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Abstract 

Objects This study aimed to investigate the impact of lipoprotein(a) [Lp(a)] levels on the prognosis of Chinese 
patients with ST-segment elevation myocardial infarction (STEMI), and to explore if the impact may differ in the diabe-
tes mellitus (DM) and nonDM groups.

Methods Between March 2017 and January 2020, 1543 patients with STEMI who underwent emergency percuta-
neous coronary intervention (PCI) were prospectively recruited. The primary outcome was a composite of all-cause 
death, MI recurrence (reMI), and stroke, known as major adverse cardiovascular events (MACE). Analyses involving the 
Kaplan–Meier curve, Cox regression, and restricted cubic spline (RCS) were conducted.

Results During the 1446-day follow-up period, 275 patients (17.8%) experienced MACEs, including 141 with DM 
(20.8%) and 134 (15.5%) without DM. As for the DM group, patients with Lp(a) ≥ 50 mg/dL showed an apparently 
higher MACE risk compared to those with Lp(a) < 10 mg/dL (adjusted hazard ratio [HR]: 1.85, 95% confidence interval 
[CI]:1.10–3.11, P = 0.021). The RCS curve indicates that the HR for MACE appeared to increase linearly with Lp(a) levels 
exceeding 16.9 mg/dL. However, no similar associations were obtained in the nonDM group, with an adjusted HR 
value of 0.57 (Lp(a) ≥ 50 mg/dL vs. < 10 mg/dL: 95% CI 0.32–1.05, P = 0.071). Besides, compared to patients without 
DM and Lp(a) ≥ 30 mg/dL, the MACE risk of patients in the other three groups (nonDM with Lp(a) < 30 mg/dL, DM 
with Lp(a) < 30 mg/dL, and DM with Lp(a) ≥ 30 mg/dL) increased to 1.67-fold (95% CI 1.11–2.50, P = 0.013), 1.53-fold 
(95% CI 1.02–2.31, P = 0.041), and 2.08-fold (95% CI 1.33–3.26, P = 0.001), respectively.

Conclusions In this contemporary STEMI population, high Lp(a) levels were linked to an increased MACE risk, and 
very high Lp(a) levels (≥ 50 mg/dL) significantly indicated poor outcomes in patients with DM, while not for those 
without DM.
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Background
Lipoprotein(a) [Lp(a)] is a low-density lipoprotein-
like particle comprising triglycerides, cholesteryl 
esters, and an apolipoprotein B-100 moiety bounded 
to apolipoprotein(a) [1, 2]. Accumulating evidence has 
manifested a positive relationship between Lp(a) levels 
and incident atherosclerotic cardiovascular diseases [3]. 
Prospective data have observed that elevated Lp(a) levels 
are associated with poor outcomes in patients with estab-
lished cardiovascular diseases and those who underwent 
percutaneous coronary intervention (PCI) [4, 5]. The 
potential role of Lp(a) in risk stratification and the modi-
fication of residual risk is also under investigation [3].

It is acknowledged that cardiovascular risk increases 
apparently in diabetes mellitus (DM). However, the rela-
tionship between Lp(a) levels and DM remains unestab-
lished [6]. Previous studies reported that patients with 
DM had relatively lower Lp(a) levels, and that lower 
Lp(a) levels were associated with higher diabetic risk 
[6–8]. Current studies have explored the involvement 
of Lp(a) level in accelerating cardiovascular risk among 
patients with and without diabetes; however, there was 
some heterogeneity among them. Konishi et al. reported 
that raised Lp(a) levels were relevant to the incidence of 
advanced cardiac events after PCI in patients with DM 
[9]. Studies by Zhang et  al. and Jin et  al. demonstrated 
that Lp(a) level was an indicator for major adverse car-
diovascular events (MACE) in patients with stable 
coronary artery disease and pre-DM or DM [10, 11]. In 
contrast, a retrospective study by Silverio et al. observed 
that extremely high Lp(a) levels (> 70 mg/dL) implied an 
increased incidence of cardiovascular events following 
myocardial infarction (MI) in nondiabetic patients, but 
not in those with diabetes [12].

Given the inconsistent results of these studies, this 
study aimed to investigate the interactive effect of Lp(a) 
levels and diabetes status on the prognosis of patients 
with ST-segment elevation myocardial infarction 
(STEMI) who underwent primary PCI in the emergency 
department.

Methods
Population
This prospective cohort study was conducted at Fuwai 
Hospital (Beijing, China) and consecutively enrolled 
patients (age ≥ 18 years) with acute MI from March 2017 
to January 2020. The exclusion criteria were as follows: 
(1) patients who did not undergo angiography or PCI 
due to extremely severe conditions, such as cardiogenic 
shock or complex coronary lesions; (2) not meeting the 
diagnosis criteria of STEMI; (3) missing Lp(a) or glycated 
hemoglobin A1c (HbA1c) measurements; and (4) missing 

follow-up information. Additional file  1: Fig. S1 shows 
the flowchart of this study. The diagnosis of acute MI and 
STEMI was based on the Fourth Universal Definition 
of Myocardial Infarction and up-to-date guidelines [13, 
14]. DM was defined as a medical history of DM, current 
use of hypoglycemic drugs, or HbA1c of 6.5% or more at 
admission. All included patients were prescribed opti-
mal medical therapy according to established guidelines, 
including antiplatelet agents, statins, beta-blockers, and 
renin-angiotensin system blockers [13]. The study pro-
tocol was in accordance with the Declaration of Helsinki 
and authorized by the Ethics Committee of Fuwai Hos-
pital (No. 2017-866). All the patients provided informed 
consent upon admission.

