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Both LDL and HDL particle concentrations 
associate positively with an increased risk 
of developing microvascular complications 
in patients with type 2 diabetes: lost protection 
by HDL (Zodiac-63)
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Abstract 

Background Triglyceride-rich lipoproteins (TRL) and low-density lipoproteins (LDL) are associated positively whereas 
high-density lipoproteins (HDL) are associated inversely with the development of new-onset type 2 diabetes (T2D). 
Here we studied potential associations between these lipoprotein particle concentrations and the risk of developing 
microvascular complications in patients with established T2D.

Methods Lipoprotein particle concentrations (TRLP, LDLP, and HDLP) were determined in 278 patients with T2D par-
ticipating in a primary care-based longitudinal cohort study (Zwolle Outpatient Diabetes project Integrating Available 
Care [ZODIAC] study) leveraging the Vantera nuclear magnetic resonance (NMR) platform using the LP4 algorithm. 
Associations between lipoprotein particles and incident microvascular complications (nephropathy, neuropathy, 
and retinopathy) were assessed using Cox proportional hazards regression models.

Results In total, 136 patients had microvascular complications at baseline. During a median follow-up of 3.2 years, 49 
(34.5%) of 142 patients without microvascular complications at baseline developed new-onset microvascular com-
plications. In multivariable Cox proportional hazards regression analyses, both total LDLP and HDLP concentrations, 
but not total TRLP concentrations, were positively associated with an increased risk of developing any microvascular 
complications after adjustment for potential confounding factors, including age, sex, disease duration, HbA1c levels, 
history of macrovascular complications, and statin use (adjusted hazard ratio [HR] per 1 SD increment: 1.70 [95% CI 
1.24–2.34], P < 0.001 and 1.63 [95% CI 1.19–2.23], P = 0.002, respectively). When analyzing each microvascular compli-
cation individually, total LDLP concentrations were positively associated with retinopathy (adjusted HR 3.35, 95% CI 
1.35–8.30, P = 0.009) and nephropathy (adjusted HR 2.13, 95% CI 1.27–3.35, P = 0.004), and total HDLP concentrations 
with neuropathy (adjusted HR 1.77, 95% CI 1.15–2.70, P = 0.009). No significant associations were observed for lipopro-
tein particle subfractions.

Conclusions Total lipoprotein particle concentrations of both LDL and HDL associate positively with an increased risk 
of developing microvascular complications in T2D. We propose that the protective role of HDL on the development 
of microvascular complications may be lost in established T2D.
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Background
Individuals with type 2 diabetes (T2D) commonly exhibit 
alterations in circulating lipoprotein particles and their 
subfractions, captured as increased levels of triglyceride-
rich apolipoprotein B (apoB)-containing lipoproteins, 
e.g. very large very low-density lipoproteins (VLDL) and 
small low-density lipoproteins (LDL), and decreased lev-
els of high-density lipoproteins (HDL) [1–10]. Altered 
levels of circulating lipoprotein particles associate with 
impaired glucose tolerance and new-onset T2D, suggest-
ing an early role in its pathogenesis [11–16]. Moreover, 
previous studies have also shown cross-sectional and 
longitudinal associations of elevated LDL-cholesterol 
with albuminuria in adult patients with type 1 diabetes, 
T2D, with nephropathy in children with type 1 diabetes 
(T1D) as well as with albuminuria in non-diabetic indi-
viduals [17–21], Furthermore, modest and inconsistent 
changes in lipoprotein levels were found in diabetic retin-
opathy [21, 22], and a prospective association of raised 
triglycerides with the development of diabetic neuropa-
thy [23, 24]. Few studies so far have evaluated the asso-
ciations between different types of lipoprotein particles, 
their subfractions, and the development of microvascular 
complications in established T2D [15, 16, 25, 26].

Notably, methods based on nuclear magnetic reso-
nance (NMR) spectroscopy have been developed that 
facilitate large scale and more in-depth characterization 
of lipoprotein particles and their subfractions [27]. Accu-
mulating evidence suggests that measurements of lipo-
protein particles may have merit in predicting the onset 
of T2D. Indeed, multiple population-based studies have 
used such methods to examine associations between 
triglyceride-rich lipoprotein (TRL), LDL, and HDL par-
ticle concentrations (TRLP, LDLP and HDLP) and their 
subfractions with the risk of new-onset T2D [28–33]. 
For example, TRL and LDL particle concentrations and 
characteristics (subfractions and sizes) have recently 
been associated with incident T2D in a large popula-
tion-based cohort of almost 5,000 individuals, as well as 
with changes in β-cell function independent of insulin 
resistance [28]. Notably, however, associations of com-
prehensive NMR-determined lipoprotein particle con-
centrations and subfractions with the risk of developing 
microvascular complications in established T2D have, to 
the best of our knowledge, not yet been explored.

