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Abstract 

Objective We aimed to identify a lipidic profile associated with type 2 diabetes mellitus (T2DM) development 
in coronary heart disease (CHD) patients, to provide a new, highly sensitive model which could be used in clinical 
practice to identify patients at T2DM risk.

Methods This study considered the 462 patients of the CORDIOPREV study (CHD patients) who were not diabetic 
at the beginning of the intervention. In total, 107 of them developed T2DM after a median follow‑up of 60 months. 
They were diagnosed using the American Diabetes Association criteria. A novel lipidomic methodology employing 
liquid chromatography (LC) separation followed by HESI, and detection by mass spectrometry (MS) was used to anno‑
tate the lipids at the isomer level. The patients were then classified into a Training and a Validation Set (60–40). Next, 
a Random Survival Forest (RSF) was carried out to detect the lipidic isomers with the lowest prediction error, these 
lipids were then used to build a Lipidomic Risk (LR) score which was evaluated through a Cox. Finally, a production 
model combining the clinical variables of interest, and the lipidic species was carried out.

Results LC‑tandem MS annotated 440 lipid species. From those, the RSF identified 15 lipid species with the low‑
est prediction error. These lipids were combined in an LR score which showed association with the development 
of T2DM. The LR hazard ratio per unit standard deviation was 2.87 and 1.43, in the Training and Validation Set respec‑
tively. Likewise, patients with higher LR Score values had lower insulin sensitivity (P = 0.006) and higher liver insulin 
resistance (P = 0.005). The receiver operating characteristic (ROC) curve obtained by combining clinical variables 
and the selected lipidic isomers using a generalised lineal model had an area under the curve (AUC) of 81.3%.

Conclusion Our study showed the potential of comprehensive lipidomic analysis in identifying patients at risk 
of developing T2DM. In addition, the lipid species combined with clinical variables provided a new, highly sensitive 
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model which can be used in clinical practice to identify patients at T2DM risk. Moreover, these results also indicate 
that we need to look closely at isomers to understand the role of this specific compound in T2DM development.

Trials registration NCT00924937.

Keywords LC–MS, Random survival forest, Lipidomic risk score, Cox

Background
Diabetes mellitus, a metabolic disorder defined by high 
blood glucose levels (i.e. hyperglycaemia) [1, 2], cur-
rently affects 422 million people worldwide according 
to WHO. T2DM (or non-insulin-dependent diabetes) 
represents circa 90% of all those cases. Furthermore, 
the prevalence of T2DM is expected to grow to 643 
million patients by 2040 [3], which could have a detri-
mental impact on public health systems.

The simultaneity of T2DM with CHD raises the 
risk of mortality by up to 80% compared to the ratio 
observed across individuals without CHD [4], thus 
worsening the prognosis for these patients. Faced with 
the current scenario, there is an urgent need to improve 
our knowledge about the underlying mechanisms of 
this disease to find out new strategies to diagnose and 
treat these patients. Despite T2DM being associated 
with higher levels of circulating free fatty acids and tri-
acylglycerols, the knowledge of lipid species associated 
with T2DM remains unclear [5].

Dyslipidaemia associated with T2DM is character-
ized by increased concentrations of low-density lipo-
proteins (LDL) cholesterol particles, low levels of 
high-density lipoproteins (HDL) cholesterol, and high 
plasma triglycerides [6, 7]. However, this definition of 
T2DM dyslipidaemia could be seen as inaccurate given 
the number of different classes observed in multiple 
molecular species among the lipoproteins and triglycer-
ides-rich particles. A previous study assessing diabetes 
risk identified two main plasma lipid profiles formed by 
different lipid classes associated with T2DM develop-
ment [8]. In this study, the risk of T2DM was associated 
with high levels of triacylglycerols (TGs), diacylglycer-
ols (DAGs), and phosphatidylethanolamines (PEs), and 
low levels of lysophosphatidylcholines (PCs), lysophos-
phatidylethanolamines (LPCs), phosphatidylcholine-
plasmalogens (PC-PLs), sphingomyelins (SMs), and 
cholesterol esters (CEs), showing that the profile linked 
with T2DM is defined by different lipid classes. Despite 
incipient scientific interest in the lipidomics of T2DM, 
the literature is still very limited, and further research is 
required to confirm the role of these species. However, 
the studies published so far do not distinguish between 
the different lipidic species and/or isomer pairs within 
the same lipid family, which could result in inconsisten-
cies between different publications.

In this study, we carried out a highly-sensitive lipi-
domic protocol capable of defining the compounds at 
such a level of detail [9]. We aimed to identify which lipid 
species at baseline were associated with T2DM develop-
ment in CORDIOPREV, a 7-year dietary interventional 
study with patients with CHD designed to aid the early 
detection of patients at risk of becoming diabetics. The 
identification of lipidic species with predictive power, in 
combination with clinical variables, may also contribute 
to explaining which underlying metabolic mechanisms 
may be linked with T2DM.

Methods
Study subjects
The current work was conducted within the framework 
of the Coronary Diet Intervention with Olive Oil and 
Cardiovascular Prevention Study (CORDIOPREV; Clini-
cal trials.gov. Identifier: NCT00924937). This is an ongo-
ing prospective, randomized, open, controlled trial with 
1002 patients. The patients received conventional treat-
ment for CHD and had their last coronary event took 
place over 6  months before joining the study. The vol-
unteers followed one of two different dietary models, a 
Mediterranean or a low-fat diet, for 7 years, in addition 
to their conventional treatment for coronary heart dis-
ease [10].

The patients were recruited principally at the Reina 
Sofia University Hospital (Cordoba, Spain), with contri-
butions from other health centres in Cordoba and Jaen, 
between November 2009 and February 2012. The eligi-
bility criteria, design, and methods of the CORDIOPREV 
clinical trial were already reported [10]. Briefly, patients 
were eligible if they were i) aged between 20 and 75 years, 
ii) had established CHD without clinical events in the 
last 6 months, iii) were willing to follow a long-term die-
tary intervention and iv) did not have severe diseases, v) 
did not have an estimated life expectancy of fewer than 
5 years. All the patients gave written informed consent to 
participate in the study. The trial protocol was approved 
by the ethic committee of Reina Sofia University Hos-
pital in Cordoba (No. 1496/27/03/2009), following the 
Helsinki Declaration and good clinical practices. The 
experimental protocol conformed to international ethical 
standards.
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Our study included 462 patients from the CORDIO-
PREV study (N = 1002). These patients had not been 
diagnosed with T2DM at the beginning of the study 
according to specifications from the American Diabe-
tes Association (ADA) T2DM diagnosis criteria [11]. Of 
these 462 patients, 4 were excluded from the study due to 
technical difficulties in the analytical procedure, resulting 
in a final n of 458 patients.

These patients were followed up for a median of 
60  months and 107 developed T2DM (incident-DIAB), 
according to the ADA T2DM criteria [11], by which 
the incidence of T2DM was evaluated every year as 
follows: fasting plasma glucose ≥ 126  mg/dL and 2  h 
plasma glucose in the 75  g oral glucose tolerance test 
(OGTT) ≥ 200  mg/dL and/or HbA1c plasma lev-
els ≥ 6.5%. The baseline medication of the subjects in the 
study are shown in Additional file 1: Table S1.