Information collection, blood collection, and laboratory 
tests
We collected patients’ information at admission, includ-
ing demographics, medical history, signs and symptoms, 
laboratory test results, echocardiographic data, and med-
ications at admission and discharge.

Blood samples for the HbA1c and Lp(a) tests were col-
lected from the cubital vein after 12-h fasting (approxi-
mately seven o’clock on the following day after patients 
underwent PCI). Blood tests were routinely performed 
at the hospital’s central laboratory. High-performance 
liquid chromatography (Tosoh G8 Analyzer; Tosoh Bio-
science, Tokyo, Japan) and immunoturbidimetry (LASAY 
Lp(a) Auto; SHIMA Laboratories Co., Ltd, Tokyo, Japan) 
were used to detect HbA1c and Lp(a) concentrations, 
respectively.

Outcomes and follow up
The study outcomes were defined as follows: (1) MACE, 
a composite of all-cause death, recurrence of MI (reMI), 
and stroke, was the primary outcome of this study; (2) 
the secondary outcomes included individual outcomes of 
MACE, cardiac death, heart failure (HF) hospitalization, 
and unplanned revascularization. ReMI was defined as 
recurrent elevated troponin I levels (except for the myo-
cardial injury caused by PCI or coronary artery bypass 
graft) and ischemic evidence during follow-up. Stroke 
was diagnosed based on focal loss of neurologic func-
tion and supported by imaging examinations. Cardiac 
death was defined as death caused by acute coronary 
syndrome, valvular heart disease, cardiomyopathy, malig-
nant arrhythmia, or cardiac arrest. HF was identified 
according to guidelines and statements based on typical 
symptoms and signs, laboratory tests, echocardiogram, 
and X-ray findings [15]. Unplanned revascularization was 
defined as any unexpected coronary revascularization 
(PCI or coronary artery graft bypass) during the follow-
up period.
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We gathered follow-up information through telephone 
interviews and outpatient visits at 1, 6, and 12  months 
after discharge and subsequently once a year. The clini-
cal events were identified using inpatient and outpatient 
records. The follow-up period was started on the day of 
the PCI.

Statistical analysis
Mean ± standard deviation (SD) or median with inter-
quartile range (IQR), and numbers (percentage) were 
used to summarize continuous variables and categorical 
variables, respectively. Differences were compared using 
appropriate methods based on the characteristics of vari-
ables and the number of groups. Additionally, we ana-
lyzed the relationship between blood glucose and Lp(a) 
levels using Spearman’s correlation coefficient and plot-
ted with fitted linear regression curves for patients with 
and without DM after removing outliers of Lp(a) or glu-
cose. Additional file  2: Fig. S2 shows the outliers in the 
DM and nonDM groups.

When evaluating the associations between Lp(a) lev-
els and prognosis, we categorized patients into two 
groups by the normal reference limit of 30 mg/dL, which 
was recommended by an expert statement for the Chi-
nese population [16], and further classified them into 
four groups based on detailed Lp(a) levels range values 
(< 10, ≥ 10–30, ≥ 30–50, and ≥ 50 mg/dL). First, the event-
free survival rates of the groups were evaluated using 
the Kaplan–Meier curve and log-rank test. Second, the 
hazard ratios (HRs) and 95% confidence intervals (CIs) 
were computed using univariable and multivariable Cox 
regression analyses. The multivariable model adjusted 
variables as follows (P < 0.05 in the univariable model): 
age, sex, body mass index (BMI), hypertension, dyslipi-
demia, peripheral artery disease, chronic kidney disease 
(CKD), previous history of MI and PCI, Killip class, the 
Global Registry of Acute Coronary Events (GRACE) 
risk score, multiple vessels disease, estimated glomeru-
lar filtration rate,  left ventricular ejection fraction, and 
levels of total cholesterol, low-density lipoprotein choles-
terol and high-sensitivity C-reactive protein (hsCRP), as 
well as  the baseline and peak value of cardiac troponin 
I (cTnI) and N-terminal pro-B-type natriuretic pep-
tide (NT-proBNP). Finally, restricted cubic spline (RCS) 
analyses were used to characterize the dose–response 
association and explore the potential nonlinear relation-
ships of Lp(a) levels with outcomes adjusting for the 
aforementioned confounders. The above analyses were 
conducted for overall, nonDM, and DM patients. Mean-
while, we calculated the interaction of diabetes status 
with the prognostic value of Lp(a) in the multivariable 
Cox regression model. We also compared the difference 
in MACE risk among groups based on Lp(a) levels and 

diabetes status (nonDM with Lp(a) < 30  mg/dL, nonDM 
with Lp(a) ≥ 30  mg/dL, DM with Lp(a) < 30  mg/dL, and 
DM with Lp(a) ≥ 30  mg/dL) using the Kaplan–Meier 
curve, log-rank test, and Cox regression analyses. More-
over, we performed additional analyses after excluding 
patients who suffered from PCI-related complications or 
had MACE within 14 days of PCI to avoid their impacts 
on these results.

Data analyses were conducted using SPSS software 
(version 26.0; IBM Corp., Armonk, New York, USA) and 
R (http:// www.r- proje ct. org/) statistical packages. Statis-
tical significance was set at P < 0.05.

