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Abstract 

Background Type 2 diabetes mellitus (T2DM) frequently coexists with obstructive coronary artery disease (OCAD), 
which are at increased risk for cardiovascular morbidity and mortality. This study aimed to investigate the impact of 
coronary obstruction on myocardial microcirculation function in T2DM patients, and explore independent predictors 
of reduced coronary microvascular perfusion.

Methods Cardiac magnetic resonance (CMR) scanning was performed on 297 T2DM patients {188 patients without 
OCAD [T2DM(OCAD −)] and 109 with [T2DM(OCAD +)]} and 89 control subjects. CMR‑derived perfusion parameters, 
including upslope, max signal intensity (MaxSI), and time to maximum signal intensity (TTM) in global and segmental 
(basal, mid‑ventricular, and apical slices) were measured and compared among observed groups. According to the 
median of Gensini score (64), T2DM(OCAD +) patients were subdivided into two groups. Univariable and multivariable 
linear regression analyses were performed to identify independent predictors of microcirculation dysfunction.

Results T2DM(OCAD −) patients, when compared to control subjects, had reduced upslope and prolonged TTM in 
global and all of three slices (all P < 0.05). T2DM(OCAD +) patients showed a significantly more severe impairment 
of microvascular perfusion than T2DM(OCAD −) patients and control subjects with a more marked decline upslope 
and prolongation TTM in global and three slices (all P < 0.05). From control subjects, through T2DM(OCAD +) patients 
with Gensini score ≤ 64, to those patients with Gensini score > 64 group, the upslope declined and TTM prolonged 
progressively in global and mid‑ventricular slice (all P < 0.05). The presence of OCAD was independently correlated 
with reduced global upslope (β =  − 0.104, P < 0.05) and global TTM (β = 0.105, P < 0.05) in patients with T2DM. Among 
T2DM(OCAD +) patients, Gensini score was associated with prolonged global TTM (r = 0.34, P < 0.001).

Conclusions Coronary artery obstruction in the context of T2DM exacerbated myocardial microcirculation damage. 
The presence of OCAD and Gensini score were independent predictors of decreased microvascular function.
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Background
Type 2 diabetes mellitus (T2DM) is accompanied by mul-
tisystem micro- and macro-vascular complications [1, 
2]. As one of the major risk factors for coronary artery, 
T2DM can affect coronary microvasculature as well as 
epicardial coronary arteries [3]. Growing evidence has 
underscored deleterious effects of coronary microvascu-
lar dysfunction (CMD) in T2DM patients, which might 
lead to adverse left ventricular (LV) remodeling, reduced 
myocardial function, and worse clinical outcomes [4, 
5]. In addition, there is a markedly increased incidence 
of major adverse cardiovascular events (MACE) associ-
ated with coronary macrovascular complication, such as 
obstructive coronary artery disease (OCAD), in patients 
with T2DM [1, 2, 6]. Accumulating data have indicated 
that CMD is correlated with increased cardiovascular 
mortality and poor prognosis in T2DM patients with 
OCAD [7–9]. Thus, early identification of CMD among 
those patients might contribute to risk stratification and 
prognosis evaluation for optimal medical treatments [10, 
11].

Several studies have demonstrated that microvascu-
lar resistance is influenced by the severity of epicardial 
artery stenosis [12–14]. Although structural, functional, 
and metabolism alterations of the microvasculature and 
extravascular changes might elucidate CMD [15–17], 
the pathophysiological mechanisms of CMD under the 
presence of coronary obstruction remain not fully under-
stood. Since CMD is an independent predictor of MACE 
in T2DM patients [5], it is utmost significant to assess 
coronary microvascular function and understand the 
relationship between epicardial coronary obstruction and 
CMD among those patients.

First-pass  cardiac  magnetic  resonance (CMR) per-
fusion has emerged as a sensitive, non-invasive and 
accurate imaging modality for monitoring myocardial 
microvascular function, which has been extensively 
validated in various diseases [18–20]. To the best of our 
knowledge, most studies have investigated effects of obe-
sity or hypertension on myocardial perfusion in T2DM 
patients [21, 22], whereas the additive impact of epicar-
dial coronary obstruction on myocardial microcircula-
tion damage has rarely been studied in those patients 
[23]. Herein, we aimed to: 1) evaluate the impact of coro-
nary obstruction on myocardial microcirculation func-
tion in T2DM patients, and 2) to investigate independent 
predictors of reduced coronary microvascular perfusion.