Here we hypothesized that lipoprotein particle concen-
trations and their subfractions may be of potential util-
ity as biomarkers for the development of microvascular 
complications in individuals with T2D. In this study, we 

aimed to determine associations between lipoprotein 
particles and their subfractions with the risk of develop-
ing microvascular complications in patients with T2D 
through leveraging an NMR-based platform. To do so, 
we measured lipoprotein particles in patients participat-
ing in a primary care-based longitudinal cohort study of 
individuals with T2D.

Methods
Study population
This study featured samples and data from the Zwolle 
Outpatient Diabetes project Integrating Available Care 
(ZODIAC) study, which is a longitudinal observational 
cohort study recruiting primary care-treated patients 
with established T2D in the Zwolle region of the Neth-
erlands. For this study, plasma samples obtained at base-
line were analyzed from individuals with T2D of whom 
data on prevalence and follow-up development of micro-
vascular complications (i.e. either diabetic nephropathy, 
neuropathy, or retinopathy) was available. After exclusion 
of four patients with missing follow-up data, the evalu-
able cohort consisted of 278 patients of whom 136 had 
microvascular complications at baseline. These patients 
were excluded from the follow-up analysis leaving 142 
patients for the longitudinal analysis. This study was 
approved by the Institutional Review Board (IRB) of the 
Isala Hospital Zwolle, the Netherlands (IRB reference 
nos. 03.0316 and 07.0335). All patients provided written 
informed consent for study participation.

Study outcomes and definitions
Primary outcome of this study was the development 
of microvascular complications including diabetic 
nephropathy, neuropathy and retinopathy. Development 
of complications was assessed annually using a stand-
ardized protocol. Diabetic nephropathy was defined 
as the presence of at least two consecutive measure-
ments of elevated albuminuria (which was determined 
as albumin-to-creatinine ratio > 3.5 mg/mmol for women 
and > 2.5 mg/mmol for men) or one measurement of ele-
vated albuminuria in case the patient was receiving treat-
ment with angiotensin-converting enzyme-inhibitors or 
angiotensin-II-receptor antagonists. The development of 
diabetic neuropathy was defined as two or more (out of 
three) errors on foot sensibility tests on at least one foot 
when using a 5.07 Semmes–Weinstein monofilament. 
The development of diabetic retinopathy was established 
through fundus imaging using a retinal camera and per-
formed by trained ophthalmologists.
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Measurements of lipoprotein particles
Ethylenediaminetetraacetic acid (EDTA) plasma sam-
ples at baseline were collected and stored at −80ºC 
until further analysis. The lipoprotein particle concen-
trations and related parameters were determined by 
NMR  LipoProfile® testing (Labcorp, Morrisville, NC, 
USA), as described previously [27–29]. NMR spectra 
were determined using the LP4 algorithm embedded 
in an optimized version of the NMR LipoProfile test 
[27]. TRLP (subfractions: very large, large, medium, 
small, and very small), LDLP (subfractions: large, 
medium, and small) and HDLP (subfractions: small, 
medium, and large) were measured leveraging the con-
ventional deconvolution method and the amplitudes of 
their corresponding lipid methyl group NMR signals 
that are spectroscopically distinct [27, 29]. Total con-
centrations of TRLP, LDLP and HDLP were calculated 
as the sum of their individual subfractions. Precision 
(%CV) for the lipoprotein classes were (within-lab): 
TRLP:10.0–5.4%, LDLP:3.1–2.0% and HDLP:1.3–1.2% 
for low to high concentration pools. Estimated ranges 
of particle diameters for the TRL and LDL particles 
were as follows: very large TRLP, 90–240  nm; large 
TRLP, 50–89  nm; medium TRLP, 37–49  nm; small 
TRLP, 30–36  nm; very small TRLP, 24–29  nm; large 
LDLP, 21.5–23  nm; medium LDLP, 20.5–21.4  nm; and 
small LDLP, 19–20.4  nm. Estimated ranges of particle 
diameter for the HDL subclasses were: small HDL, 7.4 
to 8.0 nm; medium HDL, 8.1 to 9.5 nm; large HDL, 9.6 
to 13 nm [34, 35]. Precision (%CV) for the lipoprotein 
subclasses varied as follows (within-lab): TRLP sub-
classes: 9.9–18.3%, LDLP subclasses:3.8–19.6% and 
HDLP: 3.8–10.9%.