Study experimental design
The study design has been previously described [10, 12]. 
In brief, the participants were randomized to receive 
two diets: an MED diet or an LF diet. The LF diet con-
sisted of < 30% total fat (< 10% saturated fat, 12–14% 
monounsaturated fatty acids (MUFA) fat, and 6–8% poly-
unsaturated fatty acids (PUFA) fat), 15% protein, and 
a minimum of 55% carbohydrates. The MED diet con-
sisted of a minimum of 35% of calories as fat (22% MUFA 
fat, 6% PUFA fat, and < 10% saturated fat), 15% protein, 
and a maximum of 50% carbohydrates. In both diets, 
the cholesterol content was adjusted to < 300  mg/dL. At 
the beginning of the study and every year, each patient 
had a face-to-face interview with a nutritionist to fill in 
a previously validated 137-item semi-quantitative food 
frequency questionnaire [13] and a validated 14-item 
questionnaire to estimate the adherence of the patient 
to the Mediterranean diet. This questionnaire was then 
used to produce a Mediterranean diet score [14]. An 
OGTT was carried out as previously described [15].

Lipidomic analysis
The protocol to carry out the lipidomic analysis is 
described elsewhere [9]. Briefly, the analysis was per-
formed using LC separation followed by HESI in nega-
tive or positive mode and detection by MS/ MS. The 
separation was carried out using a Kinetex C18 100 A 
column (100 mm × 3 mm i.d., 2.6 μm particle size) from 
Phenomenex (Madrid, Spain) protected with a C18 pre-
column (4  mm × 3  mm), also from Phenomenex. The 
composition of mobile phase A was 60:40 (v/v) deionized 
water:acetonitrile, while phase B was 85:10:5 (v/v) isopr
opanol:acetonitrile:deionized water. Both phases con-
tained 5 mM ammonium formate and 0.1% (v/v) formic 
acid as ionization agents [16].

Random survival forest
The lipidomic data were normalized using log transfor-
mation and scaled in multiples of 1 standard deviation 
(SD). We then performed a random classification of 
patients into two different datasets: a Training Set with 
274 patients (60% of the total), in which the variables 
were selected using RSF [17], and a Validation Set, with 
184 patients (40% of the total), to validate the results. 
The lipids with the highest predictive power for T2DM 
development were identified in the training set using RSF 
in combination with a backward selection procedure in 
the training set [18]. This procedure identified 15 lipids 
out of the 440 from the dataset as closely correlated with 
T2DM development.

Lipidomic Risk score building
We performed a Cox proportional hazards regression 
analysis with the 15 lipids selected by RSF in the Train-
ing set to determine the potential use of these lipids as 
an independent predictor of T2DM development. Next, 
a LR Score was built by multiplying the coefficients 
obtained for every lipid in the previous step (the Cox 
analysis) by its plasma concentration. This LR Score was 
built into both the Training and the Validation set. Fur-
thermore, patients were classified according to the score 
generated to carry out a second Cox proportional haz-
ards regression with each one of those variables, adjusted 
by diet, age, gender, body mass index (BMI), HDL, TGs, 
and statin intensity treatment. Finally, the predictive 
capacity of this score was evaluated by classifying the 
same population with different cut-off points.

Statistical analysis
We used RStudio [https:// cran.r- proje ct. org/, R version 
3.6.2 (2019-12-12)] and SPSS statistical software (IBM 
SPSS Statistics version 21.0) for the statistical analy-
sis of the data. The normal distribution of variables was 
assessed using the Kolmogorov–Smirnov test. The results 
are reported with the mean ± standard error of the mean 
(SEM) for continuous variables and with frequencies for 
categorical variables. P-values ≤ 0.05 were considered 
statistically significant. The statistical differences in the 
metabolic variables between groups were evaluated by 
one-way analysis of variance (ANOVA), and qualitative 
variables were compared using the Chi-square test. A 
repeated-measures ANOVA test was used to determine 
the statistical differences between indexes during the 
OGTT at baseline and after five years of follow-up. The 
post hoc statistical analysis was followed by Bonferroni’s 
multiple comparison tests. A generalised lineal model 
was carried out combining the 15 lipidic isomers and the 
clinical variables of interest [19, 20].

https://cran.r-project.org/
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Results
Baseline characteristics of the participants
The baseline characteristics of the subjects in the study 
are shown in Table  1. The values of BMI, weight, waist 
circumference, TGs plasma levels, HbA1c, fasting glu-
cose, fasting insulin, and HOMA-IR were higher in 
the incident-DIAB group than in the non-DIAB group 
(p < 0.05). Conversely, the insulin sensitivity index (ISI), 
insulinogenic index (IGI), and disposition index (DI) val-
ues were lower in the incident-DIAB group than in the 
non-diabetic patients at baseline who did not develop 
T2DM after the follow-up period (non-DIAB) group 
(p < 0.05). The characteristics of the subjects in the study 
after a median follow-up of 60  months are shown in 
Additional file 2: Table S2.

Random survival forest
A stepwise RSF was carried out in the Training Set (60% 
of patients) to select the lipids with greater predictive 
power for T2DM development. Thus, the 15 lipids that 
produced the lowest prediction error, out of a total of 
440 lipids variables originally tested, were included in the 
final model (Fig. 1 and Table 2).

To evaluate the relationship of these lipids with the 
development of diabetes, an individual Cox proportional 
regression model was made for each of the 15 selected 
lipids. In total, 8 of the 15 lipids were directly associated 
with T2DM development, while 7 of them were inversely 
associated with T2DM development. It is important to 
note that different members of the PC, PE, phosphati-
dyl glycerol (PG), and phosphatidyl inositol (PI) families 
were associated with both the development and non-
development of T2DM (Table 3).

Moreover, the model with the 15 lipids produced a C 
Index of 0.714; but when the clinical variables (i.e., diet, 
age, gender, BMI, HDL, TGs, and statin intensity treat-
ment) were added into the model, the C Index increased 
to 0.757, while the clinical variables, taken separately, 
showed a C Index of only 0.618 (Table  4). In addition, 
ROC curves of clinical variables separately yielded an 
AUC of only 0.645, whereas the 15 selected lipids yielded 
an AUC of 0.771, which rose to 0.813 when the clinical 
variables were included. Meanwhile, the clinical vari-
ables separately yielded an AUC of only 0.645 (Fig. 2A). 
This difference between the two models, including only 
clinical variables, and clinical variables plus lipids, was 
statistically significant according to the DeLong test 
(p-value = 3.16e−06).

We then tested the predictive power of the RSF model 
with the selected lipids in the Validation Set. The C Index 
was 0.703 for lipids, which rose to 0.755 when the clini-
cal parameters were included, which had previously 
yielded 0.653 when they were tested separately. ROC 
curves of the selected lipids yielded an AUC of 0.742, 
which increased to 0.799 when the clinical variables were 
included, while the clinical variables taken separately 
yielded an AUC of only 0.659 (Fig. 2B). The DeLong test 
comparing both models carried out in the Validation Set 
was also statistically significant (p-value = 0.01).

