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Abstract 

Background In clinical trials enrolling patients with type 2 diabetes (T2D) at high cardiovascular risk, many glucagon‑
like peptide‑1 receptor agonists (GLP‑1 RAs) improved albuminuria status and possibly mitigated kidney function loss. 
However, limited data are available regarding the effects of GLP‑1 RAs on albuminuria status and kidney function in 
real‑world settings, including populations with a lower baseline cardiovascular and kidney risk. We assessed the asso‑
ciation of GLP‑1 RAs initiation with long‑term kidney outcomes in the Maccabi Healthcare Services database, Israel.

Methods Adults with T2D treated with  ≥ 2 glucose‑lowering agents who initiated GLP‑1 RAs or basal insulin from 
2010 to 2019 were propensity‑score matched (1:1) and followed until October 2021 (intention‑to‑treat [ITT]). In an as‑
treated (AT) analysis, follow‑up was also censored at study‑drug discontinuation or comparator‑initiation. We assessed 
the risk of a composite kidney outcome, including confirmed  ≥ 40% eGFR loss or end‑stage kidney disease, and the 
risk of new macroalbuminuria. Treatment‑effect on eGFR slopes was assessed by fitting a linear regression model per 
patient, followed by a t‑test to compare the slopes between the groups.

Results Each propensity‑score matched group constituted 3424 patients, 45% women, 21% had a history of cardio‑
vascular disease, and 13.9% were treated with sodium‑glucose cotransporter‑2 inhibitors at baseline. Mean eGFR was 
90.6 mL/min/1.73  m2 (SD 19.3) and median UACR was 14.6 mg/g [IQR 0.0–54.7]. Medians follow‑up were 81.1 months 
(ITT) and 22.3 months (AT). The hazard‑ratios [95% CI] of the composite kidney outcome with GLP‑1 RAs versus basal 
insulin were 0.96 [0.82–1.11] (p = 0.566) and 0.71 [0.54–0.95] (p = 0.020) in the ITT and AT analyses, respectively. The 
respective HRs for first new macroalbuminuria were 0.87 [0.75–0.997] and 0.80 [0.64–0.995]. The use of GLP‑1 RA was 
associated with a less steep eGFR slope compared with basal insulin in the AT analysis (mean annual between‑group 
difference of 0.42 mL/min/1.73  m2/year [95%CI 0.11–0.73]; p = 0.008).
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Conclusion Initiation of GLP‑1 RAs in a real‑world setting is associated with a reduced risk of albuminuria progression 
and possible mitigation of kidney function loss in patients with T2D and mostly preserved kidney function.

Keywords GLP‑1 RA, Basal insulin, Chronic kidney disease, Real world evidence, Type 2 diabetes, eGFR slope, 
Albuminuria, Real world

Introduction
Around 20–40% of patients with type 2 diabetes have 
chronic kidney disease (CKD), defined by either reduced 
kidney function, the presence of albuminuria, or other 
evidence of kidney damage [1–4]. CKD is associated with 
an increased risk of developing end-stage kidney disease 
(ESKD), cardiovascular complications, and mortality [5, 
6]. Several classes of medications improve cardiovascular 
and kidney outcomes in patients with type 2 diabetes and 
CKD, including angiotensin-converting enzyme inhibi-
tors (ACEi) [7], angiotensin receptor blockers (ARBs) [8], 
sodium-glucose cotransporter-2 inhibitors (SGLT2i) [9], 
and the non-steroidal mineralocorticoid receptor antag-
onist (MRA) finerenone [10, 11]. However, there is little 
evidence for therapies preventing kidney disease onset.

