2.15%) 550 (2.20%) 545 (2.18%) 563 (2.25%)

SBP (mmHg) 112.37 ± 14.46 116.27 ± 15.45 119.87 ± 16.08 123.68 ± 16.04 < 0.001

DBP (mmHg) 69.95 ± 9.74 72.38 ± 10.19 74.73 ± 10.63 77.86 ± 10.83 < 0.001

BMI (kg/m2) 21.22 ± 2.54 22.36 ± 2.88 23.62 ± 3.03 25.14 ± 2.99 < 0.001

AST < 0.001

 Low 4655 (18.61%) 3946 (15.77%) 3247 (12.98%) 1892 (7.56%)

 Medium 3425 (13.69%) 3700 (14.79%) 3703 (14.80%) 3148 (12.58%)

 High 2233 (8.93%) 3000 (11.99%) 3859 (15.43%) 5153 (20.60%)

 Not recorded 14,704 (58.78%) 14,370 (57.44%) 14,207 (56.79%) 14,827 (59.26%)

ALT (U/L) 13.7 (10.8, 18.4) 15.9 (12.0, 22.3) 19.0 (13.9, 27.2) 25.4 (17.9, 37.9) < 0.001

HDL-C (mmol/L) 1.62 ± 0.30 1.44 ± 0.24 1.32 ± 0.23 1.15 ± 0.23 < 0.001

TG (mmol/L) 0.60 (0.50, 0.70) 0.90 (0.79, 1.01) 1.26 (1.10, 1.45) 2.10 (1.71, 2.66) < 0.001

LDL-C (mmol/L) 2.54 ± 0.59 2.68 ± 0.63 2.83 ± 0.67 2.94 ± 0.72

TC (mmol/L) 4.53 ± 0.79 4.62 ± 0.83 4.79 ± 0.88 5.04 ± 0.92 < 0.001

BUN (mmol/L) 4.55 ± 1.16 4.58 ± 1.18 4.67 ± 1.17 4.72 ± 1.12 < 0.001

Scr (umol/L) 63.46 ± 13.61 68.28 ± 15.76 72.08 ± 15.84 75.44 ± 14.91

FPG (mmol/L) 4.72 ± 0.46 4.78 ± 0.46 4.81 ± 0.48 4.85 ± 0.47 < 0.001

AIP -0.44 ± 0.11 -0.20 ± 0.05 -0.01 ± 0.06 0.29 ± 0.15 < 0.001
Values are n (%) or mean ± standard deviation

AIP: atherogenic index of plasma, SBP systolic blood pressure, DBP diastolic blood pressure, BMI body mass index, ALT alanine aminotransferase, AST aspartate 
aminotransferase, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, Scr serum creatinine, 
BUN blood urea nitrogen, FPG fasting plasma glucose

Table 2 Incidence rate of prediabetes
AIP Partici-

pants (n)
prediabetes 
events (n)

Cumulative inci-
dence (95%CI) (%)

Per 
100,000 
person-
year

Total 100,069 12,292 12.28 (12.08–12.49) 3939.86

Q1 25,017 1834 7.33 (7.01–7.65) 2352.85

Q2 25,016 2591 10.36 (9.98–10.74) 3349.24

Q3 25,016 3419 13.67 (13.24–14.09) 4396.60

Q4 25,020 4448 17.78 (17.30-18.25) 5636.26

P for 
trend

< 0.001 < 0.001
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(12.08-12.49%). The four AIP groups’ incidence rates 
were respectively 7.33% (7.01-7.65%), 10.36% (9.98-
10.74%), 13.67% (13.24-14.09%) and 17.78% (17.30-
18.25%). In addition, the accumulative incidence rate of 
the overall population and four AIP groups were 3939.86 
per 100,000 person-years, 2352.85 per 100,000 person-
years, 3349.24 per 100,000 person-years, 4396.60 per 
100,000 person-years, and 5636.26 per 100,000 person-
years, respectively. In comparison to participants with 
lower AIP groups, those with higher AIP groups had a 
greater incidence and cumulative incidence rate of pre-
diabetes (p for trend < 0.001).

