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Abstract
Background A healthy lifestyle (HL) has been inversely related to type 2 diabetes (T2D) and cardiovascular disease 
(CVD). However, few studies have identified a metabolite profile associated with HL. The present study aims to identify 
a metabolite profile of a HL score and assess its association with the incidence of T2D and CVD in individuals at high 
cardiovascular risk.

Methods In a subset of 1833 participants (age 55-80y) of the PREDIMED study, we estimated adherence to a HL 
using a composite score based on the 2018 Word Cancer Research Fund/American Institute for Cancer Research 
recommendations. Plasma metabolites were analyzed using LC-MS/MS methods at baseline (discovery sample) 
and 1-year of follow-up (validation sample). Cross-sectional associations between 385 known metabolites and the 
HL score were assessed using elastic net regression. A 10-cross-validation procedure was used, and correlation 
coefficients or AUC were assessed between the identified metabolite profiles and the self-reported HL score. We 
estimated the associations between the identified metabolite profiles and T2D and CVD using multivariable Cox 
regression models.
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Introduction
The role of lifestyle factors in health has been the object 
of numerous studies in recent decades. Most of the stud-
ies report a strong relationship between lifestyle and 
chronic disease morbidity and mortality [1–3]. Unhealthy 
lifestyle behaviors including physical inactivity, unhealthy 
diet, smoking, excess alcohol consumption, and stress 
have been individually associated with an increased 
risk of type 2 diabetes (T2D) and cardiovascular disease 
(CVD) [4–9].

Because of the synergistic effect of lifestyle behaviors, 
several lifestyle scores have been proposed to assess the 
risk of chronic diseases. Some of these scores have been 
validated, demonstrating greater reductions in T2D or 
CVD risk compared to the expected reduction from the 
individual lifestyle factors included in the score [10, 11]. 
One of these scores was operationalized based on the 
2018 recommendations of the World Cancer Research 
Fund/American Institute for Cancer Research (WCRF/
AICR) [12]. This score considers lifestyle components 
such as (1) healthy weight, (2) physical activity, (3) intake 
of fiber from plant foods, (4) fast food and processed 
foods consumption, (5) red and processed meat con-
sumption, (6) sugar-sweetened beverage consumption, 
(7) alcohol intake, (8) supplements for cancer preven-
tion and (9) breastfeeding [13]. Interestingly, unlike other 
low-risk lifestyle scores, the WCRF/AICR score does 
not consider the overall diet as a single component and 
enables to evaluate of the synergy between nutritional 
components. Higher 2018 WCRF/AICR scores have been 
prospectively associated with cancer and CVD mortality 
in older adults [14] and also with the risk of T2D [15].

Various clinical trials have demonstrated that lifestyle 
interventions can have a beneficial effect on the interme-
diate metabolism and cardiovascular risk factors, reduc-
ing the risk of T2D or CVD incidence [16–18]. With the 
recent development of omics technologies, the identi-
fication of metabolomics signature profiles associated 
with HL may be of interest to better understand which 

metabolic pathways are involved in the development of 
disease and can provide useful information for designing 
appropriate preventive interventions.

Recently, two studies have identified metabolic sig-
natures reflecting a healthy lifestyle pattern which were 
inversely associated with the risk of cancer [19, 20]. How-
ever, to the best of our knowledge, only one study has 
been conducted to assess the association of a compos-
ite measure of lifestyle with plasma metabolite profiles 
and incident T2D, and whether these metabolites could 
explain the prospective association between a Healthy 
Lifestyle (HL) and incident T2D [16]. In that study, the 
proposed HL score showed a strong inverse association 
with T2D, which was largely explained by a set of plasma 
metabolites measured years before the clinical diagnosis.

Therefore, the aim of the present study was to identify 
a metabolomic profile of the WCRF/AICR lifestyle score 
and to relate this metabolomic profile to the risk of T2D 
and CVD in a subset of participants of the PREvención 
con DIeta MEDiterránea (PREDIMED) study.

Methods
Study population
Study design
This study was carried out in the frame of the PRE-
DIMED study, a multicenter randomized controlled 
trial conducted in Spain from 2003 to 2010 designed to 
assess the effect of the Mediterranean diet (MedDiet) on 
the primary prevention of CVD in a population at high 
cardiovascular risk. Participants were aged between 55 
and 80 years and had no CVD at enrollment, but they 
were at high risk because of the presence of type 2 dia-
betes or at least three of the following risk factors: cur-
rent smoking, hypertension, hypercholesterolemia, low 
high-density lipoprotein (HDL)-cholesterol, overweight 
or obesity, and family history of premature CVD. Exclu-
sion criteria included any severe chronic illness, drug or 
alcohol addiction, or allergy or intolerance to olive oil 
or nuts, two key supplemental foods. In the main study, 

Results The metabolite profiles that identified HL as a dichotomous or continuous variable included 24 and 58 
metabolites, respectively. These are amino acids or derivatives, lipids, and energy intermediates or xenobiotic 
compounds. After adjustment for potential confounders, baseline metabolite profiles were associated with a lower 
risk of T2D (hazard ratio [HR] and 95% confidence interval (CI): 0.54, 0.38–0.77 for dichotomous HL, and 0.22, 0.11–0.43 
for continuous HL). Similar results were observed with CVD (HR, 95% CI: 0.59, 0.42–0.83 for dichotomous HF and HR, 
95%CI: 0.58, 0.31–1.07 for continuous HL). The reduction in the risk of T2D and CVD was maintained or attenuated, 
respectively, for the 1-year metabolomic profile.

Conclusions In an elderly population at high risk of CVD, a set of metabolites was selected as potential metabolites 
associated with the HL pattern predicting the risk of T2D and, to a lesser extent, CVD. These results support previous 
findings that some of these metabolites are inversely associated with the risk of T2D and CVD.