Many glucagon-like peptide-1 receptor agonists 
(GLP-1 RAs) improve cardiovascular outcomes [12] and 
albuminuria-based kidney endpoints [13–15] in patients 
with type 2 diabetes at high cardiovascular risk. Some 
evidence also suggests that GLP-1 RAs mitigate kidney 
function loss, especially in patients with evidence of kid-
ney disease [12, 16], and this subject is being formally 
tested in the FLOW trial [17]. However, limited data are 
available regarding the kidney effects of GLP-1 RA in 
real-world settings [18], especially regarding albuminu-
ria-based outcomes or eGFR slopes. Thus, it is unclear 
whether the findings from the clinical trials are generaliz-
able to broader populations with type 2 diabetes.

In this observational cohort study, we used the Mac-
cabi Healthcare Services (MHS) database, Israel’s second-
largest healthcare maintenance organization (HMO), to 
compare kidney outcomes in patients with type 2 dia-
betes initiating GLP-1 RAs versus basal insulin. We also 
assessed the risk for albuminuria progression and change 
in eGFR over time between treatment groups.

Methods
Study design, participants, and follow‑up definitions
The MHS database includes around 180,000 patients 
with type 2 diabetes among its over 2 million registrees. 
We included adults with type 2 diabetes who initiated a 
GLP-1 RA (exenatide [introduced in Israel in 12.2007], 
liraglutide [2.2010], lixisenatide [1.2015], exenatide 

extended-release [11.2015], dulaglutide [4.2016], and 
semaglutide [8.2019]) or basal insulin between Febru-
ary 2010 to December 2019. The day of drug initiation 
was defined as the index date, and the year preceding 
the index date was defined as the baseline period. We 
selected basal insulin as a comparator to ensure com-
parability between the groups, because during these 
years in Israel both drugs were mainly used as injectable 
drugs for glycemic control in advanced stages of diabe-
tes. Accordingly, we included patients treated with at 
least two other glucose-lowering agents (GLAs) at the 
baseline period, reflecting the common use at Israel at 
the time. Only those with at least one eGFR measure-
ment at the baseline period were included. We excluded 
patients with type 1 diabetes, eGFR < 15 mL/min/1.73  m2, 
an indication of kidney transplantation or dialysis treat-
ment, or those treated with the comparator drug within 
the year prior index date. Patients with an indication of 
pregnancy within 9  months before the index date were 
also excluded. To reduce bias associated with physicians’ 
preference to treat severely ill patients with familiar and 
less costly drugs, we excluded patients with a  diagnosis 
of dementia; history of  organ transplantation; in MHS’ 
cancer (within the past 5 years) or heart failure registers; 
or those hospitalized for  ≥ 5 consecutive days within the 
past 180 days (Additional file 1: Figure S1).

In the protocol, we defined two follow-up periods. In 
the intention to treat (ITT) analysis, follow-up continued 
until the end of data availability, death, or October 2021. 
In the as-treated (AT) analysis, follow-up was censored 
also at exposure discontinuation (added by 180  days of 
grace period) or the initiation of the comparator. In addi-
tion, we performed a sensitivity analysis censoring the 
ITT follow-up for all patients after 4  years of follow-up 
(ITT-48mo). The rationale behind this analysis was to 
terminate follow-up when a large portion of the partici-
pants was still exposed to the study drugs. Four years cut-
off was also selected to emulate the follow-up duration of 
the LEADER trial [19].

The study was approved by the institutional review 
board (IRB) at MHS. Due to the de-identified nature of 
the data, the IRB did not require obtaining informed con-
sent from the participants.
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Definitions of baseline variables
Validated MHS registries were used to identify patients 
with type 2 diabetes, cardiovascular disease (including 
heart failure), hypertension, or cancer [20–22]. The rel-
evant International Classification of Diseases-9 diagnosis 
codes, Anatomical Therapeutic Chemical medications 
codes, and MHS registries are presented in Additional 
file  1: Table  S1. Blood and urine samples included in 
this study were collected in community settings and 
were measured in the MHS-certified central laboratory. 
eGFR was calculated using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation [23]. 
Residential socioeconomic status (SES) was ranked on a 
1 (lowest) to 10 (highest) scale. This score was derived by 
Points Location Intelligence Ltd, combining geographic 
and socioeconomic information for each neighborhood 
(e.g., expenditures related to retail chains, credit cards, 
and housing). This score is highly correlated with the SES 
measured by the Israeli Central Bureau of Statistics. This 
parameter was categorized into 4 groups (low [1–3], low-
medium [4, 5], medium [6, 7] and high [8–10]) [24].