Results from the score based on the lipidomic profile
A LR Score was built to assess the relationship between 
the lipidomic profile and T2DM development (see Mate-
rials and Methods). To achieve this, the coefficients 
obtained for each of the 15 lipids in the Cox proportional 
hazards regression were multiplied by the lipid concen-
trations in plasma for each subject (Table 3). Finally, we 
added together the contribution of each product to build 
the LR Score. Next, a Cox proportional hazards regres-
sion was carried out with the LR Score created in both 
the Training and the Validation Sets. The results showed 
an unadjusted hazard ratio (HR) of 2.72, and an adjusted 
(by age, gender, diet, BMI, treatment with statins, HDL-
c, and TGs plasma levels) HR of 2.87 in the Train-
ing set. Meanwhile, in the Validation set, there was an 

Table 1 Baseline characteristics of the population for type 2 
diabetes mellitus incidence study

Means values ± S.E.M

Incident‑DIAB: non‑diabetic patients at baseline who developed T2DM after a 
median follow‑up of 60 months; non‑DIAB: non‑diabetic patients at baseline 
who did not develop T2DM after a median follow‑up of 60 months; BMI: body 
mass index; HbA1c: glycated hemoglobin A1c; ISI: insulin sensitivity index; IGI: 
insulinogenic index

One‑way ANOVA P‑values

Incident-DIAB Non-DIAB P-value

n 107 355 n/a

Men/women (n) 87/20 302/53 n/a

Age (years) 58.75 ± 0.87 57.33 ± 0.50 0.171

Weight (kg) 85.70 ± 1.47 82.49 ± 0.72 0.037

BMI (kg/m2) 31.39 ± 0.47 29.88 ± 0.22 0.002

Waist circumference (cm) 105.28 ± 1.08 101.73 ± 0.57 0.003

Serum triacylglycerols (mg/dL) 132.60 ± 6.60 119.45 ± 3.24 0.059

Total cholesterol (mg/dL) 164.97 ± 3.41 160.65 ± 1.62 0.217

HDL‑cholesterol (mg/dL) 43.52 ± 1.04 44.58 ± 0.53 0.355

LDL‑cholesterol (mg/dL) 93.40 ± 2.66 91.10 ± 1.33 0.421

CRP (mg/L) 2.88 ± 0.29 2.51 ± 0.17 0.329

HbA1c (%) 6.03 ± 0.03 5.86 ± 0.02  < 0.001

HbA1c (mmol/mol) 42.37 ± 0.36 40.51 ± 0.19  < 0.001

Fasting glucose (mg/dL) 96.18 ± 1.04 92.59 ± 0.53 0.002

Fasting insulin (mU/L) 10.51 ± 0.66 8.34 ± 0.31 0.001

ISI 3.35 ± 0.20 4.32 ± 0.14 0.001

HOMA‑IR 3.37 ± 0.30 2.58 ± 0.09 0.001

IGI 0.64 ± 0.30 1.08 ± 0.06 0.025

Disposition Index 0.83 ± 0.05 1.03 ± 0.03 0.003
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unadjusted HR of 1.54, and an adjusted HR of 1.43, per 
one SD increase.

Next, the prediction power of the score created was 
evaluated by categorizing patients according to the LR 

Score by ascending tertiles, quartiles, and the median, in 
both the Training and the Validation set.

In the Training set (Fig.  3), subjects from the High 
(unadjusted HR: 6.34; and adjusted HR: 7.44) and Inter-
mediate (unadjusted HR: 2.70; and adjusted HR: 2.96) 
groups of the tertile classification showed significantly 
higher T2DM risk than the Low LR Score group. Besides, 
when the patients were classified into quartiles, sub-
jects in the High (unadjusted HR: 9.55; and adjusted 
HR: 12.35) and the High-Intermediate (unadjusted HR: 
4.78; and adjusted HR: 5.58) LR Score groups presented 
a greater risk of T2DM development when compared 
with the Low LR Score group (reference). Finally, when 
patients were classified by the median, a higher T2DM 
risk for patients in the High group (unadjusted HR: 3.99; 
and adjusted HR: 3.98) was observed compared with the 
Low LR Score group used as the reference.

We also analysed the LR Score in the validation set 
(Fig. 4). When patients were categorized by tertiles, sub-
jects in the High LR Score group (unadjusted HR: 2.87; 
and adjusted HR: 2.52) presented a higher T2DM risk 
than the group of patients classified in the Low LR Score 
group (reference). Moreover, when patients were organ-
ized by quartiles, we observed a higher T2DM risk in the 
High LR Score group (unadjusted HR: 5.31; and adjusted 
HR: 3.84), with the Low LR Score group as a reference. 
Finally, when patients were classified by the median, 

Fig. 1 Selection of the best model by Random Survival Forest. Selection in the Training set of lipid species with a higher predictive power for type 2 
diabetes, by applying an Random Survival Forest in combination with a backward selection procedure

Table 2 Selection of lipids included in the model with the 
lowest prediction error in the Training Set

PE: phosphatidylethanolamine; PG: phosphatidylglycerol; PI, 
phosphatidyl inositol; PC: phosphatidylcholine; TG: triacylglycerols; LPC: 
lysophosphatidylcholine; PS: phosphatidylserine

Lipid Iteration Error

PE(16:1/18:1) 426 0.349

PG(16:1/18:1) 427 0.350

PI(18:0/18:1) 428 0.354

PE(16:0/18:1) 429 0.361

PI(18:0/18:2) 430 0.363

PC(P‑16:0/18:1) 431 0.360

TG(16:0/16:0/15:0) 432 0.370

TG(16:0/15:0/14:0) 433 0.368

PI(16:0/16:0) 434 0.362

LPC(20:1) 435 0.360

PE(18:0/18:2) 436 0.360

PE(O‑20:0/18:0) 437 0.367

PC(P‑16:1/18:0) 438 0.380

PS(16:0/18:0) 439 0.450

PG(16:2/20:4) 440



Page 6 of 13Villasanta‑Gonzalez et al. Cardiovascular Diabetology          (2023) 22:199 

patients in the High group (unadjusted HR: 1.90; and 
adjusted HR: 1.73) had a higher risk of T2DM develop-
ment compared to the Low LR Score group.

Relationship between Lipidomic Risk score and insulin 
resistance and beta-cell functionality indexes
We also studied the relationship between LR Score, insu-
lin resistance, and beta-cell function as assessed by vali-
dated indexes during the follow-up (Fig. 5). The patients 
were organized by ascending tertiles of the LR Score. 
It was found that subjects in the High LR Score group 
presented lower values of ISI than subjects with Low 
and Intermediate LR Scores (P < 0.001 and = P = 0.011, 
respectively). We also found that the High LR Score 
group presented lower values of DI than subjects with 
Low and Intermediate LR Scores (statistical trend; 
P = 0.070 and = P = 0.081, respectively). Moreover, the 
High LR Score group also presented higher values of the 
Hepatic insulin resistance index (HIRI) (P = 0.005) com-
pared with patients in the Low LR Score group.