Trial registration The PREDIMED trial was registered at ISRCTN (http://www.isrctn.com/, ISRCTN35739639).
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participants were randomly assigned to three interven-
tion groups: a MedDiet supplemented with virgin olive 
oil, a MedDiet supplemented with mixed nuts, or a low-
fat diet according to the American Heart Association 
guidelines (control group). A complete description of the 
PREDIMED study protocol can be found on the study 
website (http://www.predimed.es/) and in previous pub-
lications [21, 22]. The PREDIMED trial was registered at 
ISRCTN (http://www.isrctn.com/, ISRCTN35739639). 
All participants in the study provided written informed 
consent, and the Institutional Review Boards of each of 
the respective study centers approved the protocol.

Discovery and validation population
Participants involved in the discovery population analysis 
come from three study subsamples designed for metabo-
lite profiling and derived from the PREDIMED study: 
the PREDIMED-CVD study (primary outcome of the 
trial) that consisted of 229 incident CVD cases (myocar-
dial infarction, stroke, or death from cardiovascular dis-
ease) and 788 sub-cohort participants without CVD at 
baseline (with an overlap of 37 participants) [23, 24], the 
PREDIMED-T2D study (secondary outcome) that con-
sisted of 251 incident T2D cases (based on at least one 
of the following criteria: current treatment with insulin 
or oral hypoglycemic drugs, fasting glucose > 126  mg/
dl or glucose > 200 mg/dl in two measurements after an 
oral glucose tolerance test (OGTT)) and 694 sub-cohort 
participants without T2D at baseline (overlapping n = 53) 
[25, 26], and a third subset of PREDIMED participants 
who completed an OGTT at baseline (n = 132).

All participants that have baseline metabolomics data 
available from the aforementioned studies and have com-
pleted validated semi-quantitative 137-item food fre-
quency questionnaires (FFQs) were included to identify 
the HL profile (n = 1882). Participants with data missing 
from their FFQs at baseline (n = 11), a daily energy intake 
of < 500 and > 3500  kcal/day for women or < 800 and 
> 4000 kcal/day for men (n = 34), or ≥ 20% missing metab-
olite values (n = 4) were excluded from the analysis. The 
final sample included a total of 1833 participants at base-
line (discovery population), of whom 633 were allocated 
to the MedDiet group supplemented with extra virgin 
olive oil, 629 to the MedDiet group supplemented with 
the nuts, and 571 to the control diet group (Supplemental 
Fig. 1).

To validate the results, an internal validation analysis 
was conducted in the same population for whom life-
style and metabolomics data were available after 1 year 
of follow-up. Participants were excluded if they had miss-
ing values in FFQs (n = 269) and lifestyle habits (n = 10), 
a daily energy intake between < 500 and > 3500 kcal/day 
for women or < 800 and > 4000 kcal/day for men (n = 22) 
or ≥ 20% missing metabolite values (n = 57) at 1 year. The 

final sample at the 1-year visit (validation sample) was 
1524 participants (Supplementary Fig. 1).

Descriptive data and sample collection
At baseline and yearly after, participants provided gen-
eral descriptive information on sociodemographics (sex, 
age, level of education, and civil status), lifestyle (smok-
ing habits, physical activity), disease history, and drug 
use, among other things by answering general question-
naires in a face-to-face interview. Physical activity was 
assessed using a Spanish-validated version of the Minne-
sota leisure-time physical activity questionnaire [27, 28]. 
Additionally, anthropometric variables (weight, height, 
waist circumference) were measured and blood samples 
were obtained in fasting conditions by trained nurses. 
A semi-quantitative validated FFQ with 137 food items 
was administered at baseline and at 1 year of follow-up 
by trained dietitians in face-to-face interviews [29]. The 
frequency of consumption of the food items was reported 
using an incremental scale with nine categories (never or 
almost never; 1–3 servings/month; 1 serving/week, 2–4 
servings/week, 6 − 5 servings/week, 1 serving/day, 2–3 
servings/day, 4–6 servings/day and > 6 servings/day). 
Energy and nutrient intake were estimated according to 
Spanish food composition Table [30].

Adherence to the lifestyle pattern
An 8-point composite HL score was constructed using 
the 2018 WCFR/AICR recommendations for cancer 
prevention. It included the following components: (1) 
healthy weight, (2) physical activity, (3) plant food, (4) 
fast food and processed food, (5) red and processed meat, 
(6) sugar-sweetened beverages, and (7) alcohol consump-
tion. Because of the importance of smoking as a risk fac-
tor for chronic disease and morbidity, smoking status was 
included as another component. Healthy smoking status 
was defined as low for current smokers, intermediate 
for former smokers, and high for those who had never 
smoked. For each healthy factor, participants received a 
score of 1 point for high adherence, 0.5 points for inter-
mediate adherence, or 0 points for low adherence. How-
ever, breastfeeding and multivitamin supplement use for 
cancer prevention were omitted in our analysis due to the 
lack of information in relation to breastfeeding, and to 
the extremely low occurrences of the use of supplements 
for cancer in our population. More detailed information 
on the cut-off used for each component of the score has 
been previously reported[13] (see Table S1). The sum of 
these 8 components provided a total HL score ranging 
from 0 to 8 (in increments of 0.5 points), where higher 
scores indicate a healthier lifestyle.