Triglycerides (TG), total cholesterol (TC), LDL-cho-
lesterol (LDL-c), HDL-cholesterol (HDL-c), and Apoli-
poprotein B (ApoB) concentrations were calculated 
following equations derived from lipoprotein measures 
that were analyzed on a Vantera Clinical NMR Analyzer 
platform using partial least squares (PLS) regression 
models [36]. As described, model performance yielded 
coefficients of variation (CVs) between 3.7 and 6.0% for 
these lipids and (apo)lipoprotein measures [33]. Corre-
lation coefficients with chemically measured concentra-
tions ranged from R = 0.980 to R = 0.997, and within-lab 
CVs ranged from 1.0 to 3.6% [36]. Apolipoprotein A-1 
(apoA-1) concentrations were determined using linear 
regression of the lipoprotein HDL subclass signal areas 
against serum apolipoprotein levels measured chemically 
in a large reference range study population (n = 698). Pre-
cision (%CV) for apoA-I: 2.2 to 1.7% for low to high con-
centration pools and the correlation coefficient for the 
comparison with chemically measured apoA-I: R = 0.930 
(n = 6,831).

Statistical analysis
Baseline descriptive statistics of the study population 
were presented as means ± standard deviation (SD)  or 
as medians with interquartile ranges (IQR). Categori-
cal variables were given as numbers with corresponding 
percentages (%). Baseline characteristics were presented 
for the total study population and according to the (non-)
development of microvascular complications. Differences 
in baseline characteristics between patients with micro-
vascular complications at baseline, those who developed 
and did not not develop microvascular complications 
during follow-up were tested using one-way analysis of 
variance (ANOVA) or Kruskal–Wallis tests for continu-
ous variables followed by post-hoc testing (independent 
sample t-tests or Mann–Whitney U-tests, respectively), 
and chi-square tests for categorical variables. Univari-
able correlations were analyzed by Spearman correlation 
analysis. Univariable and multivariable Cox proportional 
hazards regression analyses were performed to study 
associations between lipoprotein particles and the risk of 
development of microvascular complications, of which 
results were expressed as hazard ratios (HRs) with corre-
sponding 95% confidence intervals. Lipoprotein particles 
were standardized resulting in HRs expressed as per 1-SD 
increment or decrement. Proportionality of hazards was 
checked to ascertain absence of violating assumptions. 
Statistical analysis was performed using SPSS Statistics 
28.0 software (SPSS Inc., Chicago, IL, USA). Two-tailed 
P < 0.05 were considered statistically significant.

Results
Baseline cohort characteristics
Baseline demographic, clinical and laboratory charac-
teristics of the total study population are presented in 
Table  1. Of the 136 patients with microvascular com-
plications at baseline, 74 (54.4%) had nephropathy, 61 
(44.9%) had retinopathy and 63 (46.3%) had neuropathy 
alone or in combination. Patients without microvascular 
complications at baseline who did not develop micro-
vascular complications during follow-up were younger, 
had a shorter diabetes duration, a lower HbA1c and a 
history of macrovascular complications less frequently. 
Besides diet and lifestyle modifications, patients were 
treated with metformin, sulfonylurea and insulin; other 
glucose-lowering drugs were not used. Patients without 
microvascular complications at baseline who did not 
develop microvascular complications during follow-up 
were treated with diet alone more frequently and with 
metformin and/or insulin less frequently. There were no 
significant differences in statin use between the groups.

The total TRLP concentration was lowest in those 
patients without microvascular complications at baseline 
who did not develop microvascular complications during 



Page 4 of 11Bourgonje et al. Cardiovascular Diabetology          (2023) 22:169 

Table 1 Baseline demographic, clinical and laboratory data of patients with microvascular complications at baseline, patients 
without microvascular complications at baseline but developing microvascular complications during follow-up and patients without 
microvascular complications not developing microvascular complications during follow-up

Data are presented as means ± SD, medians with IQR. Categorical variables are given in numbers with corresponding percentages (%)

eGFR estimated glomerular filtration rate, HbA1c hemoglobin A1c, HDLP high-density lipoprotein particles, LDLP low-density lipoprotein particles, TRLP triglyceride-
rich lipoprotein particles
* P-values for comparisons between patients without microvascular complications at baseline nor during follow-up versus patients either with microvascular 
complications at baseline or developing microvascular complications during follow-up

Microvascular complications 
at baseline (n = 136)

No microvascular 
complications at baseline but 
occurring during follow-up 
(n = 49)

No microvascular 
complications at baseline and 
not occurring during follow-up 
(n = 93)

Overall P-value P-value*

Age (years) 66.9 ± 9.7 67.0 ± 10.3 61.5 ± 10.4  < 0.001  < 0.001

Sex 0.419 0.189

Male, n (%) 68 (50.0) 25 (51.0) 39 (41.9)

Female, n (%) 68 (50.0) 24 (49.0) 54 (58.1)

BMI (kg/m2) 27.9 [25.2–31.2] 30.1 [25.5–33.9] 28.6 [24.7–31.5] 0.253 0.463

Disease duration (years) 5.0 [2.1–10.0] 3.0 [1.4–6.0] 2.6 [1.3–5.0]  < 0.001  < 0.001