As shown in Fig.  2, Kaplan-Meier curves indicated the 
likelihood of surviving without prediabetes. The risk of 
developing prediabetes was significantly different between 
the four AIP groups (P < 0.0001). As AIP levels increased, 
the likelihood of surviving without prediabetes gradually 
decreased. It indicated that the group with the highest AIP 
had the greatest risk of developing prediabetes.

Univariate analysis
The results of the univariate analysis are presented in 
Table  3. The risk of prediabetes was positively associ-
ated with age, SBP, DBP, BMI, AST, ALT, TG, LDL-C, 
TC, BUN, Scr and FPG. There was a negative association 

between HDL-C and the risk of prediabetes. There has a 
lower risk of developing prediabetes in those who never 
drink or smoke. In comparison to men, women have a 
lower risk of developing prediabetes.

The relationship between AIP and prediabetes
The Cox proportional hazard regression models with the 
HR and 95% confidence interval (CI) for the association 
between AIP and prediabetes are presented in Table  4. 
The HR (95% CI) for prediabetes connection with AIP 
was 2.83 (2.67, 3.00) in the non-adjusted model. In the 
minimally-adjusted model with the adjustments for gen-
der, age, SBP, DBP, family history of diabetes, drinking 
status, smoking status and BMI, the HR (95% CI) was 
1.37 (1.28, 1.47). In the fully-adjusted model, after further 
adjusting for TC, LDL-C, AST, ALT, Scr, BUN and FPG, 
the HR (95% CI) was 1.41 (1.31, 1.52). This demonstrated 
that the risk of prediabetes increased by 41% for every 
unit increase in AIP.

The results of sensitivity analysis
To evaluate the robustness of our results, we further per-
formed sensitivity analysis. AIP was converted from a 
continuous variable to a categorical variable, and it was 
then added back into the model after being categorically 

Fig. 2 Kaplan–Meier event-free survival curve. Kaplan–Meier analysis of incident prediabetes based on AIP quartiles (log-rank, P < 0.0001)
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transformed. When transforming AIP into a categorical 
variable, the p for trend was not equal, suggesting a pos-
sible nonlinear association of AIP with prediabetes risk. 
As shown in Table 4, results from the GAM model were 
consistent with those from the fully adjusted model (HR: 
1.34, 95%CI: 1.24–1.44). Additionally, an E-value was 
computed to assess the vulnerability of the study results 
to potential unobserved confounding factors. The result-
ing E-value (2.17) demonstrated a higher level of statisti-
cal significance in comparison to the relative risk (1.69) 
associated with unmeasured confounders and AIP. This 
suggests that the impact of unmeasured or unidentified 
confounders on the relationship between AIP and the 
occurrence of prediabetes was negligible.

Besides, we performed sensitivity analysis on indi-
viduals with a BMI < 25  kg/m2. There was also a posi-
tive relationship between AIP and prediabetes risk after 
adjusting for confounding covariates (HR: 1.51, 95%CI: 
1.37–1.66) (Table 5). Individuals with age < 60 years were 
also included from other sensitivity analysis. The find-
ings revealed that AIP was remained positively associ-
ated with the probability of developing prediabetes after 
controlling for confounding covariates (HR: 1.44, 95%CI: 
1.32–1.56) (Table 5). According to the sensitivity analysis, 
it suggested that our results were well-robust.

The nonlinear relationship between AIP and prediabetes
Figure  3 displays Cox proportional hazards regres-
sion with cubic spline functions and smooth curve fit-
ting to assess AIP’s non-linearity with prediabetes risk. 
After adjusting for confounding factors, the association 
between AIP and the probability of developing predia-
betes was nonlinear (Table  6). The two-piecewise Cox 
proportional hazards regression model discovered that 
the AIP’s inflection point was 0.03 (P for log-likelihood 
ratio test < 0.001). When AIP ≤ 0.03, AIP was positively 
associated with the risk of prediabetes (HR: 1.90, 95%CI: 
1.66–2.16, P < 0.0001). In contrast, When AIP > 0.03, their 