http://www.predimed.es/
http://www.isrctn.com/
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Metabolomics profiling
For the metabolomics analysis, fasting blood samples 
were collected at baseline and after 1 year in EDTA-con-
taining tubes and stored in freezers at − 80 °C. Participant 
samples were then randomly ordered and analyzed in 
pairs (at baseline and 1-year follow-up visits) for quan-
titative metabolic profiling. Metabolomics assays of the 
plasma samples were performed at the Broad Institute 
using high-throughput two-liquid chromatography-
tandem mass spectrometry (LC-MS) [31]. Methods to 
measure polar and non-polar metabolites have been 
previously described [32–34]. Briefly, amino acids (AAs) 
and other polar metabolites were profiled with a Nexera 
X2 U-HPLC (Shimadzu Corp., Marlborough, MA, USA) 
coupled to a Q-Exactive mass spectrometer (Thermo 
Fisher Scientific, Waltham, MA, USA). These metabolites 
were extracted from 10µL plasma using 90µL of solution 
with acetonitrile/methanol/formic acid (74.9:24.9:0.2 
v/v/v) with stable isotope-labeled internal standards: 
valine-d8 (Sigma-Aldrich) and phenylalanine-d8 (Cam-
bridge Isotope Laboratories). The samples were centri-
fuged for 10  min at 9000 × g at 4  °C. The supernatants 
were injected directly into a 150 × 2-mm, 3-µm Atlan-
tis HILIC column (Waters), and eluted isocratically at 
a flow rate of 250µL min− 1 with 5% of 10 mmol ammo-
nium formate L− 1 and 0.1% formic acid in water (mobile 
phase A) for 0.5 min followed by a linear gradient to 40% 
of acetonitrile with 0.1% formic acid (mobile phase B) for 
over 10  min. Fatty acids and other lipids were profiled 
using a Nexera X2 U-HPLC (Shimadzu Corp., Marlbor-
ough, MA, USA) coupled with an Exactive Plus Orbi-
trap MS (Thermo Fisher Scientific, Waltham, MA, USA). 
These aliphatic metabolites were extracted from 10µL 
plasma using 190 µL of isopropanol containing 1,2-dido-
decanoyl-sn-glycerol-3-phosphocholine (Avanti Polar 
Lipids) as an internal standard. The lipid extraction (2µL) 
was injected into a 100 × 2.1 mm, 1.7 μm ACQUITY BEH 
C8 column (Waters; Milford, MA). The column was 
eluted isocratically with 80% mobile phase A: 10 mM 
ammonium acetate/methanol/formic acid (95:5:0.1 v/v/v) 
in 1 min followed by a linear gradient to 80% of mobile 
phase B: methanol/formic acid (99.9:0.1 v/v) in 2  min, 
then for a linear gradient to 100% mobile-phase B in 
7 min, and finally 3 min of 100% of mobile-phase B.

Mass spectrometry analyses were carried out using 
electrospray ionization in the positive-ion mode, and full-
scan spectra were acquired over 70–800 m/z for AAs and 
over 200–1100 m/z for lipids. Raw data were processed 
using Trace Finder 3.1 and 3.3 (Thermo Fisher Scientific) 
and Progenesis QI (Nonlinear Dynamics). Polar metabo-
lite identities were confirmed using authentic reference 
standards and lipid metabolites were identified using 
the polar head group, total acyl carbon numbers, and 
total acyl double bond content. Pooled plasma reference 

samples were analyzed, in pairs, at intervals of 20 par-
ticipant samples to standardize the data and assess the 
quality across the sample batches and analytical queue. 
From each pooled reference pair, one sample functioned 
as a passive quality control (QC) to assess the analytical 
reproducibility of each metabolite measurement, while 
the other one was used to standardize the process with a 
“nearest neighbor” approach.

Standardized values were generated using the ratio of 
the value in each sample over the nearest pooled plasma 
reference and multiplied by the median value measured 
across the pooled references. After quality filtering and 
standardization, 399 named metabolites qualified for 
primary analyses. Three metabolites (1,2-didodecanoyl-
sn-glycero-3-phosphocholine, valine-d8, and phenyl-
alanine-d8) were removed because they were internal 
standards, and 11 more because they had a high number 
of missing values (i.e., > 20%). In total, 385 metabolites 
were used in the final analysis.

Statistical analysis
Descriptive data of the study participants are presented 
using percentages and counts for categorical variables or 
mean and standard deviations (SD) for quantitative traits. 
To identify a metabolic signature associated with the 
HL, a continuous HL score was associated with the final 
dataset of 385 metabolites (inverse-normal transformed) 
from the PREDIMED study at baseline used as the dis-
covery population with a cross-validation approach. 
Then, data from the 1-year follow-up was used as a self-
validation sample. Values missing from selected metab-
olites (with more than 80% of the data available) were 
imputed using the random forest imputation approach 
(“missForest” function from the “missForest” R package) 
as previous publications have recommended [35–37]. 
Due to the high dimensionality and collinear nature of 
the data, logistical (binomial) linear regression models 
with the elastic net penalty, to reduce model overfitting, 
were used to build a predictive model for HL classifica-
tion based on metabolic data (“glmnet” R package). The 
elastic net algorithm is controlled by parameter α, the 
parameter α was trained in 0.1 increments from 0 (Ridge 
regression) to 1 (Lasso regression). To train the method, 
a leave-group-out cross-validation approach was per-
formed with 10 subsets of the training data in the dis-
covery population. Elastic net regression was applied to 
all but one subset, and the estimated model was applied 
to the left-out subset. The best prediction accuracy was 
obtained with 𝛼=0.1. Furthermore, an additional 10-fold 
cross-validation (CV) was performed to determine the 
optimal tuning of the 𝜆 parameter, which corresponds to 
the minimum mean squared error (minMSE). To reduce 
the number of retained predictors, metabolites were 
estimated with the minMSE + 1SE parameter using the 
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argument s= “lambda.1se” in the cv.glmnet function of 
the “glmnet” R Package. For reproducibility purposes, a 
10-CV elastic net regression with minMSE + 1SE param-
eter was replicated 10 times in all participants and the 
average value of the regression coefficients was reported. 
To evaluate the reliability of the results, the metabolite 
signature of the HL score was validated by Pearson cor-
relation coefficients.