Discussion
Despite the determining role of dyslipidaemia in T2DM, 
the molecular mechanisms and the involvement of the 
specific lipid species behind this role are not yet well 
understood [21]. Over the last few years, lipidomics has 
been proposed as a method to elucidate the changes 
that occur in metabolism thanks to its precision in dis-
tinguishing between different lipids species [5]. In our 
study, we identified 15 lipid species, selected by RSF from 
a total of 440. These compounds were included in a lipid 
species-based score which was statistically associated 
with T2DM development risk. Moreover, patients with 
higher LR Score values have higher T2DM risk, lower 
insulin sensitivity as determined by the ISI index, and 
higher hepatic insulin resistance, as determined by the 
HIRI index.

T2DM is currently the most prevalent form of diabe-
tes, affecting around 380 million people worldwide, and 
accounting for 90% of all cases. It is also on the rise, 
mainly due to the prevalence of sedentary lifestyles and 
inadequate diets [22]. Changes in lifestyle, including die-
tary interventions and exercise, have proven effective in 
preventing diabetes [23]; however, it remains difficult to 
predict which individuals will benefit from such interven-
tions. This is particularly relevant in the case of patients 
with CHD, given that the co-occurrence of CHD together 
with T2DM significantly boosts the risk of macrovascular 
complications and mortality, and leads to around 80% of 
all deaths [4].

Current predictive models in T2DM research com-
bine classic biomarkers and risk factors, including serum 

Table 3 Association between lipids selected and type 2 
diabetes mellitus development in the Training Set, per standard 
deviation increase

Model 1 was unadjusted and Model 2 was adjusted by age, gender, diet, body 
mass index, high density lipoproteins‑cholesterol, plasma triacylglycerols, and 
statin intensity treatment

HR: hazard ratio; CI: confidence interval. LPC: lysophosphatidylcholine; PC: 
phosphatidylcholine; PE: phosphatidylethanolamine; PG: phosphatidylglycerol; 
PI, phosphatidyl inositol; PS: phosphatidylserine; TG: triacylglycerols

Coeff HR 95% CI for HR Linear Trend

Lower Upper

Model 1

LPC(20:1) − 0.43 0.65 0.49 0.88 0.004

PC(P‑16:0/18:1) − 0.20 0.82 0.59 1.14 0.233

PC(P‑16:1/18:0) 0.19 1.22 0.88 1.69 0.243

PE(16:0/18:1) 0.00 1.00 0.73 1.38 0.993

PE(16:1/18:1) − 0.03 0.97 0.71 1.32 0.853

PE(18:0/18:2) − 0.27 0.76 0.56 1.02 0.072

PE(O‑20:0/18:0) 0.16 1.17 0.93 1.47 0.191

PG(16:1/18:1) 0.21 1.23 0.90 1.68 0.194

PG(16:2/20:4) − 0.09 0.92 0.66 1.28 0.603

PI(16:0/16:0) − 0.04 0.96 0.74 1.24 0.738

PI(18:0/18:1) 0.14 1.15 0.90 1.46 0.256

PI(18:0/18:2) − 0.23 0.79 0.59 1.06 0.118

PS(16:0/18:0) 0.48 1.62 0.86 3.07 0.136

TG(16:0/15:0/14:0) 0.18 1.19 0.66 2.14 0.556

TG(16:0/16:0/15:0) 0.12 1.13 0.85 1.51 0.405

Model 2

LPC(20:1) − 0.40 0.67 0.49 0.92 0.014

PC(P‑16:0/18:1) − 0.20 0.82 0.57 1.17 0.277

PC(P‑16:1/18:0) 0.20 1.23 0.88 1.72 0.223

PE(16:0/18:1) 0.12 1.13 0.80 1.60 0.491

PE(16:1/18:1) − 0.15 0.87 0.64 1.19 0.391

PE(18:0/18:2) − 0.33 0.72 0.56 0.93 0.012

PE(O‑20:0/18:0) 0.07 1.07 0.84 1.37 0.588

PG(16:1/18:1) 0.25 1.28 0.91 1.80 0.151

PG(16:2/20:4) − 0.07 0.93 0.65 1.34 0.702

PI(16:0/16:0) − 0.04 0.96 0.72 1.29 0.799

PI(18:0/18:1) 0.11 1.12 0.86 1.46 0.395

PI(18:0/18:2) − 0.34 0.71 0.52 0.98 0.035

PS(16:0/18:0) 0.65 1.92 0.95 3.88 0.069

TG(16:0/15:0/14:0) 0.01 1.01 0.54 1.88 0.976

TG(16:0/16:0/15:0) 0.21 1.24 0.91 1.68 0.176

Table 4 Parameters of the different models

Training set Validation set

C-Index ROC C-Index ROC

Lipids 0.714 0.772 0.703 0.742

Clinical parameters 0.618 0.645 0.653 0.659

Lipids + clinical parameters 0.757 0.813 0.755 0.800
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parameters, anthropometric characteristics, and factors 
related to lifestyle. On the FINDRISC questionnaire [24], 
the patient provides information on whether they have 
ever had high blood glucose levels and if they regularly 
take treatment for hypertension, along with informa-
tion on age, gender, nutritional habits, and family his-
tory. On the other hand, the ADA questionnaire only 
includes information provided by the patient regarding 
age, gender, weight, family history, and physical activity. 
The predictive power of these models is moderate, and 

they include information provided by the patient, which 
reduces the reliability of the prediction of T2DM. There-
fore, reliable, highly accurate predictive biomarkers are 
currently required to efficiently assess the risk of develop-
ing T2DM in clinical practice, which is especially impor-
tant in patients with cardiovascular disease (CVD).

This study showed that the predictive capacity of the 
clinical variables was significantly improved by the addi-
tion of 15 lipid species, selected by RSF from a total of 
440 determined by our experimental approach. To the 

Fig. 2 Receiver operating characteristic curves of the model including the clinical variables separately and the model including the 15 lipids 
and the clinical variables. The clinical variables included: age, gender, diet, body mass index, high density lipoproteins‑cholesterol, plasma 
triacylglycerols, and statin intensity treatment. AUC: area under the curve
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Training Tertiles
HR 95% CI for HR

Lower Upper

Lower (ref.) 1.00 1.00 1.00

Intermediate Unadjusted 2.70 1.14 6.43
Adjusted* 2.96 1.17 7.50

Higher Unadjusted 6.34 2.84 14.16
Adjusted* 7.44 3.11 17.84

Training 
Quartiles 

HR 95% CI for HR

Lower Upper

Lower (ref.) 1.00 1.00 1.00

Low Intermediate Unadjusted 2.52 0.79 8.02
Adjusted* 3.20 0.88 11.69

High Intermediate Unadjusted 4.78 1.63 14.06
Adjusted* 5.58 1.63 19.07

Higher Unadjusted 9.55 3.38 26.97
Adjusted* 12.35 3.74 40.83

Training Medians 
HR 95% CI for HR

Lower Upper

Lower (ref.) 1.00 1.00 1.00

Higher Unadjusted 3.99 2.21 7.19
Adjusted* 3.98 2.15 7.38

Fig. 3 Disease‑free survival by Cox proportional hazards regression analysis according to lipid species score in the Training Set. Patients 
from the Training set were categorized according to the Lipidomic Risk score by tertiles, quartiles, and median (in ascending order). *This model 
was adjusted for age, gender, diet, body mass index, high density lipoproteins‑cholesterol, plasma triacylglycerols, and statin intensity treatment. 
The hazard ratio (HR) between groups was calculated. CI: confidence interval
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Validation 
Tertiles 