Table 3 The results of univariate analysis
Statistics HR (95%CI) P value

Gender < 0.0001

 Male 51,891 (51.86%) ref

 Female 48,178 (48.14%) 0.65 (0.63, 0.68) < 0.0001

Age(years) 42.90 ± 12.45 1.03 (1.03, 1.03) < 0.0001

Drinking status

 Current-drinker 638 (0.64%) ref

 Ex-drinker 4533 (4.53%) 0.69 (0.56, 0.86) 0.0008

 Never-drinker 22,374 (22.36%) 0.65 (0.53, 0.80) < 0.0001

 Not recorded 72,524 (72.47%) 0.72 (0.59, 0.88) 0.0015

Smoking status

 Current-smoker 5308 (5.30%) ref

 Ex-smoker 1083 (1.08%) 0.86 (0.72, 1.02) 0.0763

 Never-smoker 21,154 (21.14%) 0.71 (0.66, 0.77) < 0.0001

 Not recorded 72,524 (72.47%) 0.84 (0.79, 0.91) < 0.0001

Family history of diabetes 0.7795

 No 97,874 (97.81%) ref

 Yes 2195 (2.19%) 0.98 (0.88, 1.10)

SBP (mmHg) 118.05 ± 16.08 1.03 (1.02, 1.03) < 0.0001

DBP (mmHg) 73.73 ± 10.76 1.03 (1.03, 1.03) < 0.0001

BMI (kg/m2) 23.08 ± 3.22 1.12 (1.12, 1.13) < 0.0001

AST

 Low 13,740 (13.73%) ref

 Medium 13,976 (13.97%) 1.08 (1.01, 1.15) 0.0239

 High 14,245 (14.24%) 1.36 (1.27, 1.44) < 0.0001

 Not recorded 58,108 (58.07%) 0.71 (0.67, 0.75) < 0.0001

ALT (U/L) 23.02 ± 21.43 1.00 (1.00, 1.00) < 0.0001

HDL-C (mmol/L) 1.38 ± 0.30 0.87 (0.82, 0.92) < 0.0001

TG (mmol/L) 1.28 ± 0.82 1.36 (1.34, 1.38) < 0.0001

LDL-C (mmol/L) 2.75 ± 0.67 1.27 (1.24, 1.30) < 0.0001

TC (mmol/L) 4.75 ± 0.88 1.20 (1.18, 1.23) < 0.0001

BUN (mmol/L) 4.63 ± 1.16 1.14 (1.12, 1.15) < 0.0001

Scr (umol/L) 69.82 ± 15.70 1.01 (1.01, 1.01) < 0.0001

FPG (mmol/L) 4.79 ± 0.47 5.57 (5.32, 5.83) < 0.0001

AIP -0.09 ± 0.28 2.83 (2.67, 3.00) < 0.0001

Table 4 Relationship between AIP and incident prediabetes in different models
Variable Non-adjusted model 

(HR.,95% CI, P)
Minimally-adjusted model 
(HR,95% CI, P)

Fully-adjusted model 
(HR,95% CI, P)

GAM
(HR,95% CI, P)

AIP 2.83 (2.67, 3.00) < 0.0001 1.37 (1.28, 1.47) < 0.0001 1.41 (1.31, 1.52) < 0.0001 1.34 (1.24, 1.44) < 0.0001

AIP (quartile)

Q1 ref ref ref 1.0

Q2 1.47 (1.39, 1.56) < 0.0001 1.19 (1.12, 1.26) < 0.0001 1.18 (1.11, 1.25) < 0.0001 1.15 (1.08, 1.23) < 0.0001

Q3 1.94 (1.83, 2.05) < 0.0001 1.29 (1.22, 1.37) < 0.0001 1.28 (1.20, 1.36) < 0.0001 1.23 (1.16, 1.31) < 0.0001

Q4 2.40 (2.27, 2.53) < 0.0001 1.33 (1.25, 1.42) < 0.0001 1.34 (1.26, 1.43) < 0.0001 1.28 (1.20, 1.37) < 0.0001

P for trend < 0.0001 < 0.0001 < 0.0001 < 0.0001
Non-adjusted model: we did not adjust for other covariates

Minimally-adjusted model: we adjusted for gender, age, SBP, DBP, family history of diabetes, drinking status, smoking status, and BMI

Fully-adjusted model: we adjusted for gender, age, SBP, DBP, family history of diabetes, drinking status, smoking status, BMI, TC, LDL-C, AST, ALT, Scr, BUN and FPG

GAM: All covariates listed in Table 1 were adjusted. However, continuous covariates were adjusted as nonlinearity

HR, hazard ratios; CI, confidence interval; Ref, reference; GAM, generalized additive mode; AIP, atherogenic index of plasma



Page 8 of 11Zheng et al. Cardiovascular Diabetology          (2023) 22:205 

association was not significant (HR: 1.04, 95%CI: 0.91–
1.19, P = 0.5528).