Cox’s proportional hazards regression with Barlow 
weights and a robust variance estimator was used to 
associating HL and the metabolic signature with incident 
T2D and CVD risk. For each T2D and CVD nested case-
cohort studies, three Cox models with different covariates 
were estimated with 245 events and 222 events, respec-
tively, at baseline. The first model was adjusted for age, 
sex, and propensity scores (see Supplementary methods) 
[22, 38] and stratified by recruiting center and interven-
tion group. The second model was further adjusted for 
education level (primary, secondary, or college), family 
history of premature coronary heart disease (CHD) (yes/
no), hypercholesterolemia (yes/no), cholesterol-lowering 
medications (yes/no), hypertension (yes/no), antihyper-
tensive treatment (yes/no) and total energy intake (kcal 
per day). Diabetes prevalence (yes/no) was included as a 
covariate in the Cox models using the CVD sub-cohort. 
In the third model, the self-reported HL categorical vari-
able was included to examine association independence. 
For the 1-year analyses (i.e., validation sample), the same 
metabolomics models were generated using the 1-year 
follow-up metabolomics data, excluding incident cases 
of T2D or CVD that occurred before the 1-year follow-
up visit for the case-cohort studies (161 and 159 events, 
respectively).

Several sensibility analyses were done. Participants 
were classified into two categories of HL score (low, < 4 
points or high, ≥ 4 points) at baseline and 1-year follow-
up visits, and elastic net regression models were done 
again (𝛼=0.6). The performance of the predictive model 
for the HL categorical variable was evaluated by the area 
under the curve (AUC) of the receiver operating charac-
teristic (ROC) generated. The sample was stratified by 
intervention groups designed on the PREDIMED trial 
(MedDiet supplemented with extra virgin olive oil, Med-
Diet supplemented with nuts, and control group). Asso-
ciations between the high or low HL scores and the risk 
of developing T2D and CVD were calculated in the three 
intervention groups using Cox regression models with 
Barlow weights, and the likelihood ratio test was used to 
assess the significance of the 1-df interaction product-
term (effect modification in multiplicative scale) between 
the intervention groups (MedDiet groups compared with 
control) and the HL metabolite profile as a categorical 
variable.

Statistical procedures were performed with Stata 14.2 
software for Windows (Stata Corp.) and R software v4.2.1 
(www.R-project.org) (R Core Team, 2021). A p-value less 
than 0.05 was considered statistically significant.

Results
1. Characteristics of the study participants.

A total of 1883 participants (58% women, 67 years) at 
baseline and 1524 participants (57% women, 67 years) at 
1-year follow-up, were considered for the present study. 
The flow chart of selected participants can be seen in 
Supplemental Figure S1. Table  1 summarizes the char-
acteristics of the study participants in each of the HL 
categories. The mean and SD value of the HL score for 
participants with low HL scores was 3.01 ± 0.52 at base-
line, and 3.05 ± 0.52 after 1 year of follow-up. Those 
participants in the high HL category showed a score of 
4.46 ± 0.51 at baseline and a score of 4.56 ± 0.58 after 1 
year. Participants with high HL scores were more likely 
to be women and older than participants with low HL 
scores, who had a higher prevalence of T2D, hypercho-
lesterolemia, hypertension, and a positive family history 
of CVD. Similar trends for these variables were observed 
at the 1-year visit. By intervention group, the baseline 
mean HL was 3.67 ± 0.89 for participants in the Med-
Diet + EVOO group, 3.76 ± 0.90 for participants in the 
MetDiet + Nuts group, and 3.70 ± 0.88 for participants in 
the control group. No differences were observed between 
groups (P-value = 0.153).

2. Identification of metabolites related to a Healthy 
Lifestyle.

The metabolite profile of the HL score (using this score 
as a continuous variable) obtained by the elastic regres-
sion identified 58 metabolites (Fig.  1). Additionally, the 
low and high HL scores identified 24 metabolites (Figure 
S3). Table  2 summarizes the predictive performance of 
the metabolic signature on the HL score at baseline (dis-
covery population) and at 1 year of follow-up (validation 
population). The Pearson correlation values between the 
identified metabolite profile and the HL score were 0.50 
(95% CI: 0.47, 0.54) in the discovery sample, and 0.44 
(95% CI: 0.40, 0.48) in the validation sample (Table  2). 
The correlation between the HL score and the values pre-
dicted by the regression model is represented in Figure 
S2 as a scatterplot. The mean values of the metabolites’ 
regression coefficients are reported in Table S2. Regard-
ing sensibility analysis, the AUC values of the ROC analy-
sis were 0.73 (95% CI: 0.70, 0.75) and 0.68 (95% CI: 0.65, 
0.71) at baseline and the 1-year visit, respectively.

A total of 23 metabolites (12 negatively associated and 
11 positively associated) were selected in both mod-
els using the HL as a categorical or continuous variable. 
The differences and similarities in the metabolite profiles 
identified using the two models are shown in Fig. 2. The 

http://www.R-project.org
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metabolites with negative regression coefficients in both 
models were cotinine, hydroxycotinine, caffeine, urate, 
c5 and c7 carnitine, 16:1 cholesterol ester (CE), hydroxy-
proline, C54:1, C52:1 triacylglycerol (TAG), glutamate 
and isoleucine. The metabolites with positive coefficients 
were C22:5 CE, indole3propionate, C36:3 and C38:2 
phosphatidylethanolamine (PE), histidine, hexosemono-
phosphate, C22:0 lysophosphatidylethanolamine (LPE), 
pyridoxate, C53:3 TAG, cortisol, hydroxyhippurate, and 
n-methylproline.