Results
Baseline characteristics
Among the 1543 patients included in the final analy-
sis, Lp(a) levels were elevated (≥ 30  mg/dL) in 472 
patients (30.6%), and 678 (43.9%) had DM. The distribu-
tion of Lp(a) in patients with and without DM is shown 
in Fig.  1A. The median levels of Lp(a) were 17.3 (IQR 
7.6–37.5) mg/dL in the nonDM group and 16.9 (IQR 
7.8–32.8) mg/dL in the DM group (P = 0.586, Additional 
file  15: Table  S1). Table  1 lists the baseline character-
istics and medications of the groups according to Lp(a) 
levels and diabetes status. In comparison, patients with 
DM and elevated Lp(a) levels tended to be older, and 
had higher proportions of CKD, previous MI and PCI, 
as well as higher GRACE score, cTnI, and NT-proBNP 
levels. Figure  1B exhibits a weak negative correlation 
between Lp(a) and glucose levels in patients without DM 
(R = −  0.079, P = 0.025), whereas no similar observation 
in those with DM (Fig. 1C).

Long‑term outcomes in overall patients
Over a follow-up time of 1446 (IQR 1091–1472) days, 
275 patients (17.8%) experienced MACEs, consist-
ing of 141 with DM (20.8%) and 134 (15.5%) with-
out DM. The Kaplan–Meier curves presented that 
the event-free survival rates among the groups based 
on Lp(a) levels in overall patients were not statisti-
cally different (all Plog-rank > 0.05, Fig.  2 and Additional 
file  3: Fig. S3, Additional file  4: Fig. S4, Additional 
file  5: Fig. S5). The Cox regression analysis (Table  2 
and Additional file  16: Table  S2) and the RCS curves 
(Fig. 3, Additional file 6: Fig. S6, and Additional file 17: 
Table S3) indicated no significant correlations between 
the risks of outcomes and Lp(a) levels except that 
patients with 10 ≤ Lp(a) < 30 mg/dL had a higher risk of 
unplanned revascularization compared to those with 
Lp(a) < 10  mg/dL (adjusted HR 1.37, 95%CI 1.01–1.86, 
P = 0.042; Additional file 16: Table S2). Furthermore, we 
analyzed the interaction between diabetes status and 
Lp(a) levels in terms of prognosis in the multivariable 

http://www.r-project.org/
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Cox regression model. P-values for the interaction of 
diabetes status on the associations between MACE and 
Lp(a) cutoff (30 mg/dL), Lp(a) per SD, and groups (10, 

30, and 50 mg/dL) were 0.002, 0.001, and 0.007, respec-
tively. Then, the associations between Lp(a) levels and 

Fig. 1 The distributions of lipoprotein(a) (A) and the scatter plot for the relationship between lipoprotein(a) and glucose in patients with and 
without diabetes mellitus (B, C). The relationships were analyzed using Spearman’s correlation coefficient and fitting linear regression curves after 
removing the outliers
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Table 1 Baseline characteristics according to lipoprotein(a) levels and diabetes status

Continuous variables are presented as medians (25–75th percentiles), and categorical variables are reported as counts (%). ACEI/ARB indicates angiotensin-converting 
enzyme inhibitors/angiotensin receptor blockers; BMI, body mass index; CKD, chronic kidney disease; cTnI, cardiac troponin I; DM, diabetes mellitus; GRACE, the 
Global Registry of Acute Coronary Events; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; LDL-C, 
low-density lipoprotein cholesterol; LVEF, left ventricular ejection fraction; MVD, multiple vessels disease; NT-proBNP, N-terminal pro B-type natriuretic peptide; PAD, 
peripheral artery disease; PCI, percutaneous coronary intervention; TC, total cholesterol. *estimated glomerular filtration rate (eGFR) was calculated according to the 
Modification of Diet in Renal Disease formula.

NonDM DM

Total (n = 865) Lp(a) < 30 mg/dL
(n = 588)

Lp(a) ≥ 30 mg/dL
(n = 277)

P‑value Total (n = 678) Lp(a) < 30 mg/dL
(n = 483)

Lp(a) ≥ 30 mg/dL
(n = 195)

P‑value

Age (years) 59.0 (50.5, 68.0) 59.0 (50.0, 68.0) 59.0 (51.0, 67.0) 0.855 63.0 (54.0, 69.6) 62.0 (54.0, 69.0) 64.0 (56.0, 72.0) 0.015

 ≥ 65 years 210 (40.1) 154 (39.1) 56 (43.1) 0.421 160 (29.3) 131 (30.3) 29 (25.7) 0.340

Female 137 (15.8) 83 (14.1) 54 (19.5) 0.043 158 (23.3) 105 (21.7) 53 (27.2) 0.129

BMI (kg/m2) 25.7 (23.4, 27.8) 25.8 (23.7, 28.0) 25.4 (22.9, 27.7) 0.200 25.7 (23.4, 28.0) 25.8 (23.4, 28.0) 25.5 (23.3, 27.7) 0.274

Current smoker 638 (73.8) 448 (76.2) 190 (68.6) 0.018 453 (66.8) 326 (67.5) 127 (65.1) 0.554

Hypertension 530 (61.3) 366 (62.2) 164 (59.2) 0.392 467 (68.9) 324 (67.1) 143 (73.3) 0.111

Dyslipidemia 760 (87.9) 517 (87.9) 243 (87.7) 0.933 627 (92.5) 450 (93.2) 177 (90.8) 0.284

Previous stroke 94 (10.9) 69 (11.7) 25 (9.0) 0.232 123 (18.1) 81 (16.8) 42 (21.5) 0.154

CKD 58 (6.7) 38 (6.5) 20 (7.2) 0.678 51 (7.5) 30 (6.2) 21 (10.8) 0.042

PAD 43 (5.0) 29 (4.9) 14 (5.1) 0.939 39 (5.8) 25 (5.2) 14 (7.2) 0.310

Previous MI 127 (14.7) 75 (12.8) 52 (18.8) 0.020 133 (19.6) 85 (17.6) 48 (24.6) 0.037