Subgroup analysis
Additional risk factors that might have an impact on 
the relationship between AIP and prediabetes risk were 
explored by performing subgroup analysis. As stratifica-
tion factors, we chose age, gender, smoking status, drink-
ing status, family history of diabetes, SBP, DBP and BMI. 
We then examined trends in effect sizes for these factors 

Table 5 Relationship between AIP and prediabetes in different 
sensitivity analyses
Exposure Model I 

(HR,95%CI, P)
Model II 
(HR,95%CI, 
P)

AIP 1.51 (1.37, 
1.66) < 0.0001

1.44 (1.32, 
1.56) < 0.0001

AIP (Quintile)

Q1 ref ref

Q2 1.15 (1.07, 
1.23) < 0.0001

1.21 (1.13, 
1.30) < 0.0001

Q3 1.23 (1.14, 
1.32) < 0.0001

1.28 (1.20, 
1.38) < 0.0001

Q4 1.32 (1.23, 
1.43) < 0.0001

1.36 (1.27, 
1.46) < 0.0001

P for trend < 0.0001 < 0.0001
Model I was sensitivity analysis in participants with BMI < 25 kg/m2. We adjusted 
gender, age, SBP, DBP, family history of diabetes, drinking status, smoking 
status, TC, LDL-C, AST, ALT, Scr, BUN and FPG

Model II was sensitivity analysis in participants aged < 60 years. We adjusted 
gender, SBP, DBP, family history of diabetes, drinking status, smoking status, 
BMI, TC, LDL-C, AST, ALT, Scr, BUN and FPG

HR, hazard ratios; CI, confidence, Ref: reference; AIP: atherogenic index of 
plasma

Table 6 The result of the two-piecewise Cox proportional 
hazards regression model
Incident prediabetes HR 

(95%CI)
P

Fitting model by standard Cox proportional 
hazards regression

1.41 (1.31, 
1.52)

< 0.0001

Fitting model by two-piecewise Cox proportional hazards 
regression

Inflection points of AIP 0.03

 ≤ 0.03 1.90 (1.66, 
2.16)

< 0.0001

 > 0.03 1.04 (0.91, 
1.19)

0.5528

P for log likelihood ratio test < 0.001
We adjusted for gender, age, SBP, DBP, family history of diabetes, drinking 
status, smoking status, BMI, TC, LDL-C, AST, ALT, Scr, BUN, FPG

HR, hazard ratios; CI, confidence; AIP: atherogenic index of plasma

Fig. 3 The nonlinear relationship between AIP and incident prediabetes. A nonlinear relationship between them was detected after adjusting for gender, 
age, SBP, DBP, family history of diabetes, drinking status, smoking status, BMI, TC, LDL-C, AST, ALT, Scr, BUN, FPG
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(Table 7). Drinking status, smoking status, family history 
of diabetes, SBP and DBP had no impact on the associa-
tion of AIP with prediabetes risk. The results revealed a 
stronger connection between AIP and prediabetes risk in 
people with age<60 years, females and individuals with 
SBP < 140mmHg and BMI < 25 kg/m2.

Discussion
Our retrospective study showed that higher AIP was asso-
ciated with a higher risk of prediabetes. After adjusting for 
other covariates, the risk of prediabetes increased by 41% 
for every unit increase in AIP. On both the left and right 
side of the inflection point, it was found that the relation-
ship between AIP and prediabetes was nonlinear. When 
AIP ≤ 0.03, AIP was positively associated with the risk of 
prediabetes. There was a stronger association between AIP 
and prediabetes risk in individuals aged < 60 years, women, 
or with SBP < 140mmHg and BMI < 25 kg/m2.