Outcomes and subgroups
The main kidney outcome was a composite of con-
firmed  ≥ 40% eGFR reduction from baseline or new 
ESKD. Additional outcomes were confirmed or sin-
gle-measurement eGFR reductions of  ≥ 30, ≥ 40, ≥ 50, 
or  ≥ 57% (corresponding to a doubling of serum creati-
nine) or new ESKD alone. We also assessed albuminuria 
outcomes: (1) a categorical increase of urine albumin-to-
creatinine ratio (UACR) for the following categories:  < 30, 
30- < 300 or  ≥ 300 mg/g; (2) or new-onset macroalbumi-
nuria (UACR ≥ 300) among those with UACR ≤ 230 mg/g 
at baseline (resembling a ≥ 30% increase in UACR). The 
albuminuria-based outcomes were assessed either as a 
single- or as confirmed -measurement. In addition, we 
compared the eGFR slopes between the groups.

In addition to the entire study population, analyses 
were performed in subgroups defined by sex, age (< 60 
or ≥ 60 years), presence of CVD, years in diabetes regis-
try (≤ 10 or > 10 years), body mass index (< 30 or ≥ 30 kg/
m2), HbA1c (< 8, or ≥ 8%), UACR (< 30, 30- < 300, 
or ≥ 300  mg/g), treatment with ACEi/ARBs, and treat-
ment with SGLT2i. Patients were also divided into 
subgroups by their baseline eGFR (≥ 90 and < 90  mL/
min/1.73   m2); this threshold was selected owing to the 
relatively preserved kidney function of the study popu-
lation. As a sensitivity analysis, we also divided patients 
into three eGFR subgroups (≥ 90, 60- < 90, or < 60  mL/
min/1.73  m2).

Statistical analysis
Participants were propensity-score (PS) matched in 1:1 
ratio using greedy matching, as previously described 
[25]. The model included 88 baseline parameters, 
including demographic variables (including SES), medi-
cal history, concomitant medications, and laboratory 
values (see the complete list in the Additional file  1). 
Continuous variables were categorized, and missing 
values were defined as a distinct ‘missing’ category to 
allow all patients to be matched. The PS matching was 
carried out by layers of baseline eGFR (> 90, 60–90, 
45–60, 30–45, and 15–30 mL/min/1.73  m2).

Baseline values were described using mean and 
standard deviation (continuous variables with approxi-
mately normal distribution), median and IQR (continu-
ous variables with skewed distribution), or proportions 
(categorical variables). Standardized difference (STD) 
was used to assess differences between the GLP-1 RAs 
and basal insulin group, with values of  < 10% consid-
ered negligible.

Cumulative incidence functions were used to describe 
the incidence of the outcomes in each group. Cox pro-
portional hazard regression models were applied to esti-
mate hazard ratios, confidence intervals, and p-value. 
The models were adjusted for the competing risk of mor-
tality using cause-specific hazard models for the cumu-
lative incidence functions and by using sub-distribution 
hazard functions for the Cox model [26].