Systolic blood pressure (mmHg) 150 [135–160] 150 [140–163] 145 [135–164] 0.854 0.576

Current smoking, n (%) 29 (21.8) 6 (12.2) 16 (17.2) 0.311 0.683

History of macrovascular compli-
cations, n (%)

63 (46.3) 15 (30.6) 20 (21.5)  < 0.001  < 0.001

Diabetes therapy at baseline  < 0.001  < 0.001

Diet alone, n (%) 11 (8.1) 8 (16.3) 24 (25.8)

Metformin, n (%) 31 (31.6) 9 (28.1) 10 (20.0)

SU-derivatives, n (%) 49 (50.0) 19 (59.4) 31 (62.0)

Insulin, n (%) 20 (14.7) 3 (6.1) 1 (1.1)

Both, n (%) 12 (8.8) 4 (8.2) 3 (3.2)

Statin use, n (%) 28 (20.9) 6 (12.2) 16 (17.2) 0.414 0.764

HbA1c (%) 6.9 [6.3–8.0] 7.0 [6.3–8.2] 6.5 [5.9–7.3] 0.002  < 0.001

HbA1c (mmol/mol) 51.9 [45.5–63.9] 53.0 [45.4–66.1] 47.5 [41.0–56.3] 0.002  < 0.001

eGFR (ml/min/1.73m2) 69.5 [57.5–93.8] 75.0 [60.0–88.0] 77.7 [59.2–93.7] 0.406 0.264

Total TRLP (nmol/L) 166 [120–228] 172 [128–205] 141 [100–209] 0.089 0.028

Very large TRLP (nmol/L) 0.30 [0.10–0.73] 0.50 [0.10–1.50] 0.20 [0.00–0.90] 0.202 0.147

Large TRLP (nmol/L) 6.30 [2.80–12.2] 6.80 [3.70–13.4] 5.50 [2.60–12.2] 0.704 0.632

Medium TLRP (nmol/L) 25.1 [15.8–35.8] 23.9 [16.5–34.4] 24.2 [14.0–38.1] 0.993 0.907

Small TRLP (nmol/L) 29.8 [11.6–46.0] 33.7 [11.4–49.4] 27.6 [7.5–44.5] 0.583 0.379

Very small TLRP (nmol/L) 93.1 [51.3–156.3] 97.2 [47.1–144.2] 76.8 [35.5–134.7] 0.257 0.105

Total LDLP (nmol/L) 1750 [1429–2071] 1813 [1480–2086] 1666 [1394–1935] 0.131 0.062

Large LDLP (nmol/L) 436 [278–714] 464 [253–747] 491 [284–780] 0.689 0.404

Medium LDLP (nmol/L) 546 [131–872] 527 [62–935] 317 [49–686] 0.087 0.028

Small LDLP (nmol/L) 640 [439–975] 717 [480–1000] 691 [421–955] 0.776 0.864

Total HDLP (nmol/L) 21.1 [19.7–23.3] 21.1 [19.6–23.4] 20.9 [19.2–23.1] 0.775 0.509

Large HDLP (µmol/L) 0.80 [0.30–1.50] 0.50 [0.20–1.50] 0.60 [0.25–1.40] 0.345 0.479

Medium HDLP (µmol/L) 4.95 [3.98–6.83] 4.90 [3.90–6.45] 5.00 [4.10–6.50] 0.890 0.631

Small HDLP (µmol/L) 15.1 [13.1–16.7] 15.1 [12.6–16.9] 14.8 [12.6–16.9] 0.829 0.547

TRL size 54.6 [47.2–61.2] 55.8 [48.6–62.5] 54.2 [48.5–61.6] 0.805 0.786

LDL size 21.0 [20.8–21.4] 21.0 [20.7–21.4] 21.1 [20.7–21.5] 0.895 0.988

HDL size 8.7 [8.5–8.9] 8.6 [8.4–9.0] 8.6 [8.4–8.9] 0.555 0.398

Triglycerides (mg/dL) 195 [146–265] 192 [155–271] 173 [135–242] 0.390 0.181

Total cholesterol (mg/dL) 200 [179–229] 201 [182–237] 196 [166–219] 0.148 0.055

LDL-cholesterol (mg/dL) 114 [93–137] 120 [93–140] 111 [89–129] 0.210 0.088

HDL-cholesterol (mg/dL) 44 [38–52] 43 [38–53] 44 [37–51] 0.866 0.667

ApoB (mg/dL) 101 [87–125] 105 [86.5–127] 98.0 [82.0–114] 0.083 0.033

ApoA-1 (mg/dL) 124 [112–141] 123 [115–140] 125 [112–135] 0.853 0.593
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follow-up, with trends for lower TRL subfractions except 
for medium TRLP. The total LDLP concentration and 
the medium LDLP concentration tended to be lower in 
patients without microvascular complications at baseline 
who did not develop microvascular complications dur-
ing follow-up. Neither the total HDLP concentration, nor 
HDL subfractions were higher in patients without micro-
vascular complications at baseline who did not develop 
microvascular complications during follow-up.