Previous studies also reported the association between 
dyslipidemia and prediabetes. TG/HDL-C were sig-
nificantly correlated with prediabetes after adjusting for 
age, sex, blood pressure smoking status, BMI, FPG and 
2-h post-challenge plasma glucose in a cross-sectional 
study enrolled 2680 participants (OR: 3.445, 95%CI: 
2.417–4.921, P  <0.001) [23]. A cross-sectional survey 
including 2293 adults in Rural Bangladeshi showed that 
prediabetes had a significant association with high TG 
(OR: 1.96, p < 0.001) and low HDL-C (OR: 2.93, p = 0.011) 
[24]. Another cross-sectional study involving 153,163 
non-obese participants with a normal range of LDL-C 
found a positive relationship between TG/HDL-C and 
prediabetes after adjusting for confounding factors 
(OR:1.185, 95%CI: 1.145–1.226) [25]. These studies indi-
cated that the trend of prediabetes is consistent with 
diabetes. Compared to other studies, our study provides 
new perspectives on the relationship between AIP and 
prediabetes. First, to the best of our knowledge, previous 
findings were from cross-sectional studies, but were not 
reported in cohort studies. Therefore, this cohort study 
aimed to gain insight into the relationship between AIP 
and prediabetes in a Chinese adult population. Second, 
the resolution of nonlinearity is a significant improve-
ment compared with previous studies, which informs 
the management of AIP in Chinese adults. In addition, 
we controlled for more biochemical indicators in our 
study, such as Scr, AST, ALT, and family history of diabe-
tes [28, 29]. There is evidence that these parameters are 
associated with prediabetes risk. In testing the robust-
ness of the results through a series of sensitivity analyses 
(target independent variable transformation, subgroup 
analysis, and insertion of continuous covariates as curves 
into the equation using GAM), stronger positive correla-
tions were found in women and in those aged < 60 years, 
women, or with SBP < 140mmHg and BMI < 25  kg/m2, 

Table 7 Effect size of AIP on prediabetes in prespecified and 
exploratory subgroups
Characteristic No of 

patients
HR 
(95%CI)

P value P for in-
teraction

Age(years) < 0.0001

 < 60 87,925 1.56 (1.43, 
1.70)

< 0.0001

 ≥ 60 12,144 1.11 (0.96, 
1.29)

0.1670

Gender < 0.0001

 Male 51,891 1.23 (1.12, 
1.35)

< 0.0001

 Female 48,178 1.71 (1.52, 
1.92)

< 0.0001

Drinking status 0.0574

 Current drinker 638 1.23 (0.53, 
2.82)

0.6286

 Ever drinker 4533 1.52 (1.11, 
2.09)

0.0089

 Never drinker 22,374 1.68 (1.45, 
1.95)

< 0.0001

 Not recorded 72,524 1.34 (1.23, 
1.45)

< 0.0001

Smoking status 0.0828

 Current-smoker 5308 1.59 (1.20, 
2.09)

0.0010

 Ex-smoker 1083 1.30 (0.67, 
2.50)

0.4402

 Never-smoker 21,154 1.69 (1.43, 
1.99)

< 0.0001

 Not recorded 72,524 1.34 (1.23, 
1.45)

< 0.0001

Family history of 
diabetes

0.3600

 No 97,874 1.41 (1.31, 
1.51)

< 0.0001

 Yes 2195 1.72 (1.12, 
2.64)

0.0128

SBP (mmHg) 0.0389

 < 140 91,009 1.43 (1.32, 
1.55)

< 0.0001

 ≥ 140 9060 1.18 (1.00, 
1.39)

0.0550

DBP (mmHg) 0.5907

 < 90 92,459 1.41 (1.31, 
1.53)

< 0.0001

 ≥ 90 7610 1.34 (1.11, 
1.61)

0.0025

BMI (kg/m2) < 0.0001

 < 25 73,573 1.76 (1.61, 
1.93)

< 0.0001

 ≥ 25 26,496 1.23 (1.10, 
1.37)

0.0002

Note 1: Above model adjusted for gender, age, SBP, DBP, family history of 
diabetes, drinking status, smoking status, BMI, TC, LDL-C, AST, ALT, Scr, BUN, FPG

Note 2: In each case, the model is not adjusted for the stratification variable
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which will be of clinical interest. Third, the above stud-
ies confirm that the relationship between AIP and risk 
of prediabetes is stable. More importantly, our findings 
provide a reference for clinical intervention of AIP levels 
to reduce the risk of prediabetes. Early intervention may 
improve prognosis if more lifestyle or therapeutic mea-
sures are taken to reduce AIP at an early stage.