Methods
Study population
Patients with T2DM who underwent CMR examina-
tion at our institution were retrospectively enrolled 
in this study from January 2015 to April 2022. Invasive 

coronary angiography (ICA) examination was performed 
to diagnose OCAD. OCAD was defined on condition 
that angiographic evidence of ≥ 50% diameter stenosis 
showed in at least one major epicardial coronary artery 
[24]. According to the American Diabetes Association 
guidelines [25], T2DM was diagnosed and the diagnostic 
criteria were as follows: typical diabetes symptoms and 
random plasma glucose (PG) level ≥ 11.1 mmol/L, or fast-
ing PG level ≥ 7.0 mmol/L, or 2-h PG level ≥ 11.1 mmol/L 
after a 75-g oral glucose tolerance test, or hemoglobin 
 A1c level ≥ 6.5  mmol/L. The Exclusion criteria included 
patients with type 1 diabetes mellitus, previous coro-
nary artery bypass grafting or stenting, primary cardio-
myopathy, valvular or congenital heart disease, severe 
renal dysfunction with an estimated glomerular filtration 
rate < 30  ml/min/1.73m2, any contraindication to CMR 
examination, and CMR image quality is unsuitable for 
diagnosis.

Ultimately, 297 T2DM patients (mean age, 
58.95 ± 11.61  years; 197 male) were enrolled into the 
study and were classified into two groups: T2DM with-
out OCAD [T2DM(OCAD −), n = 188] and T2DM 
with OCAD [T2DM(OCAD +), n = 109]. Age- and sex-
matched individuals were enrolled served as the control 
group. The exclusion criteria of the control group were as 
follows: history of systematic or cardiovascular disease, 
known diabetes mellitus or impaired glucose tolerance, 
and abnormalities detected by CMR, such as abnormal 
ventricular motion, perfusion defect, and decreased LV 
ejection fraction (LVEF), etc. Finally, a total of 89 indi-
viduals (mean age, 56.38 ± 8.63  years; 51 male) were 
included in this study. This study protocol was approved 
by the Biomedical Research Ethics Committee of our 
hospital. Written informed consent was waived because 
of the retrospective nature of the study.

Invasive coronary angiography
According to the standard Judkins technique, invasive 
coronary angiography was performed by experienced 
interventional cardiologists adopting radial or femoral 
artery approach. On the basis of the number of diseased 
coronary arteries with ≥ 50% stenosis, T2DM(OCAD +) 
patients were categorized as a one-, two-, or three-vessel 
disease. Coronary artery stenosis of ≥ 50% in left main 
coronary artery was regarded as three-vessel disease 
[26]. Based on the method described in the literature 
[27], Gensini coronary score was used for evaluating the 
severity of OCAD and was calculated by two independ-
ent experienced cardiologists.

CMR protocol
CMR examination was performed on a 3.0  T whole-
body scanner Trio Tim or MAGNETOM Skyra (Siemens 
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Medical Solutions, Erlangen, Germany). All participants 
were examined in the supine position, and equipped 
with standard ECG-triggering device and 32-chan-
nel body phased array coils. During the end-inspiratory 
breath-holding period, continuous data acquisition was 
performed using a retrospective vector ECG gating tech-
nique. Cine imaging was performed in the short-axis 
slices, as well as the two-, three-, and four-chamber in 
the long-axis covering the whole LV from the base to the 
apex views using a balanced steady-state free precession 
(bSSFP) sequence. The following scanning parameters 
were used: repetition time [TR]: 2.8 ms or 3.4 ms, echo 
time [TE]: 1.2 ms, field of view [FOV]: 303 ×  360mm2 or 
284 ×  340mm2, flip angle 50° or 38°, slice thickness 8 mm, 
and matrix size 162 × 192 or 174 × 208.

Subsequently, gadolinium-based contrast agent was 
intravenously injected at a dose of 0.2 mL/kg body weight 
(injection rate: 2.5 − 3.0 mL/s), then a 20 mL saline flush 
was injected immediately following contrast at a rate of 
3.0 mL/s. Rest first-pass perfusion images in three stand-
ard short-axis slices (basal, mid-ventricular, and apical) 
and in one slice of four-chamber view were acquired 
using an inversion recovery prepared echo-planar 
imaging sequence. The following scanning parameters 
were used: repetition time [TR]:163.2  ms or 149.8  ms, 
echo time [TE]: 1.06 or 0.99  ms, field of view [FOV]: 
240 mm × 320  mm2 or 270 ×  360mm2, flip angle 10°, slice 
thickness 8 mm, and matrix size 132 × 176 or 144 × 192.

CMR data analysis
CMR images analysis was evaluated offline using com-
mercial software  (cvi42, Circle Cardiovascular Imaging 
Inc., Calgary, Alberta, Canada) by two experienced radi-
ologists. For each participant, LV end-diastolic volume 
(LVEDV), LV end-systolic volume (LVESV), LV stroke 
volume (LVSV), LV myocardial mass, and LVEF were cal-
culated using the above-mentioned software by manually 
outlined the epicardial and endocardial borders of the LV 
myocardium on a stack of short-axis cine images at the 
end-systolic and end-diastolic phases. LV papillary mus-
cles and moderate bands were excluded from LV myo-
cardial mass and included in LV cavity. LV volumes and 
mass were corrected for body surface area (BSA), which 
was calculated using the Mosteller equation [28].