Previous PCI 121 (14.0) 73 (12.4) 48 (17.3) 0.052 142 (20.9) 89 (18.4) 53 (27.2) 0.011

GRACE score 105.0 (85.0, 124.0) 105.0 (84.0, 124.0) 105.0 (87.0, 123.0) 0.487 113.0 (94.0, 131.0) 110.0 (92.0, 131.0) 118.0 (102.0, 
134.5)

0.004

Killip (II- IV) 98 (11.3) 68 (11.6) 30 (10.8) 0.751 111 (16.4) 81 (16.8) 30 (15.4) 0.659

LVEF (%) 55.0 (50.0, 59.0) 55.0 (50.0, 60.0) 55.0 (50.0, 58.0) 0.140 55.0 (48.0, 58.0) 55.0 (48.0, 59.0) 55.0 (49.5, 58.0) 0.892

LVEF < 50% 197 (22.8) 128 (21.8) 69 (24.9) 0.304 186 (27.4) 137 (28.4) 49 (25.1) 0.393

MVD 620 (71.7) 420 (71.4) 200 (72.2) 0.814 530 (78.2) 375 (77.6) 155 (79.5) 0.598

eGFR(ml/
min/1.732  m2*)

89.1 (74.5, 105.9) 89.7 (75.0, 106.3) 87.7 (74.2, 105.3) 0.597 86.3 (70.7, 102.7) 88.0 (72.5, 104.9) 82.1 (67.0, 95.7)  < 0.001

Base cTnI (ng/mL) 1.0 (0.1, 5.2) 0.9 (0.1, 4.9) 1.1 (0.1, 5.9) 0.324 1.1 (0.1, 6.2) 1.1 (0.1, 5.9) 1.3 (0.2, 7.9) 0.354

Peak cTnI (ng/mL) 16.0 (5.8, 37.3) 15.5 (5.6, 37.3) 16.6 (6.8, 37.3) 0.495 16.1 (4.2, 38.5) 14.5 (4.0, 34.9) 21.3 (4.9, 48.8) 0.025

Base NT-proBNP 
(pg/mL)

229.1 (58.8, 802.2) 213.2 (54.1, 751.5) 264.2 (68.0, 899.2) 0.079 344.6 (84.8, 
1104.0)

293.7 (75.8, 
1024.0)

523.2 (124.0, 
1292.0)

0.002

Peak NT-proBNP 
(pg/mL)

1385.0 (536.6, 
3113.0)

1284.0 (537.7, 
3034.0)

1629.0 (532.6, 
3213.0)

0.168 1622.0 (673.4, 
3508.0)

1429.0 (584.0, 
3184.0)

2078.0 (920.0, 
4460.0)

0.004

TC (mmol/L) 4.3 (3.6, 5.0) 4.2 (3.5, 4.9) 4.5 (3.8, 5.2)  < 0.001 4.2 (3.6, 5.0) 4.2 (3.6, 4.9) 4.2 (3.5, 5.1) 0.713

Triglyceride 
(mmol/L)

1.4 (0.9, 1.9) 1.4 (0.9, 2.0) 1.3 (1.0, 1.9) 0.689 1.5 (1.1, 2.2) 1.6 (1.1, 2.3) 1.5 (1.1, 2.1) 0.335

LDL-C (mmol/L) 2.7 (2.1, 3.3) 2.6 (2.0, 3.2) 2.9 (2.2, 3.4)  < 0.001 2.6 (2.0, 3.2) 2.6 (2.0, 3.2) 2.6 (2.0, 3.3) 0.453

HDL-C (mmol/L) 1.1 (0.9, 1.3) 1.1 (0.9, 1.2) 1.1 (0.9, 1.3) 0.190 1.0 (0.9, 1.2) 1.0 (0.9, 1.2) 1.0 (0.9, 1.2) 0.657

Lipoprotein(a) 
(mg/dL)

17.3 (7.6, 37.5) 10.4 (5.7, 17.9) 50.5 (38.8, 73.0)  < 0.001 16.9 (7.8, 32.8) 11.5 (6.2, 18.6) 47.6 (36.5, 77.0)  < 0.001

Glucose (mmol/L) 6.4 (5.5, 7.6) 6.4 (5.5, 7.8) 6.4 (5.5, 7.4) 0.173 9.6 (7.4, 12.8) 9.4 (7.3, 12.5) 9.7 (7.5, 13.5) 0.217

HbA1c (%) 5.7 (5.5, 6.0) 5.7 (5.5, 6.0) 5.7 (5.5, 6.0) 0.489 7.6 (6.8, 8.9) 7.5 (6.8, 8.8) 7.8 (6.8, 9.2) 0.133

hsCRP (mg/L) 5.5 (2.0, 10.6) 4.7 (1.8, 10.4) 7.5 (2.5, 10.9) 0.004 6.6 (2.5, 11.1) 6.3 (2.5, 11.1) 6.8 (2.5, 11.4) 0.285

Medication

 Baseline statins 184 (21.3) 127 (21.6) 57 (20.6) 0.732 171 (25.2) 110 (22.8) 61 (31.3) 0.021

 Follow-up 
statins

829 (96.4) 557 (95.5) 272 (98.2) 0.051 640 (95.7) 453 (95.0) 187 (97.4) 0.163

 Aspirin 828 (96.3) 560 (96.1) 268 (96.8) 0.614 646 (96.6) 459 (96.2) 187 (97.4) 0.453