Our study shows that the relationship between AIP 
and prediabetes is nonlinear after controlling for age, sex, 
SBP, DBP, family history of diabetes, drinking, smoking, 
BMI, TC, LDL-C, AST, ALT, Scr, BUN and FPG. Based 
on the two-piecewise Cox proportional hazards regres-
sion model, the AIP inflection point is calculated. When 
the AIP level is below 0.03, the risk of developing pre-
diabetes increases by 90% for every unit increase in AIP 
level (HR: 1.90, 95%CI: 1.66–2.16, P < 0.0001). However, 
the AIP level is not related with incident prediabetes 
when the AIP level is above 0.03 (HR: 1.04, 95%CI: 0.91–
1.19, P = 0.5528). The risk of developing prediabetes can 
be predicted based on the AIP values, which will alert 
participants to make early changes in lifestyle habits to 
reduce risk.

We speculated that there were possible mechanisms 
underlying the association of AIP with prediabetes. A 
higher concentration of TG contributed to the develop-
ment of prediabetes primarily through free fatty acids 
[30]. By increasing free fatty acids, the formation of toxic 
lipids was increased, resulting in the alterations in insulin 
signaling of pancreatic α-cell and excessive secretion of 
glucagon [30]. Elevated glucagon levels were considered 
to be a significant factor in hyperglycemia [31]. Plasma 
glucagon promoted glycogenolysis and gluconeogen-
esis to stimulate the output of hepatic glucose [32]. In 
addition, a lower level of HDL-C could decrease cho-
lesterol efflux, which resulted in cholesterol accumula-
tion in the pancreatic β-cells and further caused β-cell 
dysfunction with impaired insulin secretion, elevated 
blood glucose and β-cell apoptosis [33–35]. These poten-
tial mechanisms contributed to give a pathophysiologi-
cal explanation for the association between AIP and the 
development of prediabetes.

Our study has several following advantages. First, we 
further explored the nonlinear association between AIP 
and prediabetes. Second, residual confounding factors 
were minimized by using strict statistical adjustments. 
Third, sensitivity analyses were performed to ensure the 
robustness of the results. It included transforming AIP 
into a categorical variable, using GAM to insert the con-
tinuity covariate as a curve into the equation and calcu-
lating E-values to explore the potential for unmeasured 
confounding. The relationship between AIP and pre-
diabetes was reanalyzed after excluding individuals with 
BMI ≥ 25  kg/m2 or age ≥ 60 years. Fourth, the present 
study conducted subgroup analysis to assess confounding 

factors that may influence the connection between AIP 
and prediabetes.

There are some limitations in our study. First, prediabe-
tes may have been underestimated due to a lack of experi-
mental OGTT. Second, the database lacks information on 
atherosclerosis, lipid-regulating medication and the pres-
ence or absence of hyperlipidemia, so we cannot perform 
a sub-analysis based on the presence or absence of hyper-
lipidemia or the use of lipid-regulating drugs. Third, similar 
to all observational studies, despite the control of known 
potential confounding factors such as BMI, TC, LDL-C, 
AST, ALT, Scr, BUN, and FPG, the presence of uncontrolled 
or unmeasured confounders, including diet and exercise, 
cannot be entirely ruled out. Nevertheless, we employed the 
E-value to assess the influence of unmeasured confounders 
and found it improbable that they accounted for the out-
comes. In subsequent research, it would be advantageous 
to contemplate the incorporation of a comprehensive range 
of variables, encompassing data on diet and exercise, by 
either refining the study design or collaborating with other 
researchers. Fourth, TG and HDL-C were measured only at 
baseline in the original study. The initial study didn’t cover 
how TG and HDL-C fluctuated over time. Future designs 
of our investigation may include capturing additional con-
founding variables, such as variations in TG and HDL-C 
during follow-up. As a result, we might use a GAM model 
to investigate how changes in the AIP would affect future 
prediabetes risk.

Conclusion
This study shows that AIP was positively and non-linearly 
associated with the risk of prediabetes after adjusting for 
other confounding factors. When AIP ≤ 0.03, AIP was 
positively associated with the risk of prediabetes.
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