TG, TC and LDL-c tended to be lower and apoB was 
significantly lower in  patients without microvascular 
complications at baseline who did not develop micro-
vascular complications during follow-up, but there were 
no between-group differences in HDL-cholesterol and 
apoA1.

In the total cohort, TRLP was correlated with triglyc-
erides (ρ = 0.30, P < 0.001), LDLP was correlated with 
LDL-cholesterol (ρ = 0.94, P < 0.001) and apoB (ρ = 0.97, 
P < 0.001) and HDLP was correlated with HDL-choles-
terol (ρ = 0.60, P < 0.001) and apoA-I (ρ = 0.82, P < 0.001).

Lipoprotein particle concentrations and the development 
of microvascular complications
Over a median follow-up of 3.2  years [IQR: 2.9–
3.4 years], 49 of 142 individuals (34.5%) developed at least 
one microvascular complication. Of these, 19 patients 
developed nephropathy, 29 neuropathy, and 10 patients 
retinopathy, either alone or in combination. Cox propor-
tional hazards regression analyses revealed a close to sig-
nificant association between total TRLP concentrations 
and the risk of developing microvascular complications 
(Model 1, HR per 1-SD increment 1.31, 95% CI 1.00–1.71, 
P = 0.051), while statistically significant associations were 
observed for total LDLP (Model 1, HR 1.66, 95% CI 1.23–
2.24, P = 0.001) and HDLP concentrations (Model 1, HR 
1.44, 95% CI 1.11–1.87, P = 0.007) (Table 2). Upon adjust-
ment for age and sex, the association between total TRLP 
concentrations and the risk of developing microvascular 
complications was statistically significant (Model 2, HR 
1.45, 95% CI 1.07–1.94, P = 0.015), and associations for 
total LDLP and HDLP concentrations remained statis-
tically significant (Model 2, HR 1.75, 95% CI: 1.29–2.38, 
P < 0.001 and HR 1.58, 95% CI 1.19–2.10, P = 0.001, 
respectively). After additional adjustment for disease 
duration, HbA1c levels, history of macrovascular compli-
cations, and use of statins, the association between total 
TRLP concentrations and the risk of developing micro-
vascular complications was not significant (Model 4, HR 
1.27, 95% CI 0.93–1.75, P = 0.135), while associations for 
total LDLP and HDLP concentrations remained signifi-
cantly associated (Model 4, HR 1.70, 95% CI 1.24–2.34, 
P < 0.001 and HR 1.63, 95% CI 1.19–2.23, P = 0.002).

When analyzing the development of diabetic neuropa-
thy, nephropathy and retinopathy as individual outcomes, 
total TRLP concentrations appeared to be significantly 
associated with the risk of developing retinopathy (Model 
1, HR 2.10, 95% CI 1.24–3.58], P = 0.006), albeit statisti-
cal significance disappeared after adjustment for poten-
tial confounding factors (Model 4, HR 1.77, 95% CI 
0.93–3.37], P = 0.084, Table 3). Similarly, total LDLP con-
centrations were significantly associated with the risk of 
developing diabetic retinopathy, which remained after 
adjustment for the same potential confounding factors 
(Model 4, HR 3.35, 95% CI 1.35–8.30, P = 0.009). Total 
LDLP were also significantly associated with the risk 
of developing nephropathy (Model 4, HR 2.13, 95% CI 
1.27–3.35, P = 0.004). Unlike LDLP concentrations, total 
HDLP concentrations were not significantly associated 
with either diabetic nephropathy or retinopathy in fully 
adjusted analyses, but were significantly associated with 
the risk of developing neuropathy, also after adjustment 
for potential confounding factors (Model 4, HR 1.77, 
95% CI 1.15–2.70, P = 0.009). Except for medium LDLP, 
none of the lipoprotein subfractions (for TRLP, LDLP, 
and HDLP) were significantly associated with the risk of 
developing microvascular complications in crude analy-
ses, neither in combination (Additional file  1: Table  S1) 
nor with respect to individual complications (data not 
shown). In addition, there were no associations of TRL, 

Table 2 Cox proportional hazards regression analyses for 
associations between lipoprotein fractions and the risk of 
developing microvascular complications in patients with type 2 
diabetes

HRs are expressed per 1-SD increment. Model 1: crude. Model 2: model 1, plus 
age and sex. Model 3: model 2, plus adjustment for disease duration, HbA1c and 
history of macrovascular complications. Model 4: model 3, with adjustment for 
statin use