The eGFR change from baseline at different time points 
was estimated using mixed models for repeated meas-
ures. We defined time windows of 6  months during 
the first 3  years and each year thereafter. At each time 
window, we included for each patient the eGFR meas-
urement closest to the end of the period. Differences 
between groups at different time points were estimated 
using mixed-effect models with repeated measures. In 
randomized controlled trials (RCTs), eGFR slopes are 
also estimated using mixed-effect models with repeated 
measures; however, this approach may not fit the irreg-
ular sampling in real-world settings, where the times 
of measurements vary between patients. Therefore, to 
assess eGFR slopes, we fitted a linear regression model 
per patient (with time from index date as the independ-
ent variable and eGFR values as the dependent variable), 
enabling us to use all available eGFR measurements. 
The between-group difference in the linear slope esti-
mates were compared using a t-test. We included in 
this analysis only patients with  ≥ 2 eGFR measurements 
with  ≥ 180 days between the first and last evaluations.
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This study did not include formal hypothesis testing, 
and the p-values are presented for descriptive purposes 
only. No correction for multiple testing was performed. 
We consider a p < 0.05 as statistically significant. Analyses 
were performed using SAS version 9.4.

Role of the funding sources
The study was funded by Novo Nordisk. The funder was 
involved in the study design, data analysis, data interpre-
tation, writing of the report, and the decision to submit 
the paper for publication. This report was written accord-
ing to a predefined protocol, including main and addi-
tional outcomes.

Results
Baseline characteristics
Overall, 11,634 and 22,598 patients initiated GLP-1 RAs 
or basal insulin, respectively. After applying the inclu-
sion and exclusion criteria and PS-matching, there were 
3424 participants in each group (Additional file 1: Figure 
S1). The mean age at baseline was 59.4 years (SD 9.4), and 
44.8% were female. Participants at baseline had a mean 
diabetes duration of 9.7  years (4.6), body mass index of 
33.4 (5.4)  kg/m2, and HbA1c of 9.0% (1.4). Cardiovas-
cular disease was prevalent in 21.0%, mean eGFR was 
90.6  mL/min/1.73   m2 (19.3), and median [IQR] UACR 
was 14.6 mg/g [0.0–54.7]. At baseline, 74.9% were treated 
with ACEi/ARBs and 13.9% were treated with SGLT2 
inhibitors. Baseline characteristics were well balanced 
between the groups following PS-matching. (Table 1 and 
Additional file 1: Tables S2 and S3).

Main outcome overall and by subgroups
In the ITT follow-up, during a median of 81.1  months 
[IQR 50.9–110.0], the median number of eGFR meas-
urements per patient was 14 and 13 [7–22 and 7–20] for 
GLP-1 RAs and basal insulin group, respectively (Addi-
tional file 1: Tables S4 and S5). The composite kidney out-
come (≥ 40% eGFR loss or ESKD) occurred overall in 631, 
199, and 194 patients in the ITT, ITT-48mo, and AT fol-
low-ups, respectively (Fig. 1 and Additional file 1: Figure 
S2). The hazard ratios of this outcome with GLP-1 RAs 
compared to basal insulin, were 0.96 ([95% CI 0.82–1.11]; 
p = 0.566), 0.85 ([0.64–1.12]; p = 0.246), and 0.71 ([0.54–
0.95]; p = 0.020) in the ITT, ITT-48mo, and AT follow-
ups, respectively (Fig.  1). There was no evidence that 
the effect varies across most tested subgroups, including 
by baseline treatment with SGLT2i (Fig.  2). The treat-
ment effect seemed to be more pronounced in patients 
with eGFR < 90 compared to eGFR ≥ 90 mL/min/1.73  m2 
(p-interaction = 0.025 [ITT] and 0.058 [AT]). This asso-
ciation was not significant when those with eGFR < 90 

were further divided into eGFR < 60 or 60- < 90  mL/
min/1.73  m2, although the direction was similar (p-inter-
action = 0.083 [ITT] and 0.129 [AT]) (Additional file  1: 
Table S6).