For analyzing LV myocardial perfusion, signal inten-
sity-time curves, including each myocardial segment 
based on the 16-segment model (Bull’s eye plot) and the 
blood pool, were generated by manually delineated epi-
cardium, endocardium and blood pool counters in first-
pass perfusion images of all three short-axis slices (the 
basal, middle, and apical) with exclusion of papillary 
muscles and moderator bands. Each myocardial seg-
mental perfusion parameters, including upslope, time 

to maximum signal intensity (TTM) and maximum sig-
nal intensity (MaxSI), were consequently obtained from 
myocardial signal intensity-time curves (Fig.  1, A2-C2, 
A4-C4, A6-C6). All LV global myocardial perfusion 
parameters were calculated by averaging values of the 16 
myocardial segments.

Evaluation of reproducibility of LV myocardial perfusion 
parameters
Inter- and intra-observer variability for LV global and 
segments myocardial microcirculation perfusion meas-
urements were determined in 60 random cases that 
included 43 T2DM patients and 17 control subjects. 
Intra-observer variability was obtained by comparison 
of perfusion parameters by the same observer with over 
7 years of CMR experience in 2-month interval. To deter-
mine inter-observer variability, a second investigator with 
7 years of CMR experience, who was unaware of the first 
observer’s results, compared independent measurements 
in the same population.

Statistical analysis
All calculations were done with IBM SPSS Statistics 
for Windows version 24.0 (IBM Corporation, Armonk, 
NY, USA) and GraphPad Prism version 7.0a (Graph-
Pad Software, San Diego, California, USA). Continuous 
variables were expressed as means with standard devia-
tions or medians with inter-quartile ranges. One-way 
analysis of variance (One-way ANOVA) followed by 
Bonferroni’s post hoc-test or the Kruskal–Wallis rank 
test (when appropriate) were used to analyze differ-
ences among control subjects, T2DM(OCAD-) group, 
and T2DM(OCAD +) group, or among control subjects, 
T2DM(OCAD +) patients with Gensini score ≤ 64 group, 
and those patients with Gensini score > 64 group.

Univariable and multivariable linear regression analyses 
were used to investigate the independent and combined 
correlations of OCAD and T2DM with LV microvascu-
lar dysfunction, and evaluate independent predictors of 
impaired myocardial microcirculation perfusion among 
T2DM(OCAD +) patients. Candidate variables with P 
values of less than 0.1 in the univariable analysis were 
included in the final multivariable linear regression mod-
els with a stepwise selection procedure. Intra-class cor-
relation coefficient (ICC) was used to assess intra- and 
inter-observer agreements. A two-tailed P value of < 0.05 
was considered significant.

Results
Baseline characteristics of the study cohort
Table  1 summarizes baseline characteristics of the 
study cohort. T2DM(OCAD +) patients demon-
strated longer disease duration [5 (0.75, 10) vs. 2 (0, 
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Fig. 1 Representative first‑pass perfusion CMR images and signal intensity‑time curves in a control subject (A1–A6), T2DM(OCAD −) patient 
(B1–B6), and T2DM(OCAD +) patient (C1–C6). Signal intensity‑time curves were acquired from basal, mid‑ventricular, and apical slices. T2DM type 2 
diabetes mellitus; OCAD obstructive coronary artery disease. MaxSI max signal intensity, TTM time to maximum signal intensity
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8) years, P < 0.05)], more likely to be older (61.42 ± 9.8 
vs. 57.52 ± 12.34, P < 0.05), and more often men (80.7% 
vs. 58%, P < 0.05), as well as more smokers (50.5% vs. 
35.1%, P < 0.05) than those T2DM(OCAD −) patients. 

Among T2DM(OCAD +) patients, 36(33%) patients 
had one-vessel disease, 29(26.6%) had two- vessel dis-
ease, and 44(40.4%) had three-vessel disease. In addi-
tion, the left ascending artery, left circumflex artery, 
and right coronary stenosis rate were 91.7%, 49.5%, and 

Table 1 Baseline characteristics of the study cohort

All values are presented as mean ± SD or n (%) or median (Q1-Q3)

T2DM type 2 diabetes mellitus, OCAD obstructive coronary artery disease, BSA body surface area, BMI body mass index, HbA1c glycated hemoglobin, TC total 
cholesterol, TG triglycerides, LDL low-density lipoprotein, HDL high-density lipoprotein, eGFR estimated glomerular filtration rate, LAD left descending artery, LCX left 
circumflex artery, RCA  right coronary artery; PCI percutaneous coronary intervention, CABG coronary artery bypass grafting; ACEI angiotensin converting enzyme 
inhibitor, ARB angiotensin receptor blocker; GLP-1/DPP-4 inhibitor glucagon-like peptide-1/dipeptidyl peptidase 4 inhibitor
# P < 0.05 T2DM patients vs. control subjects; *P < 0.05 vs. control subjects; §P < 0.05 vs. T2DM(OCAD −) group