Statistically significant associations are indicated in bold

Model Total microvascular 
complications

P-value

HR 95% CI

Total TRLP concentration 1 1.31 1.00–1.71 0.051

2 1.45 1.07–1.94 0.015
3 1.27 0.93–1.74 0.130

4 1.27 0.93–1.75 0.135

Total LDLP concentration 1 1.66 1.23–2.24 0.001
2 1.75 1.29–2.38  < 0.001
3 1.72 1.26–2.36  < 0.001
4 1.70 1.24–2.34  < 0.001

Total HDLP concentration 1 1.44 1.11–1.87 0.007
2 1.58 1.19–2.10 0.001
3 1.55 1.15–2.09 0.004
4 1.63 1.19–2.23 0.002
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LDL or HDL size with incident microvascular complica-
tions (Additional file 1: Table S1).

Finally, when analyzing derived concentrations of TG, 
LDL-cholesterol and HDL-cholesterol in relation to the 
risk of developing microvascular complications, only 
LDL- and HDL-cholesterol were significantly associated, 
whereas triglyceride concentrations were not (Table 4).

Discussion
We have demonstrated that within a primary care-based 
cohort of individuals with established T2D and a rela-
tively short diabetes duration (median < 3  years), higher 
circulating concentrations of both total LDL and HDL 
particles are associated with an increased risk of devel-
opment of microvascular complications, even after 
adjustment for relevant covariates. When analyzing 
microvascular complications individually, total LDL par-
ticle concentrations were significantly associated with 
an increased risk of developing diabetic nephropathy 
and retinopathy, whereas total HDL particle concentra-
tions were associated with an increased risk of develop-
ing diabetic neuropathy, both after full adjustment for 
potential confounding factors. Total TRL particle con-
centrations were associated with the development of 
any microvascular complication and diabetic retinopa-
thy only in partly adjusted analyses. Except for medium 
LDL particles, lipoprotein subfractions of TRL, LDL, and 
HDL particles were not significantly associated with the 
risk of developing microvascular complications in crude 
analyses, neither as a composite outcome nor with indi-
vidual complications. However, point estimates of the 

hazard ratios of associations with TRL, LDL and HDL 
particles were always above 1.0 potentially suggesting 
adverse effects of these lipoprotein subfractions with 
new-onset microvascular complications. Collectively, 
our results suggest a relevant involvement of both LDL 

Table 3 Cox proportional hazards regression analyses for associations between lipoprotein fractions and the risk of developing 
diabetic nephropathy, neuropathy and retinopathy in patients with type 2 diabetes

HRs are expressed per 1-SD increment. Model 1: crude. Model 2: model 1, plus age and sex. Model 3: model 2, plus adjustment for disease duration, HbA1c and history 
of macrovascular complications. Model 4: model 3, with adjustment for statin use

Statistically significant associations are indicated in bold

Model Nephropathy Neuropathy Retinopathy

HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value

Total TRLP concentration 1 1.23 0.78–1.93 0.375 1.25 0.88–1.78 0.217 2.10 1.24–3.58 0.006
2 1.36 0.83–2.22 0.218 1.42 0.95–2.12 0.088 2.34 1.34–4.07 0.003
3 1.11 0.64–1.92 0.704 1.29 0.85–1.95 0.231 1.76 0.93–3.31 0.081

4 1.05 0.60–1.84 0.867 1.29 0.85–1.97 0.230 1.77 0.93–3.37 0.084

Total LDLP concentration 1 1.71 1.05–2.80 0.032 1.32 0.89–1.96 0.170 2.93 1.42–6.06 0.004
2 1.83 1.11–3.00 0.017 1.42 0.95–2.11 0.089 3.24 1.54–6.79 0.002
3 2.12 1.26–3.58 0.005 1.32 0.89–1.97 0.164 3.31 1.33–8.24 0.010
4 2.13 1.27–3.55 0.004 1.28 0.86–1.91 0.229 3.35 1.35–8.30 0.009

Total HDLP concentration 1 1.18 0.76–1.85 0.461 1.45 1.03–2.03 0.031 2.00 1.06–3.79 0.032
2 1.25 0.79–1.98 0.349 1.70 1.17–2.47 0.005 1.91 1.00–3.63 0.049
3 1.31 0.80–2.14 0.280 1.60 1.08–2.38 0.020 1.77 0.68–4.58 0.239

4 1.31 0.78–2.23 0.309 1.77 1.15–2.70 0.009 1.78 0.69–4.59 0.232

Table 4 Cox proportional hazards regression analyses for 
associations between standard lipid measures (triglycerides, 
LDL-cholesterol and HDL-cholesterol) and the risk of developing 
microvascular complications in patients with type 2 diabetes