3. Association between the identified metabolite 
profiles and the incidence of T2D and CVD.

Multivariable weighted Cox regression analyses showed 
a significant inverse association between the baseline HL 
metabolic signature (explored as a categorical or continu-
ous variable) and the risk of T2D incidence. These results 
were maintained after adjustment for the self-reported 
HL score (Table 3). Similar significant associations were 
found between the 1-year metabolite signature and the 
incidence of T2D when the incident cases during the first 
year of follow-up were excluded (Table 3).

In the case of the CVD-case cohort, a significant 
inverse association was observed between the HL meta-
bolic signature of the HL at baseline (explored as a cate-
gorical variable) and the risk of CVD incidence (Table 3). 
However, this inverse association was attenuated when 
the HL score was evaluated as a continuous variable. In 
the adjusted models, no associations were found between 
the 1-year metabolite signature and the incidence of 
CVD after the incident cases that occurred during the 
first year of follow-up had been excluded (Table 3).

The P for interaction between the control group and 
the MedDiet + EVOO group was only significant for 
T2D (P = 0.017 for T2D and P = 0.203 for CVD), and 
non-significant in the case of the MedDiet + Nuts group 
(P = 0.088 for T2D and P = 0.755 for CVD). We explored 
the associations splitting the population by the interven-
tion group, and similar inverse associations were found 
(Table S3).

Table 1 Baseline demographic characteristics of study participants according to Healthy Lifestyle (HL; low and high) categories
Discovery sample Validation sample
Low HL 
(n = 943)

High HL 
(n = 890)

Low HL 
(n = 660)

High HL 
(n = 864)

HL score* 3.01 ± 0.52 4.46 ± 0.51 3.21 ± 0.76 4.13 ± 0.76
Age (years) 66.42 ± 6.12 68.02 ± 5.89 66.63 ± 5.97 67.48 ± 5.95
Sex (women) 45.39 (428) 70.45 (627) 45.85 (296) 66.78 (577)
BMI (kg/m2) 30.76 ± 3.52 29.01 ± 3.38 30.61 ± 3.40 29.18 ± 3.48
Waist circumference (cm) 103.20 ± 9.38 97.26 ± 9.87 103.08 ± 9.55 97.82 ± 10.01
Fasting plasma glucose (mg/dl) 114.27 ± 34.91 111.94 ± 36.77 114.10 ± 36.82 111.78 ± 34.73
T2D % (n) 28.31 (267) 30.00 (267) 30.76 (203) 29.98 (259)
Prediabetes % (n) 24.60 (232) 20.56 (183) 21.82 (144) 22.92 (198)
Hypercholesterolemia % (n) 74.55 (703) 79.21 (705) 71.21 (470) 78.59 (679)
Hypertension % (n) 85.59 (808) 89.03 (795) 85.94 (886) 87.85 (477)
Family history of CVD % (n) 22.14 (209) 27.10 (242) 23.67 (149) 27.81 (233)
Smoking habit % (n)
Never smoked 41.99 (396) 78.20 (696) 39.79 (256) 74.88 (647)
Used to smoke 31.28 (295) 17.87 (159) 33.03 (218) 19.10 (165)
Currently smoke 26.72 (252) 3.93 (35) 28.18 (186) 6.02 (52)
MVPA (min/week) 12.97 ± 28.89 29.76 ± 42.11 18.47 ± 33.67 24.75 ± 39.79
Fiber (g/day) 23.54 ± 7.56 27.09 ± 9.12 24.41 ± 8.12 26.56 ± 9.22
Fast food & processed food (servings/day) 9.31 ± 5.66 8.04 ± 6.19 9.80 ± 6.43 8.16 ± 6.11
Red meat (g/week) 59.99 ± 39.25 41.08 ± 32.69 57.27 ± 37.28 46.84 ± 34.45
Processed meat (g/day) 29.10 ± 17.99 22.05 ± 15.52 28.82 ± 18.43 23.79 ± 16.77
Sugar-sweetened beverages (g/day) 28.56 ± 76.78 8.55 ± 35.78 24.06 ± 72.55 14.69 ± 50.68
Alcohol consumption (g/day)
in women 5.60 ± 7.85 2.47 ± 5.59 5.87 ± 8.39 2.91 ± 5.88
in men 19.90 ± 21.41 12.46 ± 15.87 20.75 ± 21.59 12.85 ± 14.84
Descriptive data in both discovery and validation samples were expressed as a percentage (n) for categorical variables and mean ± SD for quantitative variables. 
Participants were classified in the low group when HL scores were < 4 points or in the high group when ≥ 4 points.

BMI, Body Mass Index; MVPA, Moderate to Vigorous Physical Activity; T2D, Type 2 Diabetes; CVD, Cardiovascular Disease. Prediabetes status was defined as having 
fasting plasma glucose between ≥ 100 mg/dl and ≤ 125 mg/dl in the absence of the use of drugs for diabetes control.

*The Healthy Lifestyle score was calculated based on 8 factors: (1) a healthy weight, (2) physical activity, (3) plant foods, (4) fast food and processed foods, (5) red 
and processed meat, (6) sugar-sweetened beverages, (7) alcohol, and (8) smoking. Higher scores indicated better adherence to healthy lifestyle recommendations
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Table 2 Performance of the HL predicted values using the metabolite profile identified and the HL score as the categorical or 
continuous variable at baseline (discovery) and at 1 year of follow-up (validation)

Baseline visit (n = 1833) 1-year visit 
(n = 1524)

Assessment AUC or
cor-
relation 
coefficient 
(95% CI)

Total 
metabolitesc

Metabolites 
with positive 
coefficients

Metabolites 
with negative 
coefficients

AUC or
correlation 
coefficient 
(95% CI)

HL categories 0.73 (0.70, 
0.75)a

24 13 11 0.68 (0.65, 
0.71) a

HL score 0.50 (0.47, 
0.54) b

58 25 33 0.44 (0.40, 
0.48) b

aAUC of the ROC derived from the HL predicted values using the metabolite profile
bThe Pearson’s coefficients derived from the correlation between the HL score and the predicted values using the metabolite signature within the discovery and 
validation dataset
cNumber of metabolites obtained after the ten iterations of the 10-fold cross-validation procedure for the elastic net regression