Control subjects T2DM T2DM

(n = 89) (n = 297) T2DM (OCAD −)
(n = 188)

T2DM (OCAD +)
(n = 109)

Male, n (%) 51 (57.3%) 197 (66.3%) 109 (58%) 88 (80.7%)*§

Age (years) 56.38 ± 8.63 58.95 ± 11.61 57.52 ± 12.34 61.42 ± 9.80*§

Systolic blood pressure (mmHg) 113.25 ± 11.17 132.51 ± 22.34# 134.26 ± 22.04* 129.50 ± 22.64*

Diastolic blood pressure (mmHg) 74.45 ± 6.29 81.27 ± 13.95# 82.11 ± 13.73* 79.83 ± 14.28*

Heart rate (beats/min) 72.45 ± 7.0 82.51 ± 15.31# 83.69 ± 15.87* 80.46 ± 14.14*

BSA  (m2) 1.59 ± 0.16 1.73 ± 0.19# 1.70 ± 0.19* 1.77 ± 0.19*

BMI (kg/m2) 21.31 ± 3.31 25.39 ± 4.19# 25.28 ± 4.17* 25.58 ± 4.23*

Smoking, n (%) 10 (11.24%) 121 (40.7%) # 66 (35.1%)* 55 (50.5%)*§

Diabetes duration (years)  − 3 (0, 9.75) 2 (0,8) 5(0.75, 10)§

TC (mmol/L) 3.79 ± 0.89 4.01 ± 1.37 4.13 ± 1.51 3.82 ± 1.06

TG (mmol/L) 1.14 ± 0.80 1.91 ± 1.51# 1.92 ± 1.51* 1.89 ± 1.53*

LDL (mmol/L) 2.16 ± 0.72 2.21 ± 1.03 2.25 ± 1.12 2.13 ± 0.85

HDL (mmol/L) 1.26 ± 0.30 1.12 ± 0.37# 1.16 ± 0.40 1.05 ± 0.30*

Fasting plasma glucose (mmol/L) 4.75 ± 0.63 9.12 ± 4.20# 8.53 ± 3.91* 10.14 ± 4.49*§

HbA1c, (%) 5.16 ± 0.30 7.43 ± 1.31# 7.06 ± 1.20* 8.08 ± 1.22*§

eGFR(ml/min/1.73m2) 90.08 ± 13.48 78.61 ± 22.38# 79.18 ± 23.51* 77.66 ± 20.39*

Gensini score  − 64 (37, 101)  − 64 (37, 101)

Location of coronary artery occlusion 100(91.7%)/54(49.5%) 100(91.7%)/54(49.5%)

(LAD/LCX/RCA)  − /70(64.2%)  − /70(64.2%)

Number of coronary arteries affected 36(33%)/29(26.6%) 36(33%)/29(26.6%)

(One/Two/Three‑vessel)  − /44(40.4%)  − /44(40.4%)

OCAD treatment

 PCI  − 70 (64.2%)  − 70 (64.2%)

 CABG  − 4 (3.7%)  − 4 (3.7%)

 Statins, n (%)  − 95 (87.2%)  − 95 (87.2%)

 Anti‑thrombotic agents, n (%)  − 98 (89.9%)  − 98 (89.9%)

 Calcium antagonists, n (%)  − 28(25.7%)  − 28(25.7%)

 ACEI/ARB, n (%)  − 36 (33.0%)  − 36 (33.0%)

 Beta blockers, n (%)  − 40 (36.7%)  − 40 (36.7%)

T2DM treatment

 Diet controlled, n (%)  − 86 (29%) 61 (32.4%) 25 (22.9%)

 Insulin, n (%)  − 82 (27.6%) 47 (25%) 35 (32.1%)

 GLP‑1/DPP‑4 inhibitor, n (%)  − 16 (5.4%) 11 (5.9%) 5 (4.6%)

 a‑Glucosidase inhibitor, n (%)  − 83 (27.9%) 49 (26.1%) 34 (31.2%)

 Biguanides, n (%)  − 114 (38.4%) 63 (33.5%) 51 (46.8%)

 Sulfonylureas, n (%)  − 52 (17.5%) 33 (17.6%) 19 (17.4%)
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64.2%, respectively. The median of Gensini score was 64 
(37, 101) in those T2DM patients with OCAD.

CMR‑derived parameters analysis in T2DM patients 
with and without OCAD and control subjects
CMR-derived parameters for observed groups are listed 
in Table 2. LVSVI and LVEF exhibited gradually decrease, 
while LVESVI showed a significant progressive increase 
from control subjects, through T2DM(OCAD −), to 
T2DM(OCAD +) patients (all P < 0.05). Compared with 
control subjects, T2DM patients both with and without 
OCAD had increased LVEDVI and LVMI (both P < 0.05).