 Ticagrelor 438 (50.6) 308 (52.8) 130 (46.9) 0.106 311 (46.5) 229 (48.0) 82 (42.7) 0.214

 Clopidogrel 424 (49.3) 278 (47.7) 146 (52.7) 0.169 353 (52.8) 245 (51.4) 108 (56.2) 0.252

 ACEI/ARB 623 (72.4) 431 (73.9) 192 (69.3) 0.157 481 (71.9) 345 (72.3) 136 (70.8) 0.697

 Βeta blocker 739 (85.9) 497 (85.2) 242 (87.4) 0.404 591 (88.3) 419 (87.8) 172 (89.6) 0.525

 Insulin - 155 (22.9) 103 (21.3) 52 (26.7) 0.134
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Fig. 2 Kaplan–Meier curves for cumulative event-free survival rate between groups by lipoprotein(a) levels in overall, nonDM, and DM patients. 
DM, diabetes mellitus; MACE, major adverse cardiovascular event (a composite of all-cause death, recurrent myocardial infarction, and stroke); reMI, 
recurrent myocardial infarction
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MACE risk were analyzed in patients with and without 
DM, respectively.

Long‑term outcomes in patients without DM
In the nonDM group, the Kaplan–Meier curves showed 
a significant difference in MACE risk between patients 
with Lp(a) ≥ 30 and < 30  mg/dL (Plog-rank = 0.048, 
Fig. 2E), while not in the four groups based on detailed 
Lp(a) level ranges (Plog-rank = 0.23, Additional file  4: Fig. 
S4E). The Cox regression indicated that patients with 
Lp(a) ≥ 30 mg/dL had a decreased MACE risk compared 
to those with Lp(a) < 30 mg/dL (adjusted HR 0.63, 95%CI 

0.42–0.95, P = 0.029, Table  2), while no similar associa-
tions with MACE risk were obtained in the four detailed 
groups and per 1-SD change (26.9 mg/dL) of Lp(a) levels 
(Table  2). The RCS curves in Fig.  3 also did not yield a 
significant association between Lp(a) levels and MACE 
risk.

Regarding the risks of the secondary outcomes (all-
cause death, reMI, stroke, cardiac death, HF hospitali-
zation, and unplanned revascularization), there were 
no significant differences regardless of the classification 
of Lp(a) in the Kaplan–Meier curves (Fig.  2 and Addi-
tional file 3: Fig. S3, Additional file 4: Fig. S4, Additional 

Table 2 Association between MACE and lipoprotein(a) levels

DM, diabetes mellitus; HR, hazard ratio; Lp(a), lipoprotein (a); MACE, major adverse cardiovascular event (a composite of all-cause death, recurrent myocardial 
infarction, and stroke)
* Adjusted for age, sex, body mass index, hypertension, dyslipidemia, peripheral artery disease, chronic kidney disease, previous history of myocardial infarction and 
percutaneous coronary intervention, Killip class, the Global Registry of Acute Coronary Events risk score, multiple vessels disease, estimated glomerular filtration 
rate, left ventricular ejection fraction, and levels of total cholesterol, low-density lipoprotein cholesterol and high-sensitivity C-reactive protein, as well as the baseline 
and peak value of cardiac troponin I and N-terminal pro-B-type natriuretic peptide
† P-values for the interaction of diabetes status on the associations between MACE and Lp(a) cutoff (30 mg/dL), Lp(a) per SD, and groups (10, 30, and 50 mg/dL) in the 
multivariable Cox regression were 0.002, 0.001, and 0.007, respectively

Lp(a) (mg/dL) Event (n/%) Crude HR (95%CI) P‑value Adjusted HR (95%CI)* P‑value

Overall  patients†

 Lp(a) ≥ 30 vs < 30 86 (18.2) 1.04 (0.80–1.34) 0.784 0.91 (0.70–1.18) 0.461

 Lp(a) per SD 275 (17.8) 1.07 (0.95–1.19) 0.260 1.03 (0.92–1.16) 0.627

 Lp(a) < 10 87 (17.6) 1 (Ref ) 1 (Ref )

 10 ≤ Lp(a) < 30 102 (17.7) 1.03 (0.77–1.37) 0.863 0.94 (0.70–1.25) 0.660

 30 ≤ Lp(a) < 50 44 (18.4) 1.08 (0.75–1.55) 0.686 0.86 (0.59–1.25) 0.429

 Lp(a) ≥ 50 42 (18.0) 1.02 (0.71–1.48) 0.903 0.89 (0.61–1.29) 0.532

Patients without DM

 Lp(a) ≥ 30 vs < 30 33 (11.9) 0.67 (0.45–1.00) 0.049 0.63 (0.42–0.95) 0.029

 Lp(a) per SD 134 (15.5) 0.85 (0.71–1.03) 0.099 0.84 (0.69–1.01) 0.070

 Lp(a) < 10 48 (17.0) 1 (Ref ) 1 (Ref )

 10 ≤ Lp(a) < 30 53 (17.3) 1.05 (0.71–1.55) 0.806 1.13 (0.75–1.70) 0.553

 30 ≤ Lp(a) < 50 18 (13.2) 0.77 (0.45–1.33) 0.347 0.79 (0.45–1.39) 0.418

 Lp(a) ≥ 50 15 (10.6) 0.62 (0.34–1.10) 0.101 0.57 (0.32–1.05) 0.071

Patients with DM

 Lp(a) ≥ 30 vs < 30 53 (27.2) 1.59 (1.13–2.24) 0.007 1.43 (1.00–2.05) 0.050

 Lp(a) per SD 141 (20.8) 1.28 (1.12–1.47)  < 0.001 1.33 (1.15–1.55)  < 0.001

 Lp(a) < 10 39 (18.4) 1 (Ref ) 1 (Ref )