HRs are expressed per 1-SD increment. Model 1: crude. Model 2: model 1, plus 
age and sex. Model 3: model 2, plus adjustment for disease duration, HbA1c and 
history of macrovascular complications. Model 4: model 3, with adjustment for 
statin use

Statistically significant associations are indicated in bold

Model Total microvascular 
complications

P-value

HR 95% CI

Triglycerides 1 1.08 0.87–1.35 0.485

2 1.17 0.92–1.48 0.203

3 1.06 0.83–1.37 0.634

4 1.05 0.81–1.36 0.702

LDL-cholesterol 1 1.54 1.16–2.05 0.003
2 1.65 1.24–2.20  < 0.001
3 1.68 1.25–2.26  < 0.001
4 1.66 1.23–2.23  < 0.001

HDL-cholesterol 1 1.40 1.06–1.86 0.019
2 1.41 1.07–1.86 0.014
3 1.44 1.08–1.92 0.014
4 1.45 1.08–1.94 0.013



Page 7 of 11Bourgonje et al. Cardiovascular Diabetology          (2023) 22:169  

and HDL particle concentrations in the development of 
microvascular complications in T2D, with a paradoxical 
association for HDL that is postulated to take on a pro-
inflammatory role in the context of established T2D.

The total TRL and LDL particle concentrations as 
found in the present study among T2D patients who 
had microvascular complications at baseline and among 
patients who did and did not develop microvascular 
complications are higher than those in non-diabetic par-
ticipants from the PREVEND cohort study who did not 
develop T2D during follow-up. In our previous report 
using the same NMR platform and also applying the LP4 
algorithm, the total TRL particle and LDL particle con-
centrations amounted to 147  nmol/L and 1467  nmol/L, 
respectively [29]. Furthermore, the total HDL particle 
concentration was modestly lower in the currently stud-
ied T2D cohort compared to that previously reported in 
non-diabetic subjects [29]. These comparisons corrobo-
rate the impact of the diabetic state on apoB-containing 
lipoprotein elevations with some reductions in HDL 
particles.

Of note, in the present study, measurements of TG, 
LDL-c and HDL-c, were derived from NMR-based equa-
tions. In secondary analyses with these conventional 
lipid- and lipoprotein measures, the association of tri-
glycerides with incident microvascular complications did 
not reach significance, but we observed a positive asso-
ciation with LDL-c and HDL-c both in crude as well as in 
fully adjusted analysis, congruent with our main analysis 
on LDL and HDL particles.

Our findings regarding the association of total LDL 
particle concentrations with incident microvascular 
complications, in particular nephropathy and retinopa-
thy, are in line with other studies demonstrating that 
LDL-cholesterol is elevated in T2D individuals with 
microalbuminuria [19] and retinopathy [22], although 
we could not pinpoint this association to small LDL par-
ticles, which are known to be more susceptible to oxida-
tive modification and glycation [37, 38]. In comparison, 
it was previously observed in the population-based Pre-
vention of Renal and Vascular End-Stage Disease (PRE-
VEND) cohort study that there is a positive association 
between albuminuria and apoB-containing lipoproteins 
(LDL cholesterol, non-HDL cholesterol, triglycerides and 
apolipoprotein-B) [20]. In that report, albuminuria was 
found to interact with apoB-containing lipoproteins on 
incident cardiovascular disease (CVD), suggesting com-
mon pathogenic pathways between albuminuria and 
apoB-containing lipoproteins in the development of car-
diovascular disease (CVD) [20]. In addition, we observed 
positive associations with total TRL particle concentra-
tions, in particular retinopathy, but these associations 
did not reach significance in fully adjusted analysis, likely 

due to a lack of statistical power with only 10 individu-
als developing retinopathy alone or in conjunction with 
other microvascular complications.