HR 95% CI for HR

Lower Upper

Lower (ref.) 1.00 1.00 1.00

Intermediate Unadjusted 1.59 0.65 3.89
Adjusted* 1.89 0.73 4.90

Higher Unadjusted 2.87 1.27 6.47
Adjusted* 2.52 1.02 6.28

Validation 
Quartiles 

HR 95% CI for HR

Lower Upper

Lower (ref.) 1.00 1.00 1.00

Low Intermediate Unadjusted 2.85 0.89 9.09
Adjusted* 2.27 0.69 7.45

High Intermediate Unadjusted 1.98 0.60 6.59
Adjusted* 1.91 0.57 6.42

Higher Unadjusted 5.31 1.80 15.61
Adjusted* 3.84 1.23 12.04

Validation 
Medians 

HR 95% CI for HR

Lower Upper

Lower (ref.) 1.00 1.00 1.00

Higher Unadjusted 1.90 1.00 3.63
Adjusted* 1.73 0.86 3.47

Fig. 4 Disease‑free survival by Cox proportional hazards regression analysis according to lipid species score in the Validation Set. Patients 
from the validation set were categorized according to the Lipidomic Risk score by tertiles, quartiles, and median (in ascending order). *This model 
was adjusted for age, gender, diet, body mass index, high density lipoproteins‑cholesterol, plasma triacylglycerols, and statin intensity treatment. 
The hazard ratio (HR) between groups was calculated. CI: confidence interval
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best of our knowledge, this is the first time that a lipid-
omic study has been carried out in a risk population of 
CHD patients to predict diabetes incidence. Neverthe-
less, a previous study in a non-CVD population also 
observed an improvement in the prediction capacity of 

their model when lipids were added to conventional risk 
factors [8]. However, in our study, we observed an AUC 
increase from 64 to 81% with a CHD population, while 
only a small increase from 83 to 84% was obtained in 
the non-CVD population. This difference could be due 
to the sensibility and specificity of the lipidomic analyti-
cal technique employed [9]. Apart from this, which may 
have partially contributed to the predictive power of 
the model, we also need to take into account that dys-
lipidemia associated with the CVD population [25] may 
contribute to the greater statistical improvement in our 
model in comparison with the study carried out in the 
non-CVD population.

Unlike the study by Razquin et  al., which described a 
lipid profile based only on lipid classes associated with 
T2DM incidence, our study shows that we need to ana-
lyse individual lipid species to accurately differentiate the 
directionality of the association with T2DM. We identi-
fied four members of the PE lipid family, of which two, 
PE(16:0_18:1), and PE(O-20:0/18:0), were associated 
with the development of T2DM, whereas the other two, 
PE(16:1_18:1) and PE(18:0_18:2), were protective against 
T2DM. Moreover, while the relationship of PE with 
T2DM risk has been previously reported, the specific 
species and isomers have not been described previously 
[8]. Currently, there is little to be found in the literature 
on the role of compounds at this level of detail [26], sug-
gesting that advances need to be made in methodology 
and defining lipid isomerism if we are to finally under-
stand the mechanism of dyslipidaemia which occurs dur-
ing the development of T2DM. Overall, PEs are involved 
in the mechanisms modifying membrane characteris-
tics and the functionality of the transporters, receptors, 
channels, and enzymes. Here, our results suggest that 
the abundance of specific species and isomers and the 
proportions shown between them could differentially 
modulate the membrane characteristics promoting or 
protecting against diabetes, in turn affecting the func-
tionality of insulin receptors and/or glucose transporter 
[27]. This idea is supported by the fact that the isomerism 
of other compounds (namely branched fatty acids esters 
of hydroxy fatty acids) has previously been proven to be 
associated with diabetes, which highlights the relevance 
of isomerism in this biological function [28].

Similarly, two compounds from the PC family were 
identified by the RSF as associated with T2DM in oppo-
site ways, one protecting and another promoting the 
disease. PC(P-16:0/18:1) is linked with a protective role 
against the disease, while PC(P-16:1/18:0) is associated 
with diabetes development. PC is the only phospho-
lipid essential for the assembly, secretion, and regula-
tion of lipoproteins such as LDL and HDL [29]. Indeed, 
we tested the potential relationship between the levels of 
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Fig. 5 Relationship between lipid profile and insulin resistance 
and beta‑cell functionality indexes according to the ascending 
tertiles of the Lipidomic Risk score. Patients were categorized 
according to the Lipidomic Risk score by ascending tertiles. ANOVA 
for repeated measures p‑values adjusted by age, gender, diet, body 
mass index, high density lipoproteins‑cholesterol, and plasma 
triacylglycerols. Global p‑values: P(time): time effect; P(tertile): tertile 
of the Lipidomic Risk score effect; P(interaction): time by tertiles 
of the Lipidomic Risk score interaction
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these PCs with LDL and HDL. We found a positive cor-
relation between PC(P-16:0/18:1) and HDL plasma levels 
(data not shown). This finding supports the hypothesis 
of the protective role of PC(P-16:0/18:1) against T2DM 
development. The mechanism behind this process could 
be based on reduced HDL cholesterol levels associated 
with T2DM [30]. Although PC is required for the proper 
functioning of the metabolism, unusually high concen-
trations have been previously reported in cases of insulin 
resistance, T2DM, and metabolic syndrome [31, 32]. It 
has also been previously reported that PC is the media-
tor in decreasing insulin sensitivity in mice when high-fat 
diets are consumed [33–35]. However, scarce literature 
reports the role of PCs to this level of detail, complicating 
the understanding of the role in T2DM.

In contrast, isomers identified within the TGs, phos-
phatidylserines (PSs), and LPC are unidirectional. 
Among these three families, LPC is the only one with a 
protective role in preventing diabetes development. LPC 
is a hydrolysis product derived from the catalysis of phos-
phatidylcholine by phospholipase  A2. Previous studies 
have linked the bidirectional role of LPCs with the regu-
lation of glucose metabolism [32, 36], and experiments 
in lipidomics have identified that LPC(20:1) decreases 
in high-fat diets in mouse models, due to its association 
with HOMA-IR [5]. This study also identified that LPC 
(20:1) was negatively associated with BMI in humans and 
plasma insulin levels. Also, other LPCs different from 
LPC(20:1), such as LPC(18:2), were associated with a 
higher risk of developing glucose intolerance. Therefore, 
LPC(18:2) was suggested as a potential predictor for 
T2DM development [37]. Research into the role of LPC 
has identified that it activates the uptake of glucose by the 
adipocytes mediated by the GLUT4, consequently lower-
ing the levels of glucose in the blood in murine models of 
diabetes [38, 39]. Consequently, we suspect that modula-
tions in LPC (20:1) may play a role in developing systemic 
insulin resistance. In conclusion, unravelling the role of 
LPC in glucose homeostasis and insulin resistance mech-
anisms may contribute to increasing our knowledge of 
the mechanisms behind T2DM development.