 10 ≤ Lp(a) < 30 49 (18.1) 0.99 (0.65–1.51) 0.975 0.80 (0.52–1.23) 0.310

 30 ≤ Lp(a) < 50 26 (25.2) 1.53 (0.93–2.51) 0.095 0.93 (0.55–1.57) 0.798

 Lp(a) ≥ 50 27 (29.3) 1.65 (1.01–2.70) 0.046 1.85 (1.10–3.11) 0.021

(See figure on next page.)
Fig. 3 Continuous hazard ratio across lipoprotein(a) levels for major adverse cardiovascular events in overall, nonDM, and DM patients. DM, 
diabetes mellitus; HR, hazard ratio; MACE, major adverse cardiovascular event (a composite of all-cause death, recurrent myocardial infarction, and 
stroke); reMI, recurrent myocardial infarction. The blue line indicates unadjusted fits with the 95% confidence intervals shown as the blue-shaded 
area; the red line indicates adjusted fits with the 95% confidence intervals shown as the red-shaded area (adjusted for age, sex, body mass index, 
hypertension, dyslipidemia, peripheral artery disease, chronic kidney disease, previous history of myocardial infarction and percutaneous coronary 
intervention, Killip class, the Global Registry of Acute Coronary Events risk score, multiple vessels disease, estimated glomerular filtration rate, left 
ventricular ejection fraction, and levels of total cholesterol, low-density lipoprotein cholesterol and high-sensitivity C-reactive protein, as well as the 
baseline and peak value of cardiac troponin I and N-terminal pro-B-type natriuretic peptide)
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Fig. 3 (See legend on previous page.)
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file 5: Fig. S5) and the Cox regression models (Additional 
file 16: Table S2). Additionally, the RCS curves for these 
relationships were not statistically significant (Fig.  3, 
Additional file 6: Fig. S6, and Additional file 17: Table S3).

Long‑term outcomes in patients with DM
In the DM group, Kaplan–Meier curves exhibited that 
patients with Lp(a) ≥ 30  mg/dL had elevated risk of 
MACE (Plog-rank = 0.007, Fig.  2I), whereas no significant 
differences were detected in the four groups based on 
Lp(a) levels (Plog-rank = 0.06, S Additional file 4: Fig. S4I). 
The Cox regression analysis results showed that patients 
with Lp(a) ≥ 50  mg/dL had a significantly higher risk of 
MACE compared to patients with Lp(a) < 10  mg/dL 
(adjusted HR 1.85, 95%CI 1.10–3.11, P = 0.021, Table 2). 
Moreover, the MACE risk increased by 33% per 1-SD 
change (26.3  mg/dL) in Lp(a) levels (adjusted HR 1.33, 
95%CI 1.15–1.55, P < 0.001, Table 2). RCS curves revealed 
that the HR for MACE increases linearly as Lp(a) levels 
exceed 16.9 mg/dL (Fig. 3I).

As for secondary outcomes in patients with DM, the 
Kaplan–Meier curves showed significant differences 
between patients with Lp(a) ≥ 30  mg/dL and < 30  mg/
dL in risks of all-cause death, stroke, cardiac death, and 
HF hospitalization (Fig. 2 and Additional file 3: Fig. S3). 
Kaplan–Meier analysis also showed that only the risks of 
cardiac death and HF hospitalization showed significant 
differences among the four groups (Additional file 4: Fig. 
S4, Additional file 5: Fig. S5). In the Cox regression, per 
1-SD change in Lp(a) levels were correlated with 32%, 
46%, and 68% increased risks of all-cause death, stroke, 
and cardiac death, respectively (adjusted HR 1.32, 95%CI 
1.06–1.64, P = 0.012; adjusted HR 1.46, 95%CI 1.16–1.84, 
P = 0.001; and adjusted HR 1.68, 95% CI 1.29–2.20, 
P < 0.001, respectively; Additional file  16: Table  S2). 
Patients with Lp(a) ≥ 50 mg/dL had higher risks of stroke 
and cardiac death compared to those with Lp(a) < 10 mg/
dL (adjusted HR 2.47, 95%CI 1.07–5.70, P = 0.035; 
adjusted HR 5.60, 95%CI 1.93–16.30, P = 0.002; Addi-
tional file 16: Table S2). Patients with 30 ≤ Lp(a) < 50 mg/
dL had a higher risk of HF hospitalization compared to 
those with Lp(a) < 10  mg/dL (adjusted HR 4.99, 95%CI 
1.21–20.57, P = 0.026; Additional file 16: Table S2). Addi-
tionally, the RCS curves also displayed positive relation-
ships between Lp(a) levels and the risks of stroke and 
cardiac death (Fig.  3 and Additional file  6: Fig. S6, and 
Additional file 17: Table S3).

Long‑term outcomes in groups based on Lp(a) levels 
and diabetes status
The Kaplan–Meier curves showed that DM patients 
with Lp(a) ≥ 30 mg/dL had the highest risks of MACE, 

all-cause death, stroke, and cardiac death among 
the four groups (P log-rank < 0.05, Additional file  7: 
Fig. S7). In the Cox regression model, compared to 
nonDM patients with Lp(a) < 30  mg/dL, those with 
Lp(a) ≥ 30 mg/dL and DM had higher MACE risk (HR 
1.71, 95%CI 1.23–2.39, P = 0.002, Additional file  18: 
Table  S4), whereas the significance diminished after 
adjusting for the confounders (adjusted HR 1.25, 95%CI 
0.88–1.77, P = 0.208, Additional file 18: Table S4). Com-
pared with nonDM patients with Lp(a) ≥ 30 mg/dL, the 
MACE risk of the other three groups increased to 1.67-
fold, 1.53-fold, and 2.08-fold, respectively (Additional 
file 18: Table S4). Regarding secondary outcomes, DM 
patients with Lp(a) ≥ 30  mg/dL showed elevated risks 
of all-cause death, stroke, and cardiac death compared 
to nonDM patients with Lp(a) ≥ 30  mg/dL (Additional 
file 18: Table S4).