AUC, area under the curve; ROC, receiver operating characteristic; HL, Healthy Lifestyle

Fig. 1 Regression coefficients (mean and SD) of the 58 metabolites selected using the HL score. Metabolites were selected ten times in the 10-cross-
validation elastic net regression in the whole dataset (n = 1833). Metabolites with negative coefficients (n = 25) are plotted on the left-hand side, whereas 
those with positive coefficients (n = 33) are plotted on the right-hand side
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Discussion
In this study, a metabolic signature of a predefined HL 
score was identified in the PREDIMED population using 
an agnostic machine-learning approach. The metabolic 
signature was inversely associated with the incidence of 
diabetes independently of the HL score and to a lesser 
extent with the risk of CVD. To the best of our knowl-
edge, this is the first study to identify plasma metabo-
lite signatures of a lifestyle score that predict the risk 
of future T2D and CVD in individuals at high cardio-
vascular risk, using data at baseline and after 1 year of 
follow-up.

In the last decade, some of the metabolite profiles iden-
tified with dietary patterns [39–41], lifestyle behaviors 
[42, 43], and lifestyle scores [16] have been related to the 
risk of various chronic conditions [19, 20]. For exam-
ple, in PREDIMED, a metabolic signature that robustly 
reflects adherence and metabolic response to a Mediter-
ranean diet prospectively predicts the risk of CVD risk 

Table 3 Hazard ratio (95% CIs) for incident T2D and CVD using the metabolomic signatures of the HL score as categorical or 
continuous variables in the T2D and CVD nested case-cohort studies

Baseline visit 1-year visit
HL categoriesa HL scoreb HL categoriesa HL scoreb

HR (95% 
CI)

P HR 
(95% 
CI)

P HR (95% 
CI)

P HR 
(95% 
CI)

P

Type 2 diabetes
Incident cases/total participants 245/923 161/705
Model 1 0.52 (0.38, 

0.71)
< 0.001 0.21 

(0.12, 
0.39)

< 0.001 0.57 (0.36, 
0.91)

0.018 0.22 
(0.08, 
0.55)

0.001

Model 2* 0.51 (0.37, 
0.71)

< 0.001 0.20 
(0.11, 
0.37)

< 0.001 0.46 (0.28, 
0.78)

0.004 0.14 
(0.05, 
0.39)

< 0.001

Model 3 0.54 (0.38, 
0.77)

0.001 0.22 
(0.11, 
0.43)

< 0.001 0.56 (0.32, 
0.95)

0.032 0.18 
(0.06, 
0.58)

0.004

Cardiovascular diseases
Incident cases/total participants 222/980 159/916
Model 1 0.64 (0.47, 

0.87)
0.005 0.38 

(0.22, 
0.67)

0.001 0.76 (0.54, 
1.07)

0.116 0.54 
(0.29, 
0.99)

0.045

Model 2* 0.64 (0.47, 
0.88)

0.006 0.42 
(0.24, 
0.72)

0.002 0.72 (0.48, 
1.06)

0.099 0.52 
(0.27, 
1.01)

0.055

Model 3 0.59 (0.42, 
0.83)

0.002 0.58 
(0.31, 
1.07)

0.080 0.82 (0.55, 
1.22)

0.339 0.87 
(0.43, 
1.77)

0.703

Cox proportional hazard models with Barlow weights were used to estimate the HRs for T2D and CVD risk
a HRs between HL categories using low HL as reference
b HRs refers to a 1-point increment in the metabolite profile of the HL score

Model 1: metabolite profile adjusted for age, sex, and propensity scores and stratified by recruitment center and intervention group. Model 2: model 1 + education 
level, family history of CHD, hypercholesterolemia, cholesterol-lowering medications, hypertension, antihypertensive treatment, and total energy intake

Model 3: model 2 + self-reported HL score (as categorical or continuous)

*Model 2 used in the CVD case cohort was further adjusted for diabetes prevalence

HL, healthy lifestyle; HR, hazard ratio; CI, confidence interval; P, p-value

Fig. 2 Venn diagram showing the number of metabolites identified using 
the HL score as the categorical or continuous variable
 Metabolites were selected with the elastic net regression model in the 
whole dataset (n = 1833). The number of metabolites with negative and 
positive coefficients was reported at the top or bottom of the figure, re-
spectively. The metabolites selected with both models appear in the over-
lapping area of the figure
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independently of traditional risk factors in both Spanish 
and US cohorts [18]. In the Coronary Artery Risk Devel-
opment in Young Adults (CARDIA) study, dietary meta-
bolic signatures have also been associated with long-term 
diabetes and cardiovascular risk [44]. Metabolic signa-
tures of physical activity have also been recently reported 
[42].

However, few studies have analyzed the associations 
between the metabolomic signatures of healthy lifestyle 
scores and the risk of future disease. Two studies iden-
tified a metabolic signature reflecting a HL pattern that 
was inversely associated with cancer risk [19, 20]. Unfor-
tunately, only in a few studies have plasma metabolite 
profiles of HL scores been explored and prospectively 
related to the risk of cardiometabolic conditions [17, 45].

To the best of our knowledge, only one study has been 
conducted to identify the plasma metabolite signature 
of a composite measure of lifestyle, and whether these 
metabolites can prospectively explain the association 
between a HL and incident T2D [16]. The HL score used 
in that study showed a strong inverse association with 
T2D incidence, which was largely explained by a set of 
plasma metabolites measured years before the clinical 
diagnosis. In the case of CVD, data from the UK biobank 
was recently used to associate the metabolic signature 
of a validated HL score with the incidence of coronary 
artery disease that improved the prediction of coronary 
artery disease risk using classical cardiovascular risk fac-
tors [45].