Finally, it is important to mention the limitations of 
this study. Firstly, this research is based on a long-term, 
closely controlled dietary intervention, which, despite 
ensuring the quality of the study, may not reflect the level 
of compliance in a free-living population.

The second limitation is that the incidence of T2DM 
was not the primary endpoint of the CORDIOPREV 
trial, although it was a secondary objective of this study. 
Indeed, our study has the limitation that the incident-
DIAB group has higher baseline glucose levels and an 
unbalanced number of men and women included as 
participants. In fact, this population was included in 

the CORDIOPREV study without any type of selection, 
therefore representing the sexual dimorphism exist-
ent in CHD, and any attempt to balance the number of 
men and women may introduce a bias. Moreover, the 
study included patients with coronary heart disease, 
which limits our findings to people with these char-
acteristics and precludes its generalization to healthy 
individuals. Although diabetes prediction is extremely 
important since patients with acute myocardial infarc-
tion and T2DM have a considerably higher risk of devel-
oping a new cardiovascular event than those without 
T2DM [40], validation in a cohort without cardiovascular 
disease and with a closer profile to the general popula-
tion would allow us to apply these methods to the general 
population.

Conclusion
Overall, this study has shown the potential of highly sen-
sitive lipidomics in identifying patients at risk of devel-
oping T2DM. In addition, the lipid species identified as 
associated with T2DM development, combined with 
clinical variables, have provided a new, highly sensitive 
model to be used in clinical practice. The findings also 
suggest that the risk of T2DM development is associated 
with a specific lipidomic profile which is characterized 
by lower peripheral insulin sensitivity and higher hepatic 
insulin resistance. Finally, these results also indicate that 
we need to look closely at isomers to understand the role 
of this specific compound in T2DM development since 
isomers of the same class of lipids are associated with dif-
ferent outcomes.

Abbreviations
ADA  American Diabetes Association
ANOVA  Analysis of variance
AUC   Area under the curve
BMI  Body mass index
CEs  Cholesterol esters
CHD  Coronary heart disease
CVD  Cardiovascular disease
DAGs  Diacylglycerols
HDL  High‑density lipoproteins
HR  Hazard ratio
Incident‑DIAB  Non‑diabetic patients at baseline who developed 

T2DM after a median follow‑up of 60 months
ISI  Insulin sensitivity index
IGI  Insulinogenic index
DI  Disposition index
LC  Liquid chromatography
LDL  Low‑density lipoproteins
LPCs  Lysophosphatidylcholines
LR  Lipidomic Risk
MS  Mass spectrometry
MUFA  Monounsaturated fatty acids
non‑DIAB  Non‑diabetic patients at baseline who did not develop 

T2DM after a median follow‑up of 60 months
OGTT   Oral glucose tolerance test
PC‑PLs  Phosphatidylcholine‑plasmalogens



Page 12 of 13Villasanta‑Gonzalez et al. Cardiovascular Diabetology          (2023) 22:199 

PCs  Lysophosphatidylcholines
PEs  Phosphatidylethanolamines
PG  Phosphatidyl glycerol
PI  Phosphatidyl inositol
PSs  Phosphatidylserines
PUFA  Poly‑unsaturated fatty acids
ROC  Receiver operating characteristic
RSF  Random Survival Forest
SD  Standard deviation
SEM  Standard error of the mean
SMs  Sphingomyelins
T2DM  Type 2 diabetes mellitus
TGs  Triacylglycerols

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12933‑ 023‑ 01933‑1.

Additional file 1: Table S1. Baseline medication of the type 2 diabetes 
mellitus incidence study. Data are n (%).

Additional file 2: Table S2. Characteristics of the population for type 2 
diabetes mellitus incidence study after a median follow‑up of 60 months. 
The ongoing patients for type 2 diabetes mellitus incidence study after 
a median follow‑up of 60 months were 438 (107 in Incident‑DIAB and 
331 in Non‑DIAB group). Means values ± S.E.M. Incident‑DIAB: patients 
who developed T2DM but were non‑diabetic at baseline. Non‑DIAB: non‑
diabetic patients. BMI: body mass index. HbA1c: glycated hemoglobin 
A1c. ISI: insulin sensitivity index. IGI: insulinogenic index. One‑way ANOVA 
P‑values.

Acknowledgements
The CIBEROBN is an initiative of the Instituto de Salud Carlos III, Madrid, Spain. 
We would like to thank the Córdoba branch of the Biobank of the Sistema 
Sanitario Público de Andalucía (Andalusia, Spain) for providing the biological 
human samples. We would also like to thank the EASP (Escuela Andaluza de 
Salud Publica), Granada, Spain, which performed the randomization process 
for this study. Parts of the figure were drawn using pictures from Servier Medi‑
cal Art. Servier Medical Art by Servier is licensed under a Creative Commons 
Attribution 3.0 Unported License (https:// creat iveco mmons. org/ licen ses/ by/3. 
0/).

Author contributions
JLM, AC, PPM, JDL, MBS: conceptualization. JLM, FE, ALB, MCS, FPC, AVG, MMO, 
JFAD: methodology. AVG, MMO, JFAD, FE, APAL: formal analysis. AVG, MMO, 
FE, FPC: investigation and data curation. JLM, AC, ALB, MCS, FPC: resources. 
AVG, MMO, JFAD, APAL: writing—original draft. FPC, MMM, FE, PPM, JDl, MBS, 
AC, JLM: writing—review and editing. MM‑O, MMM: visualization. JLM, AC, 
PPM, JDL: supervision. JLM, AC, MBS, MMO: funding acquisition. JLM, AC, MBS: 
project administration.

Funding
The CIBEROBN is an initiative of the Instituto de Salud Carlos III, Madrid, Spain. 
The CORDIOPREV study is supported by Ministerio de Ciencia e Innovación, 
Spain (AGL2012/39615, PCIN‑2016‑084, and PID2019‑104362RB‑I00 to J 
L‑M; AGL2015‑67896‑P to J L‑M and AC); Grants AGL2012/39615, PCIN‑
2016‑084, AGL2015‑67896‑P and PID2019‑104362RB‑I00 funded by MCIN/
AEI/1.0.13039/501100011033 and, as appropriate, by “ERDF A way of making 
Europe”, by the “European Union” or by the “European Union NextGen‑
erationEU/PRTR”; Instituto de Salud Carlos III (PIE14/00005, PIE14/00031, 
ICI20/00069 to JL‑M, CP14/00114, DTS19/00007, PI19/00299 and PI22/00925 to 
AC); Fundación Patrimonio Comunal Olivarero, Junta de Andalucía (Conse‑
jería de Salud, Consejería de Agricultura y Pesca, Consejería de Innovación, 
Ciencia y Empresa), Diputaciones de Jaén y Córdoba, Centro de Excelencia en 
Investigación sobre Aceite de Oliva y Salud and Ministerio de Medio Ambi‑
ente, Medio Rural y Marino, Gobierno de España; Consejería de Innovación, 
Ciencia y Empresa, Junta de Andalucía (PY20‑00256 to J L‑M); Consejería de 
Salud y Familias, Junta de Andalucía (PI‑0055‑2021 to AC and MM‑O) and 
co‑funded by the European Union. This project has also received funding from 

the European Union’s Horizon 2020 research and innovation program under 
Marie Skłodowska‑Curie grant agreement No 847468. Antonio Camargo is 
supported by an ISCIII research contract (Programa Miguel‑Servet CP14/00114 
and CPII19/00007) and Servicio Andaluz de Salud‑Junta de Andalucia (Nicolas 
Monardes Programme Contract C1‑0001‑2022).