Impacts of PCI‑related complications and short‑term MACE 
on outcomes
A total of 11 patients (0.7%) suffered from PCI-related 
complications, and 17 (1.1%) experienced MACE 
within 14 days. After excluding these patients, the asso-
ciations between risks of outcomes and Lp(a) levels 
were insignificant in overall patients (n = 1515), except 
that the risk of cardiac death increased by 25% per 
1-SD change in Lp(a) levels (adjusted HR 1.25, 95%CI 
1.00–1.25, P = 0.048, Additional file  19: Table  S5). As 
for patients without DM (n = 853), there were no rela-
tionships between Lp(a) levels and outcomes according 
to the Kaplan–Meier curves, multivariable Cox regres-
sion, and RCS fits (Additional file 8: Fig. S8, Additional 
file  9: Fig.  S9, Additional file  10: Fig.  S10, Additional 
file 11: Fig. S11, Additional file 12: Fig. S12, Additional 
file  13: Fig.  S13, Additional file  14: Fig.  S14 and Addi-
tional file  19: Tables S5, Additional file  20: Table  S6, 
Additional file  21: Table  S7). As for patients with DM 
(n = 662), increasing Lp(a) levels were mainly linked 
to the risks of MACE, all-cause death, stroke, and car-
diac death, similar to the results obtained in the previ-
ous section (Additional file 8: Fig. S8, Additional file 9: 
Fig.  S9, Additional file  10: Fig.  S10, Additional file  11: 
Fig. S11, Additional file 12: Fig. S12, Additional file 13: 
Fig.  S13, Additional file  14: Fig.  S14 and Additional 
file  19: Tables S5, Additional file  20: Table  S6, Addi-
tional file 21: Table S7).

Discussion
This study focused on a contemporary cohort of Chi-
nese patients with STMEI who underwent emer-
gency PCI, and explored the impact of diabetes status 
on the value of Lp(a) levels in long-term outcomes. 
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The primary findings were that high Lp(a) levels were 
related to increased MACE risk and very high Lp(a) 
levels (≥ 50  mg/dL) significantly indicated poor out-
comes in patients with DM, while not in those without 
DM. Meanwhile, we found a weak negative relationship 
between Lp(a) and glucose levels in the nonDM group, 
while not in the DM group.

Lp(a) is synthesized in the liver and cleared by the 
liver, kidney, or a combination of mechanisms [1, 16, 17]. 
Although Lp(a) level predominantly depends on genetics, 
other factors, such as renal and hepatic function, inflam-
mation, and hormone levels, may also affect its level [18]. 
For instance, impaired renal function may increase Lp(a) 
levels by reducing the catabolism of large isomers [19], 
and impaired hepatic function may cause the production 
to be reduced [20]. The contribution of Lp(a) in accelerat-
ing cardiovascular disease involves several mechanisms, 
as follows [1, 3]: (1) promoting the formation of reac-
tive oxygen species, which further augments endothelial 
permeability, produces cytokine, and results in inflam-
mation, apoptosis, and vascular wall remodeling; (2) 
accelerating the uptake of oxidized low-density lipopro-
tein cholesterol by macrophages-induced formatting of 
foam cells and subsequent atherogenesis; and (3) facili-
tating monocyte adhesion and migration by the interac-
tion of apolipoprotein(a) with β2-integrin Mac1.

It is well-established that the risk of all-cause and car-
diovascular death in patients with DM is much higher 
than that in patients without DM due to macrovascular 
and microvascular complications [21–23]. However, the 
relationship between Lp(a) levels and diabetes and its 
potential mechanism are undergoing investigation and 
remain elusive. Previous studies demonstrated that lower 
Lp(a) levels were linked to an increased diabetes risk [6, 
24]. Some have identified that Lp(a) might indicate insu-
lin resistance and trigger systemic low-grade inflamma-
tion and enhanced autoimmune reactions [25, 26]. The 
results of our current study suggested a slightly inverse 
relationship between Lp(a) levels and blood glucose lev-
els in patients without DM. This might provide an addi-
tional reference for this phenomenon.

Given the inverse association between Lp(a) levels 
and diabetic risk, current studies have examined the 
impact of diabetic status on Lp(a)-associated cardiovas-
cular diseases. Konishi et  al. demonstrated a relation-
ship between increased Lp(a) levels and high incidences 
of cardiac death and acute coronary syndrome after PCI 
in patients with DM [9]. Zhang et al. and Jin et al. found 
that Lp(a) level was a risk indicator for a composite end-
point (including nonfatal MI, stroke, and cardiovascular 
mortality) in patients with stable coronary artery disease 
and pre-DM or DM [10, 11]. Likewise, our current study 
primarily revealed different relationship curves between 