Our study identified two metabolic signatures of the 
HL score (categorical or continuous) with 24 and 58 
selected metabolites. The performance analysis confirms 
that the correlation between self-reported and predicted 
HL scores is quite strong. Selected metabolites may be 
used as potential biomarkers of lifestyle and might pro-
vide a better understanding of the mechanism underlying 
the benefits of HL. However, this requires confirmation 
in other studies and populations. Most of the overlapping 
selected metabolites for both signatures (12 of which 
were negatively associated with HL and 11 positively) 
were amino acids and derivatives, lipids, metabolites 
involved in the intermediate energy metabolism, xenobi-
otics, and products of bacterial co-metabolism.

Most of the metabolites identified had been previ-
ously reported to be highly related to the lifestyle factors 
included in the 2018 WCRF/AICR HL score we used to 
build our metabolite signatures (healthy weight, physical 
activity, fiber from plant foods, fast food, and processed 
foods, red and processed meat, sugar-sweetened bever-
ages, and alcohol consumption) [13].

Concerning the healthy body weight component of 
the HL score, our results are in line with previous stud-
ies that reported associations between some amino acids, 
lipids, and their derivative metabolites with body weight 

status, BMI, and fat mass [46–48]. Branched-chain amino 
acids (BCAAs), such as leucine, isoleucine, and valine, 
are the most common ones to be associated with obe-
sity, while only glycine has been inversely associated with 
increased fat mass [46, 48]. Furthermore, higher BCAA 
levels and lower glycine and glutamine concentrations 
have been linked to insulin resistance and a higher risk 
of T2D [49]. Likewise, elevated glutamate concentrations 
have been related to higher BMI and insulin resistance 
[49, 50]. Lipid metabolites, such as short- and long-chain 
acylcarnitines, fatty acids (particularly pro-inflammatory 
fatty acids), and phospholipids, have been related to adi-
posity, increased body weight, insulin resistance, and 
glucose metabolism [48, 49]. In our study, isoleucine, 
glutamate, and some lipid metabolites (C5 and C7 car-
nitine, C52:1 and C54:1 TAG) were negatively associated 
with the HL score, while glycine, PE (C36:3 and C38:2), 
and LPC (C18:0 and C22:0) were positively associated. 
The observed associations might reflect the healthy body 
weight score component and may contribute to explain-
ing the decreased risk of CVD and T2D observed for the 
HL metabolite signature, as some of these metabolites 
have been previously associated with an elevated risk of 
T2D and CVD [49].

As far as physical activity is concerned, in 7271 men 
from the Finnish cohort METabolic Syndrome In MEN 
(METSIM), increased physical activity was significantly 
associated with high levels of choline plasmalogens, 
lysophosphatidyl cholines, polyunsaturated fatty acids, 
long-chain acylcarnitines, imidazoles, bilirubin, hydroxy 
acids, indole propionate, and indole lactate [42]. Several 
of these metabolites have been previously associated 
with a decreased risk of T2D or CVD and a healthy diet. 
Conversely, individuals with increased physical activ-
ity showed lower levels of diacylglycerols, monoglycer-
ols, phosphatidylcholines, phosphatidylethanolamines, 
phosphatidyl inositol, sphingolipids, bile acids, steroids, 
short-chain acyl carnitines, γ-glutamyl-amino acids, 
N-acyl-L-α-amino acids, glutamate, creatine, tyrosine, 
pyruvate, and lactate than physically inactive individuals 
[42]. As in the METSIM study, in our study indole pro-
pionate was also directly associated with the HL, while 
short-chain acylcarnitines (C5 C7, and C9) and glutamate 
were inversely associated, which probably reflects the 
physical activity component of the score. Interestingly, 
indole propionate and glutamate have been, negatively 
and positively, related, respectively to an increased risk of 
diabetes [49], as was also observed with our HL metabo-
lomic signature. However, the levels of acylcarnitine C5 
were unexpectedly negatively associated with the HL 
score when this metabolite has been associated with an 
increased risk of diabetes [49].

Some metabolites related to HL in our study were pre-
viously associated with a plant-based diet [51, 52]. In a 



Page 10 of 13Rios et al. Cardiovascular Diabetology          (2023) 22:252 

general, healthy population from the USA, a plant-based 
diet was inversely linked with isoleucine, hydroxyproline, 
C5 carnitine, two plasmalogen subclasses, and three tria-
cylglycerols (C51:0, C:48:0, and C52:0) [52]. Meanwhile, 
direct associations were described for trigonelline, hip-
purate, betaine, pipecolic acid, pantothenic acid, N-ace-
tyl ornithine, C22:0 LPE, and C58:11 TAG [52]. Further, 
the metabolic signature of the healthy plant-based diet 
was associated with a 15% lower risk of T2D [53]. In 
this regard, the role of isoleucine, hydroxyproline, and 
C5 carnitine in T2D and CVD risk has been well estab-
lished [49, 53], whereas hydroxy hippurate and indol-
3-propionate gut microbiota metabolites have proved 
to be decreased in individuals with T2D [54, 55]. In our 
study, isoleucine, hydroxyproline, C5 carnitine, hippu-
rate, hydroxy hippurate, and indol-3-propionate were 
observed to have similar associations with the HL score. 
In the MASALA cohort [51], a “prudent” dietary pattern 
(high in fruits, vegetables, nuts, and legumes) was associ-
ated with proline betaine, LPC (22:4/0:0), LPE (22:4/0:0), 
PC (18:0/22:4) and SM(d19:1/16:0), but in our analyses, 
only the association with proline betaine was detected. 
We also observed a positive relationship between the HL 
score and n-methyl proline, which has been associated 
with greater adherence to healthy dietary patterns [41].