Availability of data and materials
Collaborations with the Cordioprev Study are open to Biomedical Institu‑
tions, always after an accepted proposal for scientific work. Depending on 
the nature of the collaboration, electronic data, hard copy data, or biological 
samples should be provided. All collaborations will be made after a collabora‑
tion agreement. Terms of the collaboration agreement will be specific for each 
collaboration, and the extent of the shared documentation (ie, deidentified 
participant data, data dictionary, biological samples, hard copy, or other speci‑
fied data sets) will be also specifically set on the light of each work.

Declarations

Ethics approval and consent to participate
The current work was conducted within the framework of the Coronary Diet 
Intervention with Olive Oil and Cardiovascular Prevention Study (CORDIOPREV; 
Clinical trials.gov. Identifier: NCT00924937). The trial protocol was approved by 
the Reina Sofia University Hospital Ethics Committee, following the Helsinki 
declaration and good clinical practices. All the patients gave their written 
informed consent to participate in the study. The experimental protocol 
conformed to international ethical standards.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing financial interests.

Author details
1 Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina 
Sofia University Hospital, University of Cordoba, Cordoba, Spain. 2 Department 
of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain. 3 Insti‑
tuto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, 
Spain. 4 CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto 
de Salud Carlos III, Madrid, Spain. 5 Department of Analytical Chemistry 
and Nanochemistry University Institute, University of Cordoba, Cordoba, Spain. 
6 CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud 
Carlos III, Madrid, Spain. 7 Department of Cell Biology, Physiology and Immu‑
nology, University of Cordoba, Cordoba, Spain. 8 German Center for Diabetes 
Research, Munich‑Neuherberg, Germany. 9 Department of Molecular Epide‑
miology, German Institute of Human Nutrition Potsdam‑Rehbrücke, Nuthetal, 
Germany. 10 Germany Institute of Nutrition Science, University of Potsdam, 
Nuthetal, Germany. 

Received: 21 May 2023   Accepted: 21 July 2023

References
 1. Strain WD, Paldanius PM. Diabetes, cardiovascular disease and the micro‑

circulation. Cardiovasc Diabetol. 2018;17(1):57.
 2. Vilas‑Boas EA, Almeida DC, Roma LP, Ortis F, Carpinelli AR. Lipotoxicity 

and beta‑cell failure in type 2 diabetes: oxidative stress linked to NADPH 
oxidase and ER stress. Cells. 2021;10(12):3328.

 3. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guar‑
iguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF diabetes atlas: 
global estimates for the prevalence of diabetes for 2015 and 2040. 
Diabetes Res Clin Pract. 2017;128:40–50.

 4. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and athero‑
sclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetolo‑
gia. 2010;53(7):1270–87.

 5. Barber MN, Risis S, Yang C, Meikle PJ, Staples M, Febbraio MA, Bruce CR. 
Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 
diabetes. PLoS ONE. 2012;7(7): e41456.

https://doi.org/10.1186/s12933-023-01933-1
https://doi.org/10.1186/s12933-023-01933-1
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


Page 13 of 13Villasanta‑Gonzalez et al. Cardiovascular Diabetology          (2023) 22:199  

 6. Pirillo A, Casula M, Olmastroni E, Norata GD, Catapano AL. Global epide‑
miology of dyslipidaemias. Nat Rev Cardiol. 2021;18(10):689–700.

 7. Tomlinson B, Patil NG, Fok M, Lam CWK. Managing dyslipidemia 
in patients with type 2 diabetes. Expert Opin Pharmacother. 
2021;22(16):2221–34.

 8. Razquin C, Toledo E, Clish CB, Ruiz‑Canela M, Dennis C, Corella D, 
Papandreou C, Ros E, Estruch R, Guasch‑Ferre M, et al. Plasma lipidomic 
profiling and risk of type 2 diabetes in the PREDIMED Trial. Diabetes Care. 
2018;41(12):2617–24.

 9. Lopez‑Bascon MA, Calderon‑Santiago M, Diaz‑Lozano A, Camargo A, 
Lopez‑Miranda J, Priego‑Capote F. Development of a qualitative/quanti‑
tative strategy for comprehensive determination of polar lipids by LC‑MS/
MS in human plasma. Anal Bioanal Chem. 2020;412(2):489–98.

 10. Delgado‑Lista J, Perez‑Martinez P, Garcia‑Rios A, Alcala‑Diaz JF, Perez‑
Caballero AI, Gomez‑Delgado F, Fuentes F, Quintana‑Navarro G, Lopez‑
Segura F, Ortiz‑Morales AM, et al. CORonary Diet Intervention with Olive 
oil and cardiovascular PREVention study (the CORDIOPREV study): ration‑
ale, methods, and baseline characteristics—a clinical trial comparing the 
efficacy of a Mediterranean diet rich in olive oil versus a low‑fat diet on 
cardiovascular disease in coronary patients. Am Heart J. 2016;177:42–50.

 11. Association AD. 2. Classification and Diagnosis Of Diabetes: Standards Of 
Medical Care In Diabetes‑2019. Diabetes Care. 2019;42(1):S13‑s28.

 12. Quintana‑Navarro GM, Alcala‑Diaz JF, Lopez‑Moreno J, Perez‑Corral I, 
Leon‑Acuna A, Torres‑Pena JD, Rangel‑Zuniga OA, Arenas de Larriva AP, 
Corina A, Camargo A, et al. Long‑term dietary adherence and changes in 
dietary intake in coronary patients after intervention with a Mediterra‑
nean diet or a low‑fat diet: the CORDIOPREV randomized trial. Eur J Nutr. 
2019. https:// doi. org/ 10. 1007/ s00394‑ 019‑ 02059‑5.

 13. Fernandez‑Ballart JD, Pinol JL, Zazpe I, Corella D, Carrasco P, Toledo E, 
Perez‑Bauer M, Martinez‑Gonzalez MA, Salas‑Salvado J, Martin‑Moreno 
JM. Relative validity of a semi‑quantitative food‑frequency question‑
naire in an elderly Mediterranean population of Spain. Br J Nutr. 
2010;103(12):1808–16.

 14. Martinez‑Gonzalez MA, Fernandez‑Jarne E, Serrano‑Martinez M, Wright M, 
Gomez‑Gracia E. Development of a short dietary intake questionnaire for 
the quantitative estimation of adherence to a cardioprotective Mediter‑
ranean diet. Eur J Clin Nutr. 2004;58(11):1550–2.