Lp(a) levels and HR for MACE in patients with and with-
out DM (Fig.  3). That was, elevated Lp(a) levels were 
associated with increased MACE risk in DM patients, 
while not for nonDM patients. For one thing, studies 
have shown that Lp(a) is associated with an increased risk 
of both micro and macrovascular complications in dia-
betes and revealed that elevated Lp(a) and glucose levels 
might have a synergistic effect, leading to enhanced dam-
age to the vascular endothelium, greater susceptibility to 
vascular complications, and a worse prognosis [6, 27, 28]. 
In contrast, nondiabetic patients have fewer combined 
cardiovascular risk factors than diabetic patients, so the 
prognosis of nondiabetic patients may be less susceptible 
to weaker risk factors. These may explain why the impacts 
of Lp(a) on prognosis were varying in patients with and 
without DM. The differential prognostic value of Lp(a) 
also implies that Lp(a) may act differently to promote 
atherosclerosis in patients with and without DM, leading 
to its different weighting compared to other cardiovascu-
lar risk factors. Therefore, more attention should be paid 
to Lp(a) in clinical practice because of its complicated 
effect on cardiometabolic diseases. It is worth noting that 
Chinese patients showed an obviously increased MACE 
risk when Lp(a) levels were above 50 mg/dL, rather than 
70  mg/dL. This may be due to the lower Lp(a) levels in 
the Chinese population than those in other countries and 
regions [16].

In addition, this study did not detect a significant rela-
tionship between Lp(a) levels and MACE risk in overall 
patients, which was different from previous studies [29, 
30]. There are several possible reasons: (1) Male patients 
accounted for 80% of the patients included in this study, 
which was much higher than that in other studies [31]. A 
study by Cui et al. reported that a 5-year age increase was 
associated with a median increase of 2.03 mg/L in Lp(a) 
levels in males and 6.87  mg/L in females, whereas the 
effect of age on the median Lp(a) levels in females signifi-
cantly weakened after the age of 55 to 60 years [32]. These 
observations imply the complex influence of sex and age 
on Lp(a) levels. Therefore, the sex composition of this 
study might be one of the possible reasons for the differ-
ent results. (2) Compared to patients with stable coronary 
artery disease, those with STEMI have more cardiovascu-
lar risk factors and a higher inflammatory burden, which 
may result in the impact of Lp(a) on outcomes interact-
ing with other risk factors. For example, our previous 
study found that an elevated risk of MACE was seen in 
patients with higher levels of Lp(a) levels only in the set-
ting of high hsCRP levels (hsCRP ≥ 2 mg/L) [5]. (3) The 
blood samples for Lp(a) measurement in this study were 
collected on the following day after patients underwent 
PCI for STEMI. Previous studies have revealed that Lp(a) 
levels may increase in the first few days after myocardial 
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infarction [33, 34]. STEMI is a severe condition that 
affects the body and its response varies depending on 
patients’ characteristics, which might lead to differential 
impacts of Lp(a) on outcomes. Therefore, the prognostic 
impact of Lp(a) should be interpreted cautiously in the 
systematic context of the patient.

Regarding Lp(a)-associated cardiovascular risk, how 
to manage patients with high Lp(a) levels is becoming a 
challenge for clinicians. Evidence suggests that propro-
tein convertase subtilisin/kexin type 9 inhibitors could 
reduce Lp(a)-associated cardiovascular risk, and the 
benefit is likely related to the degree of Lp(a) reduction 
[29, 35]. Niacin, cholesteryl ester transfer protein inhibi-
tors, and antisense oligonucleotides and small interfering 
RNA agents targeting apolipoprotein B and LPA, could 
reduce Lp(a) levels [24]. However, it remains unclear 
whether they could provide cardiovascular benefits [24]. 
Further investigation is needed to determine when to ini-
tiate Lp(a) lowering therapy and figure out to what level 
the reduction can lead to clinical benefits.

Limitations
This study had several limitations. First, this study was a 
single-center, observational study among Chinese patients 
with STEMI. Therefore, when interpreting and extrapolat-
ing these results, it is essential to note the characteristics 
of the STEMI population and the relatively lower Lp(a) 
levels in the Chinese population. Second, Lp(a) levels were 
measured only once in this study. Since it is an acute-
phase protein to some degree, repeated measurements 
may provide more information of the impact of Lp(a) lev-
els on prognosis. Third, we did not measure insulin con-
centrations, which could have provided more information 
on the association among Lp(a), DM, and cardiovascular 
events. Finally, measuring Lp(a) levels in clinical prac-
tice is challenging. Ideally, Lp(a) should be measured in 
molar units to ensure that each Lp(a) particle is recog-
nized only once. In this study, Lp(a) levels were measured 
using immunoturbidimetric methods, which are com-
monly used in clinical practice [36]. It is crucial to note 
that this method could be affected by variations in the 
Lp(a) particle size, or even more by the presence of lipid-
free or fragmented apo(a). The Lp(a) consensus statement 
of the European Atherosclerosis Society pointed out that 
the assays available in clinical practice are not yet ideal, 
but are most likely adequate for risk discrimination [37]. 
Concerning this, it is urgent to standardize Lp(a) assays. 
Efforts regarding this standardization are also underway 
[38]. Therefore, further investigation is needed to be con-
ducted with larger sample sizes, more detailed groups, 
and more accurate measurement methods to explore and 
explain the association and its potential mechanism.

Conclusions
In this cohort of STMEI patients undergoing emergency 
PCI, elevated Lp(a) levels were associated with a higher 
MACE risk and very high Lp(a) levels (≥ 50  mg/dL) 
independently indicated poor outcomes in DM patients, 
while not for nonDM patients. It is crucial for patients 
with STEMI to measure Lp(a) levels and to comprehen-
sively assess the prognostic value of Lp(a), particularly for 
patients with DM.
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