Red meat (RM) and processed meat (PM) are consid-
ered in the HL score that we used, and consistent evi-
dence has been reported that high consumption of these 
food products is associated with an increased risk of dia-
betes and CVD [56]. In a previous analysis conducted in 
the same PREDIMED study population, consumption 
of RM and PRM was associated with lower levels of lac-
tate, some carnitines, glycine, C34:0 phosphatidyl etha-
nolamine (PE), C40:10 PC, C22:1 SM, and uridine, and 
higher levels of C38:4 PC plasmalogen, isoleucine, leu-
cine, uric acid, and C36:5 PC plasmalogen, cotinine, and 
cortisol [57]. In the present study, glycine and uridine 
were positively associated with the HL score, while iso-
leucine, uric acid, cotinine, and cortisol were negatively 
associated, which may reflect the lower consumption of 
RM and PM. Most of the aforementioned metabolites 
associated with the HL score in our study have been 
related in the expected direction to the risk of diabetes 
or CVD in previous studies [49, 58]. As far as cortisol is 
concerned, it can be considered a core hormonal media-
tor of the allostatic load produced in response to various 
stresses. Alterations in morning serum cortisol and daily 
diurnal cortisol have been associated with adiposity, dys-
lipidemia, incident diabetes, and CVDs [59].

A higher intake of sugar-sweetened beverages has been 
prospectively associated with increased levels of dimethyl 
guanidino valerate (DMGV) in plasma [60]. DMGV has 
been reported to be a biomarker of liver fat and a predic-
tor of diabetes [34]. It should be pointed out that in our 

study this metabolite was negatively associated with the 
HL score. On the other hand, some studies have reported 
that a high-fructose diet increases de novo purine biosyn-
thesis in humans, which increases the production of uric 
acid. For example, the intake of high-fructose corn syrup-
sweetened beverages induced a dose-dependent increase 
in circulating lipid/lipoprotein risk factors for CVD and 
uric acid [61]. Carbonated drinks and fruit juice have 
also been positively associated with plasma leucine and 
isoleucine levels, and negatively with aconitic acid and 
methylmalonic acid [62]. In our study, uric acid and iso-
leucine, which have both been related to an increased 
risk of diabetes and CVD [49, 63] were negatively associ-
ated with the HL score.

Smoking, one of the most widely recognized unhealthy 
behaviors, has been associated with an elevated risk 
of T2D and CVD [4]. In our study, the metabolites of 
tobacco cotinine and hydroxicotinine were negatively 
related to low HL, as expected. It has been reported that 
smokers frequently consume higher amounts of alcohol, 
meat, and processed food, and have lower levels of physi-
cal activity [64], a combination of unhealthy habits that 
increases the risk of T2D and CVD [1, 16]. In addition, 
previous studies conducted in the same PREDIMED pop-
ulation, but also in other cohorts, reported that smokers 
are also more frequent consumers of coffee [65–67]. The 
inverse association observed between caffeine intake and 
the HL score in our study may be a reflection of this.

The loss in the significance of the association between 
the metabolomic HL signature and CVD incidence 
at 1-year may be explained by the changes in HL that 
occurred as a consequence of the intervention as well as 
a reduced number of participants included in this anal-
ysis, in spite of the trend of the associations was in the 
same direction that in the baseline analysis. Additionally, 
although the direction of the associations between the 
metabolomics HL signature and the incidence of T2D 
was similar between the three arms of the trial, the signif-
icance was only observed in both MedDiet groups prob-
ably because of the effect of the interventions decreasing 
the risk of diabetes as was previously reported in PRE-
DIMED [68].

Our study has some limitations. First, data obtained by 
questionnaires may be susceptible to participant recall 
bias despite being recorded in face-to-face interviews 
by trained personnel. Measurement errors must be con-
sidered a possibility even though the questionnaires 
were validated in a population similar to PREDIMED 
[29]. Second, because of insufficient data available, two 
WCRF/AICR recommendations (breastfeeding and mul-
tivitamin supplement use for cancer prevention) were 
omitted from our HL score. Nonetheless, it is important 
to mention that these components would have had very 
little impact on our results since they are only applicable 
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to specific subpopulations. We also must mention that 
information about renal function was available only in a 
low percentage of participants. Then, renal function has 
not been included in the manuscript as a potential con-
founder in our analysis. Third, participants were selected 
from an elderly Mediterranean population at high risk of 
CVD, and the pathogenic factors related to CVD devel-
opment might influence the results. In addition, because 
the participants for this study were selected in the con-
text of a case-cohort study design, the number of partici-
pants that have developed CVD during the follow-up is 
higher than in the general population. For this reason, 
the generalizability of the findings to other populations 
may be limited and the results should be replicated and 
validated in other cohorts. Forth, the metabolic signature 
was estimated with more than 350 well-characterized 
metabolites, but other unknown relevant metabolites 
related to HL may exist. Finally, because of its observa-
tional nature, our study was not designed to establish an 
unequivocal cause-effect relationship between identified 
metabolic signatures of HL and T2D or CVD incidence.

There are also strengths to our study, smoking habit 
was included in our HL score because of its importance 
as a risk factor for T2D and CVD. Furthermore, our 
analyses were conducted in a large cohort and possible 
confounding was controlled by several covariates. Finally, 
the results on the association between the metabolite 
signatures and the risk of T2D and CVD are still in the 
same direction when analyzed separately by intervention 
group. This adds robustness to our findings.

In conclusion, a set of metabolites were selected as 
potential biomarkers of a HL pattern in an elderly Medi-
terranean population at high risk of CVD. Most of these 
metabolites are amino acids and derivatives, lipids, xeno-
biotics, and products of bacterial co-metabolism. This 
HL metabolomic signature was inversely associated with 
the risk of incident T2D and to a lesser extent with inci-
dent CVD.
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