With regard to the LV myocardial first-pass perfusion, 
T2DM patients even without OCAD had worse micro-
vascular function, which was supported by decreased 
upslope and increased TTM in global and all of three 
short-axis segments (basal, mid-ventricular, and apical) 
compared to the control subjects (all P < 0.05). Micro-
circulation dysfunction also existed and were exhibited 
a more marked impairment in the T2DM(OCAD +) 
patients than those T2DM(OCAD −) and control 

subjects, which was evident by a more reduced upslope 
and longer TTM in global and those above slices (all 
P < 0.05) (Figs. 1 and 2).

First‑pass CMR perfusion indices evaluation 
in T2DM(OCAD +) patients with different Gensini score 
group and control subjects
T2DM (OCAD +) patients were categorized into two 
subgroups based on the median value (64) of the Gensini 
score: T2DM (OCAD +) patients with Gensini score ≤ 64 
group (n = 53) and those with Gensini score > 64 group 
(n = 56). The LV global and segmental myocardial per-
fusion parameters for observed groups are exhibited 
in Fig.  3. In middle-ventricular segment, the upslope 
declined and the TTM prolonged progressively from 
control subjects, through T2DM (OCAD +) patients with 
Gensini score ≤ 64, to those with Gensini score > 64 (all 
P < 0.05). The same trends were observed in the global 
upslope and TTM among those above three groups (all 
P < 0.05). The upslope in basal and apical segments were 

Table 2 Differences of CMR‑derived parameters among T2DM(OCAD −) patients, T2DM(OCAD +) patients, and control subjects

All values are presented as median (Q1-Q3) or mean ± SD. LV left ventricular, EF ejection fraction, EDV end-diastolic volume, ESV end-systolic volume, SV stroke-volume, 
MaxSI max signal intensity, TTM time to maximum signal intensity. *P < 0.05 vs. control group; §P < 0.05 vs. T2DM (OCAD −) group

Control subjects T2DM

(n = 89) T2DM (OCAD −)
(n = 188)

T2DM (OCAD +)
(n = 109)

LV geometry and function

 LVEF (%) 63.6 (58.2, 67.6) 54.5 (38.1, 63.3)* 36.8 (27.0, 53.8)*§

 Indexed LV mass (g/m2) 42.4 (36.1, 49.0) 51.5 (42.8, 67.5)* 60.4 (48.1, 66.6)*

 Indexed LVEDV (mL/m2) 79.7 (68.8, 87.7) 90.0 (74.1, 116.7)* 106.6 (78.4,140.7)*

 Indexed LVESV (mL/m2) 28.2 (23.9, 33.4) 40.0 (27.3, 72.9)* 59.5 (35.8, 101.8)*§

 Indexed LVSV (mL/m2) 49.9 (42.8, 54.4) 44.4 (32.8, 54.6)* 41.4 (32.0, 49.6)*§

First‑pass perfusion parameters

 Basel

  Upslope 2.26 ± 0.91 1.85 ± 0.87* 1.52 ± 0.88*§

  MaxSI 18.90 ± 5.86 18.55 ± 6.98 16.48 ± 6.62

  TTM (s) 27.42 ± 10.39 33.86 ± 14.78* 39.08 ± 17.55*§

 Mid‑ventricular

  Upslope 2.69 ± 1.03 2.16 ± 0.93* 1.76 ± 0.96*§

  MaxSI 23.01 ± 7.05 21.88 ± 7.28 19.91 ± 7.65*

  TTM (s) 27.34 ± 10.52 33.72 ± 15.02* 40.14 ± 16.91*§

 Apical

  Upslope 3.25 ± 1.23 2.69 ± 1.16* 2.26 ± 1.22*§

  MaxSI 28.92 ± 8.41 27.42 ± 9.01 25.45 ± 9.44

  TTM (s) 29.68 ± 10.82 35.12 ± 14.48* 41.88 ± 18.60*§

 Global

  Upslope 2.66 ± 1.00 2.18 ± 0.92* 1.80 ± 0.96*§

  MaxSI 22.80 ± 6.75 21.99 ± 7.18 19.97 ± 7.47*

  TTM (s) 28.06 ± 10.31 34.21 ± 14.25* 40.18 ± 16.80*§
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Fig. 2 Comparison of first‑pass perfusion parameters among control subjects, T2DM(OCAD −) patients, and T2DM(OCAD +) patients in the basal 
slice (A1‑A3), mid‑ventricular slice (B1‑B3) and apical slice (C1‑C3), as well as in global (D1‑D3). Abbreviations as in Fig. 1. *P < 0.05
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Fig. 3 Differences of myocardial microvascular perfusion indices among control subjects, T2DM(OCAD +) patients with Gensini score ≤ 64, and 
those patients with Gensini score > 64. Comparison of upslope and TTM in the basal slice (A, B), apical slice (F, G) and in global (H, I), as well as 
upslope, TTM, and MaxSI in the mid‑ventricular slice (C, D, E) among above‑mentioned three groups. Abbreviations as in Fig. 1. *P < 0.05
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similar between subgroups of T2DM (OCAD +) patients 
with different Gensini score (all P > 0.05).