The most salient and novel finding of the present study 
is the paradoxical positive association of total HDL par-
ticle concentrations with incident microvascular compli-
cations. This association was significant with neuropathy, 
but hazards with other complications were also greater 
than zero. To our knowledge, the only other report so far 
in T2D showing that HDL, in this case HDL-cholesterol, 
is positively instead of inversely associated with comor-
bidities is a large-scale cross-sectional study from China 
with osteoporosis as outcome [39]. In women with T1D, 
it has been demonstrated that very high HDL choles-
terol levels greater than 80  mg/dL are positively associ-
ated with incident atherosclerotic CVD [40]. HDL is able 
to promote cell-derived cholesterol efflux, and has anti-
oxidative, anti-inflammatory and anti-thrombotic prop-
erties, all of which are considered to represent protective 
functionalities [40–44]. Notably, it has been proposed 
that under circumstances of enhanced chronic inflam-
mation, HDL is dysfunctional and may even become 
proinflammatory [41]. Indeed, early in vitro studies have 
shown that administration of LDL-derived oxidized 
phospholipids may render HDL proinflammatory [45]. 
Against this background, we surmise that HDL function 
is impaired under hyperglycemic circumstances. Evi-
dence from this supposition comes from studies showing 
attenuated HDL anti-oxidative and anti-inflammatory 
functions in T2D coinciding with decreased activity of 
the anti-oxidative enzyme paraoxonase-1 (PON-1) [46, 
47], and  reduced HDL antithrombotic capacity coincid-
ing with microvascular diabetic complications and lower 
lipid content in the smallest HDL subfraction (measured 
using another NMR platform) in a genetically mixed 
South African population of T2D patients with a White 
Dutch or South Asian background [48]. Moreover, the 
athero-protective effect of HDL-cholesterol efflux may be 
lost in a population enriched with individuals with (pre)
diabetes [49]. On the other hand, HDL-cholesterol efflux 
as well as the anti-inflammatory capacity of HDL was 
found to be maintained despite an increased triglycer-
ide/cholesteryl ester ratio and alterations in the lipidome 
in HDL from T2D patients [50]. With incident athero-
sclerotic CVD as the outcome, support of dysfunctional 
HDL as pro-atherogenic lipid biomarker comes from 
observational findings in several population-based stud-
ies showing that the inverse association of HDL-c with 
CVD development is lost at very high HDL-c concentra-
tions [51, 52]. In the PREVEND cohort study, we dem-
onstrated that CVD risk is increased in individuals with 
concurrently high levels of the chronic inflammation 
marker, high sensitivity C-reactive protein (hs-CRP), and 
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HDL-cholesterol [53], with a plausible role of decreased 
PON-1 activity [54]. Also, the highest apoB-adjusted 
CVD incidence was observed in PREVEND participants 
with concomitant microalbuminuria and a high apoA-1/
HDL particle ratio, reflecting the apoA-1 content per 
HDL particle [55]. Finally, we have recently reported 
that plasma levels GlycA, an NMR-measured glycosyla-
tion marker of five major acute phase reactants, which 
is closely correlated with hs-CRP, is associated with 
incident microvascular complications in the ZODIAC 
cohort [56]. Notably, GlycA is positively related to the 
total HDL particle concentration, a preferred lipid bio-
marker over HDL-cholesterol in assessing CVD risk [57], 
and inversely with HDL-cholesterol efflux capacity in the 
multi-ethnic Dallas Heart Study, involving over 2,600 
participants [58]. In view of these reports, our current 
findings regarding the positive association of total HDL 
particle concentrations with incident microvascular com-
plications, consent with the hypothesis that dysfunctional 
HDL may play a pathogenic role in such diabetic compli-
cations, conceivably due to enhanced chronic inflamma-
tion. This hypothesis needs to be tested in future HDL 
function studies in the context of diabetic microvascular 
complication development.

Several strengths and limitations of this study need to 
be acknowledged. A strength of this study pertains to 
the well-documented nature of this primary care-based 
cohort of patients with T2D, consisting of deeply phe-
notyped individuals in a prospective longitudinal study 
design. Following these aspects, we were able to reliably 
assess relationships between lipoprotein particles and the 
occurrence of developing microvascular complications in 
T2D, while being able to control for a variety of relevant 
covariates. Furthermore, in this study we characterized 
lipoprotein particle profiles using NMR spectroscopy, 
which allowed for more comprehensive measurements 
of lipoprotein concentrations and their subfractions. 
A limitation of the present longitudinal analysis is the 
rather small population suitable for longitudinal analysis 
due to the presence of microvascular complications of 
about half of the total study cohort at baseline. Another 
limitation inherent to the longitudinal, observational 
study design and correlative nature of this study is that 
we could not fully exclude the possibility of reverse cau-
sation. Second, since the majority of individuals included 
in this cohort were inhabitants of a specific geographi-
cal area in the Netherlands, this may preclude general-
izability of our findings to other more ethnically diverse 
cohorts of patients with T2D. Finally, there was no use of 
SGLT2 and GLP-1 receptor agonists in this cohort which 
was established before the introduction of these agents in 
the clinic.

Conclusions
Although our analyses were performed in a rather small 
cohort of T2D patients, this study suggests that both high 
LDL and HDL particle concentrations, as proxies of lipo-
protein metabolic disturbances, are associated with an 
increased risk of developing microvascular complications 
in individuals with established T2D. These findings sup-
port the potential merit of measurement of lipoprotein 
particle concentrations as clinically relevant lipid bio-
markers for the development of microvascular compli-
cations in T2D. Future studies are warranted to further 
validate our findings as well as to determine the potential 
therapeutic amenability of elevated lipoprotein particles 
with the goal of attenuating the risk of developing micro-
vascular complications.
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