 15. Blanco‑Rojo R, Alcala‑Diaz JF, Wopereis S, Perez‑Martinez P, Quintana‑
Navarro GM, Marin C, Ordovas JM, van Ommen B, Perez‑Jimenez F, 
Delgado‑Lista J, et al. The insulin resistance phenotype (muscle or liver) 
interacts with the type of diet to determine changes in disposition index 
after 2 years of intervention: the CORDIOPREV‑DIAB randomised clinical 
trial. Diabetologia. 2016;59(1):67–76.

 16. Hsu FF, Turk J. Characterization of ceramides by low energy collisional‑
activated dissociation tandem mass spectrometry with negative‑ion 
electrospray ionization. J Am Soc Mass Spectrom. 2002;13(5):558–70.

 17. Ishwaran H, Kogalur UB. Consistency of random survival forests. Stat 
Probab Lett. 2010;80(13–14):1056–64.

 18. Dietrich S, Floegel A, Troll M, Kühn T, Rathmann W, Peters A, Sookthai 
D, von Bergen M, Kaaks R, Adamski J, et al. Random Survival Forest in 
practice: a method for modelling complex metabolomics data in time to 
event analysis. Int J Epidemiol. 2016;45(5):1406–20.

 19. Kuhn M. Building predictive models in R using the caret package. J Stat 
Softw. 2008;28(5):1–26.

 20. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M. 
pROC: an open‑source package for R and S+ to analyze and compare 
ROC curves. BMC Bioinformatics. 2011;12:77.

 21. Kane JP, Pullinger CR, Goldfine ID, Malloy MJ. Dyslipidemia and diabetes 
mellitus: role of lipoprotein species and interrelated pathways of lipid 
metabolism in diabetes mellitus. Curr Opin Pharmacol. 2021;61:21–7.

 22. Diabetes. Who.int s/f [http:// www. who. int/ diabe tes/ en/]. Accessed 7 Feb 
2023.

 23. Uusitupa M, Khan TA, Viguiliouk E, Kahleova H, Rivellese AA, Hermansen 
K, Pfeiffer A, Thanopoulou A, Salas‑Salvado J, Schwab U, et al. Prevention 
of type 2 diabetes by lifestyle changes: a systematic review and meta‑
analysis. Nutrients. 2019;11(11):2611.

 24. Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to 
predict type 2 diabetes risk. Diabetes Care. 2003;26(3):725–31.

 25. Wong ND. Epidemiological studies of CHD and the evolution of preven‑
tive cardiology. Nat Rev Cardiol. 2014;11(5):276–89.

 26. Eichelmann F, Sellem L, Wittenbecher C, Jager S, Kuxhaus O, Prada M, 
Cuadrat R, Jackson KG, Lovegrove JA, Schulze MB. Deep lipidomics in 
human plasma: cardiometabolic disease risk and effect of dietary fat 
modulation. Circulation. 2022;146(1):21–35.

 27. Lopez S, Bermudez B, Abia R, Muriana FJ. The influence of major 
dietary fatty acids on insulin secretion and action. Curr Opin Lipidol. 
2010;21(1):15–20.

 28. Aryal P, Syed I, Lee J, Patel R, Nelson AT, Siegel D, Saghatelian A, Kahn BB. 
Distinct biological activities of isomers from several families of branched 
fatty acid esters of hydroxy fatty acids (FAHFAs). J Lipid Res. 2021;62: 
100108.

 29. Lent‑Schochet D, McLaughlin M, Ramakrishnan N, Jialal I. Exploratory 
metabolomics of metabolic syndrome: a status report. World J Diabetes. 
2019;10(1):23–36.

 30. Xepapadaki E, Nikdima I, Sagiadinou EC, Zvintzou E, Kypreos KE. 
HDL and type 2 diabetes: the chicken or the egg? Diabetologia. 
2021;64(9):1917–26.

 31. Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma 
metabolomic profiles reflective of glucose homeostasis in non‑diabetic 
and type 2 diabetic obese African‑American women. PLoS ONE. 
2010;5(12): e15234.

 32. Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms 
of lysophosphatidylcholine in the development of diseases. Life Sci. 
2020;247: 117443.

 33. Kumar A, Sundaram K, Mu J, Dryden GW, Sriwastva MK, Lei C, Zhang L, 
Qiu X, Xu F, Yan J, et al. High‑fat diet‑induced upregulation of exosomal 
phosphatidylcholine contributes to insulin resistance. Nat Commun. 
2021;12(1):213.

 34. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The 
critical role of phosphatidylcholine and phosphatidylethanolamine 
metabolism in health and disease. Biochim Biophys Acta Biomembr. 
2017;1859(9):1558–72.

 35. Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, Shioda 
T, Hansen M, Yang F, Niebergall LJ, et al. A conserved SREBP‑1/phosphati‑
dylcholine feedback circuit regulates lipogenesis in metazoans. Cell. 
2011;147(4):840–52.

 36. Han MS, Lim YM, Quan W, Kim JR, Chung KW, Kang M, Kim S, Park SY, Han 
JS, Park SY, et al. Lysophosphatidylcholine as an effector of fatty acid‑
induced insulin resistance. J Lipid Res. 2011;52(6):1234–46.

 37. Wang‑Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K, 
Campillos M, Holzapfel C, Thorand B, et al. Novel biomarkers for pre‑
diabetes identified by metabolomics. Mol Syst Biol. 2012;8:615.

 38. Huynh K, Barlow CK, Jayawardana KS, Weir JM, Mellett NA, Cinel M, Magli‑
ano DJ, Shaw JE, Drew BG, Meikle PJ. High‑throughput plasma lipidomics: 
detailed mapping of the associations with cardiometabolic risk factors. 
Cell Chem Biol. 2019;26(1):71–84.

 39. Yea K, Kim J, Yoon JH, Kwon T, Kim JH, Lee BD, Lee HJ, Lee SJ, Kim JI, Lee 
TG, et al. Lysophosphatidylcholine activates adipocyte glucose uptake 
and lowers blood glucose levels in murine models of diabetes. J Biol 
Chem. 2009;284(49):33833–40.

 40. Martin‑Timon I, Sevillano‑Collantes C, Segura‑Galindo A, Del Canizo‑
Gomez FJ. Type 2 diabetes and cardiovascular disease: Have all risk factors 
the same strength? World J Diabetes. 2014;5(4):444–70.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1007/s00394-019-02059-5
http://www.who.int/diabetes/en/

	Plasma lipidic fingerprint associated with type 2 diabetes in patients with coronary heart disease: CORDIOPREV study
	Abstract 
	Objective 
	Methods 
	Results 
	Conclusion 

	Background
	Methods
	Study subjects
	Study experimental design
	Lipidomic analysis
	Random survival forest
	Lipidomic Risk score building
	Statistical analysis

	Results
	Baseline characteristics of the participants
	Random survival forest
	Results from the score based on the lipidomic profile
	Relationship between Lipidomic Risk score and insulin resistance and beta-cell functionality indexes

	Discussion
	Conclusion
	Anchor 22
	Acknowledgements
	References