Incremental effect of OCAD on LV myocardial 
microvascular perfusion in T2DM patients
Multivariable linear regression analyses were performed 
to determine additive effect of OCAD on LV myocardial 
microvascular perfusion in T2DM patients using two 
models (Table 3). OCAD and T2DM were entered alone 
in model 1 with adjustment for sex, age, BMI, BSA, heart 
rate, systolic and diastolic blood pressure, smoking, and 
diabetes duration, demonstrating that the presence of 
OCAD or T2DM was independently associated with LV 
global upslope (OCAD: β =  − 0.15, P = 0.003,  R2 = 0.19; 
T2DM: β =  − 0.23, P < 0.001,  R2 = 0.22) and global TTM 
(OCAD: β = 0.14, P = 0.005,  R2 = 0.23; T2DM: β = 0.19, 
P = 0.001,  R2 = 0.23). With adjusted for those above 
demographic factors, OCAD and T2DM were entered 
together in model 2 showed that OCAD in the context 
of T2DM was significantly correlated with global upslope 
 (R2 = 0.22) and global TTM  (R2 = 0.24).

Associations between global TTM and Gensini score, 
as well as clinical factors
As shown in Table  4, the univariable analysis in 
T2DM(OCAD +) patients exhibited that global TTM 
was positively associated with the Gensini score (r = 0.34, 
P < 0.001) (Fig.  4), and male sex (r = 0.398, P < 0.001), as 
well as smoking (r = 0.282, P = 0.003). In addition, there 
was a negative correlation between systolic blood pres-
sure and global TTM (r =  − 0.35, P < 0.001). After con-
trolling for confounding factors, including age, sex, BMI, 
BSA, heart rate, systolic and diastolic blood pressure, 
smoking, and diabetes duration, Gensini score remained 

the independent predictor of increased global TTM 
(β = 0.182, P = 0.042,  R2 = 0.226).

Inter‑ and intra‑observer variabilities of first‑pass 
perfusion parameters
The inter- and intra-observer agreements of LV myocar-
dial first-pass perfusion parameters were demonstrated 
in Table  5 and were considered excellent. The ICCs for 
inter-observer variability of LV myocardial perfusion 
in basal, mid-ventricular, apical segments, and global 
were 0.899 − 0.914, 0.909 − 0.951, 0.881 − 0.969, and 
0.902–0.933, respectively. The ICCs for intra-observer 
variability of those above LV perfusion indices were 

Table 3 Uni‑ and multi‑variable linear regression analyses correlations of T2DM and OCAD with global coronary microvascular 
dysfunction

β is adjusted regression coefficient

Factors with P < 0.1 in the univariable analyses were included in the stepwise multiple liner regression model

T2DM type 2 diabetes mellitus, OCAD obstructive coronary artery disease, TTM time to maximum signal intensity

Upslope‑global TTM‑global (s)

Univariable Multivariable Univariable Multivariable

r p β p-value R2 r p β p-value R2

Model 1: adjusted for demographic factors

T2DM  − 0.26  < 0.001  − 0.23  < 0.001 0.22 0.25  < 0.001 0.19 0.001 0.23

OCAD  − 0.27  < 0.001  − 0.15 0.003 0.19 0.26  < 0.001 0.14 0.005 0.23

Model 2: adjusted for demographic factors

T2DM  − 0.26  < 0.001  − 0.17 0.002 0.22 0.25  < 0.001 0.16 0.004 0.24

OCAD  − 0.27  < 0.001  − 0.10 0.037 0.26  < 0.001 0.11 0.037

Table 4 Associations between global TTM and Gensini score, as 
well as clinical factors in T2DM(OCAD +) patients

β is adjusted regression coefficient

Factors with P < 0.1 in the univariable analyses were included in the stepwise 
multiple liner regression model

Abbreviations as in Tables 1 and 2

TTM‑global (s)

Univariable Multivariable

r p β p-value R2

Gensini score 0.34  < 0.001 0.182 0.042 0.226

Sex 0.398 ＜0.001 0.315  < 0.001

Age  − 0.138 0.153 N/A N/A

BMI  − 0.097 0.317 N/A N/A

BSA 0.151 0.117 N/A N/A

SBP  − 0.353  < 0.001  − 0.226 0.013

DBP  − 0.194 0.043 N/A N/A

Heart rate  − 0.034 0.729 N/A N/A

Smoking 0.282 0.003 N/A N/A

Diabetes duration 0.051 0.600 N/A N/A
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0.900 − 0.924, 0.910 − 0.968, 0.908 − 0.972, and 0.905–
0.931, respectively.

Discussion
The present study investigated impact of coronary 
obstruction on coronary microcirculation function in the 
context of T2DM assessed by first-pass perfusion CMR 
imaging. The following main findings were obtained: (1) 
T2DM was linked with impairment of myocardial micro-
circulation perfusion. (2) coronary obstruction, in the 

context of T2DM, might exacerbate myocardial micro-
vascular dysfunction. (3) the presence of OCAD and the 
Gensini score were independent predictors of damaged 
microcirculation function.

Effect of T2DM on microcirculation abnormalities
Multiple randomized clinical trials using different tech-
niques have confirmed marked reduction of coronary 
flow reserve reflecting coronary microvascular func-
tion in diabetes patients, even in the absence of OCAD 
[8, 29, 30]. The present study using fist-pass perfusion 
CMR imaging supported the findings of those above 
investigations by demonstrating impaired LV myocar-
dial microvascular perfusion with reduced upslope and 
prolonged TTM in global and all of three segments in 
T2DM(OCAD −) patients despite with preserved LVEF. 
In addition, our results were also in line with previous 
evidence that impaired microvascular function affected 
the left ventricle globally in addition to regionally in 
patients with T2DM [31].

Coronary microvascular abnormalities in T2DM 
involves multiple complex pathophysiological mecha-
nisms including hyperglycemia, insulin resistance, and 
systemic inflammation, as well as autonomic dysfunction 
[29, 32, 33]. Furthermore, these abnormalities precede 
the onset of contractile dysfunction and clinically overt 
OCAD [34], and are also associated with poor cardiovas-
cular prognosis [8]. Hence, early detection of coronary 
microvascular dysfunction in patients with T2DM might 
be helpful for early intervention to avoid adverse cardio-
vascular events [11].

Incremental effect of coronary obstruction 
on microcirculation dysfunction in the context of T2DM
Several researches have founded patients with known 
coronary artery disease had impaired hyperemic flow 
and coronary flow reserve [9, 35, 36]. This present study 
extended these findings to patients with both OCAD 
and T2DM, a population that previously has rarely been 
explored, which exhibited that T2DM(OCAD +) patients 
had a more reduction in upslope and prolongation in 
TTM in global and all of three segments than those 
T2DM(OCAD −) patients and control subjects, suggest-
ing that OCAD might exacerbate microcirculation dam-
age in T2DM. Together, those above findings indicated 
that it is imperative to actively treat OCAD in patients 
with T2DM. Current therapies for diabetes patients 
with multi-vessel OCAD include percutaneous coronary 
intervention and coronary artery bypass graft (CABG), 
both of which have improved the prognosis among those 
patients [37, 38].

The pathophysiologic mechanisms of epicardial coro-
nary artery obstruction on myocardial microcirculation 

Fig. 4 Association between global TTM and Gensini score in 
T2DM(OCAD +) patients. T2DM type 2 diabetes mellitus, OCAD 
obstructive coronary artery disease, TTM time to maximum signal 
intensity. *P < 0.001

Table 5 Intra‑and inter‑observer variabilities of first‑pass 
perfusion parameters

ICC intraclass correlation coefficient, CI confidence interval, MaxSI max signal 
intensity, TTM time to maximum signal intensity

Intra‑observer (n = 60) Inter‑observer (n = 60)

ICC 95% CI ICC 95% CI

Basel

 Upslope 0.924 0.874 − 0.955 0.914 0.858 − 0.949

 MaxSI 0.900 0.835 − 0.940 0.899 0.833 − 0.939

 TTM (s) 0.913 0.857 − 0.948 0.908 0.848 − 0.945

Mid‑ventricular

 Upslope 0.942 0.903 − 0.965 0.940 0.900 − 0.964

 MaxSI 0.910 0.851 − 0.946 0.909 0.850 − 0.946

 TTM (s) 0.968 0.946 − 0.981 0.951 0.917 − 0.971

Apical

 Upslope 0.936 0.893 − 0.962 0.924 0.869 − 0.956

 MaxSI 0.972 0.952 − 0.983 0.969 0.948 − 0.982

 TTM (s) 0.908 0.847 − 0.945 0.881 0.803 − 0.929

Global

 Upslope 0.905 0.844 − 0.943 0.904 0.842 − 0.942

 MaxSI 0.931 0.885 − 0.959 0.933 0.888 − 0.960

 TTM (s) 0.911 0.852 − 0.947 0.902 0.839 − 0.941
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dysfunction are poorly established, although several 
potential mechanisms have been proposed, including 
prearteriolar and arteriolar constriction and improper 
subepicardial prearteriolar dilatation in the existence of 
multiplied myocardial oxygen consumption [15, 16]. In 
addition, enhanced sympathetic activation is also likely 
to contribute to microvascular dysfunction under the 
coronary obstruction [16, 39]. Further researches in the 
context of T2DM are warranted on the underlying mech-
anisms of OCAD affecting coronary microcirculation 
function.

First‑pass perfusion CMR for evaluation of myocardial 
microvascular function
Currently, nuclear imaging and myocardial contrast 
echocardiography can be used to evaluate myocar-
dial microcirculation function. However, both of these 
modalities are subject to certain limitations [15, 40]. 
First-pass perfusion CMR is a non-invasive and radia-
tion-free modality for detecting myocardial ischemia 
with high diagnostic accuracy and spatial resolution [18–
20, 40]. First-pass perfusion CMR parameters are derived 
from myocardial signal intensity-time curve including 
upslope, MaxSI, and TTM, which have been applied as 
semi-quantitative markers of tissue perfusion and associ-
ated with coronary microvascular function [18–20, 41].

In current study, there were excellent intra- and inter-
observer agreements of the first-pass CMR perfusion 
technique for measuring upslope, MaxSI, and TTM 
among patients with T2DM. Previous studies have indi-
cated that coronary microcirculation function, as evalu-
ated by first-pass CMR myocardial perfusion, might 
serve as an additional marker for prognosis evaluation 
and therapeutic response [18, 20, 42]. As coronary micro-
vascular dysfunction is an independent and strong risk 
factor of clinical deterioration and death in patients with 
T2DM and OCAD [9], future studies will focus on using 
this technique to evaluate the prognosis among those 
patients.

Independent predictors of microvascular dysfunction
Much less is known about the interrelationship between 
the coronary microcirculation and the epicardial coro-
nary arteries [12–14]. In our data, the presence of OCAD 
was an independent predictor of myocardial microcir-
culation dysfunction in the context of T2DM. A better 
comprehension of the relationship between the epicardial 
coronary artery obstruction and microvascular disor-
der would be beneficial to effectively diagnose and treat 
microvascular dysfunction in patients with T2DM. Cur-
rent researches show that multi-lineage cell therapy is a 

novel, translatable approach and is expected to improve 
microvascular disease in diabetic patients [43, 44].

Our results suggested that T2DM(OCAD +) patients 
with Gensini score > 64 might had a more severe micro-
vascular dysfunction than those patients with Gensini 
score ≤ 64 and control subjects. Increasing evidence has 
demonstrated that the extent and severity of coronary 
artery stenosis are associated with decreased myocar-
dial microcirculation perfusion among patients with 
known or suspected coronary artery disease [45–47].

Data from experimental study in pig model con-
ducted by Fearon et  al. [48] have found that micro-
vascular resistance is not affected by the epicardial 
coronary artery stenosis severity. Conversely, by ana-
lyzing the correlation between the Gensini score and 
microcirculation function, the current study demon-
strated that global TTM prolonged progressively along 
with the increase of the Gensini score which is widely 
used for quantifying the severity of OCAD [27]. Possi-
ble reason for this discrepancy might be explained by 
the differences between animal models and humans. 
Taken together, our observations implied that the 
severity of the OCAD was also a predictor of coronary 
microcirculation dysfunction. Consequently, early pre-
vention and active intervention of OCAD are expected 
to improve coronary microvascular function [15, 16] in 
patients with T2DM (OCAD +).

Limitations
Our study has several limitations. Firstly, this was a 
mono-centric study, which carries inherent bias in 
terms of selection. A multicenter study is desirable 
to generalize our observations. Secondly, as a cross-
sectional analysis, we cannot know the evolution of 
cardiac microcirculation damage in patients with 
T2DM(OCAD +) overtime with the progression of 
OCAD. Further follow-up studies will be performed 
to address this question. Thirdly, stress CMR perfusion 
imaging has been reported to prospectively evaluate 
myocardial ischemia in some cardiovascular diseases 
[19, 20, 42]. Due to the inherent limitations of retro-
spective design, future prospective trials will use this 
imaging modality to explore the incremental effect of 
OCAD on myocardial microcirculation function among 
T2DM patients. Finally, not all of our T2DM(OCAD −) 
patients were performed ICA examination or coro-
nary computed tomography angiography to exclude 
OCAD, and control individuals were not performed 
those above examination to exclude no clinical symp-
toms coronary artery obstruction. According to com-
prehensive evaluation of the patients by clinical history, 
laboratory examination, electrocardiography, and 
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echocardiography, OCAD was deemed to be unlikely in 
those patients [21].

Conclusions
Coronary artery obstruction in the context of T2DM 
might exacerbate myocardial microcirculation damage. 
The presence of OCAD and Gensini score were inde-
pendent predictors of myocardial microvascular dys-
function. Early detection myocardial microcirculation 
abnormalities using first-pass perfusion CMR in T2DM 
patients, especially when comorbid with OCAD, would 
be essential for timely therapeutic interventions.
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