Other study outcomes
The risk of confirmed  ≥ 40% eGFR reduction was lower 
with GLP-1 RA compared with basal insulin only in the 
AT follow-up analysis (HR 0.73 [95% CI 0.54–0.97]), but 
not in the ITT (HR 0.96 [0.82–1.12]) or ITT-48mo (0.83 
[0.63–1.10) analyses. Similar trends were observed for 
other categorical eGFR thresholds, whether defined as 
single- or confirmed-measurement (Fig.  3). The risk of 
ESKD was not different between the treatment groups 
(HR 0.92 [0.64–1.32] in the ITT analysis). All-cause mor-
tality with GLP-1 RA versus basal insulin occurred at 
an incidence of 1.1 vs 1.5 and 0.5 vs 1.3 events per 100 
patient’s years in the ITT and AT analyses, respectively. 
In the ITT analysis, GLP-1 RA’ initiation was associated 
with a lower risk for single- (HR 0.90 [0.83–0.97]) and 
confirmed—(0.89 [0.80–0.99]) categorical progression 
of UACR, compared with basal insulin (Fig. 3). The risk 
for single-measurement new onset macroalbuminuria 
was also lower with GLP-1 RA (0.87 [0.75–0.997]) but 
not the risk of confirmed new macroalbuminuria (0.95 
[0.78–1.16]). Similar associations between initiation of 
GLP-1 RA versus basal insulin with albuminuria progres-
sion outcomes were observed for the ITT-48mo and AT 
analyses (Fig. 3 and Additional file 1: Figure S2).

Change in eGFR over time
Compared with basal insulin, initiators of GLP-1 RAs 
had mitigated eGFR loss in the AT analysis starting 
at 12  months and afterward at almost all time points 
(p ≤ 0.027). eGFR loss mitigation was observed in the 
ITT analysis only at time points 12, 24, and 30  months 
(p ≤ 0.036), but not in others (Fig. 4). Use of GLP-1 RAs 
was associated with a less steep eGFR slope compared 
with basal insulin in the AT analysis (mean annual 
between-group difference of 0.42  mL/min/1.73   m2/year 
[95% CI 0.11–0.73]; p = 0.008). No significant differences 
were observed in the whole study population in the ITT 
(0.08 mL/min/1.73  m2/year [−0.06 to 0.23]; p = 0.258) or 
ITT-48mo analyses (0.14 mL/min/1.73  m2/year [−0.03 to 
0.30]; p = 0.103) (Figs. 4 and 5).

The between-group difference in the AT analysis was 
observed in patients with eGFR < 90  mL/min/1.73   m2 
but not those with eGFR ≥ 90 mL/min/1.73  m2 (0.95 mL/
min/1.73   m2/year [95% CI 0.38–1.52] and 0.09  mL/
min/1.73   m2/year [-0.26–0.43], respectively). (Fig.  5 
and Additional file  1: Table  S6). In the AT analysis, the 
between group-differences in eGFR decline with GLP-1 
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Table 1 Baseline characteristics of initiators of GLP‑1 RAs or basal insulin after propensity‑score matching

BMI body mass index, CVD cardiovascular disease, eGFR estimated glomerular filtration rate, GLP-1 RA glucagon-like peptide 1 receptor agonist, RAAS renin 
angiotensin aldosterone system, SGLT2i sodium-glucose transporter 2 inhibitors, STD standardized difference, UACR  urine albumin-to-creatinine ratio
* Based on Maccabi Helathcare Services validated registries

Variable Levels GLP‑1 RAs (n = 3424) Basal insulin (n = 3424) STD

Demographics

 Age (years) Mean (SD) 59.5 (9.5) 59.3 (10.8) 0.02

 Women (%) n (%) 1530 (44.7) 1537 (44.9) 0.00

 Socioeconomic status 1–3, n (%) 453 (13.2) 457 (13.3) 0.04

4–5, n (%) 1060 (31.0) 1067 (31.2)

6–7, n (%) 1172 (34.2) 1217 (35.5)

8–10, n (%) 736 (21.5) 681 (19.9)

Missing, n (%) 3 (0.1%) 2 (0.1%)

Mean (SD) 5.9 (2.0) 5.8 (1.9) 0.04

Medical history

 Years in diabetes registry Mean (SD) 9.8 (4.6) 9.6 (4.6) 0.04

 Established CVD history* n (%) 729 (21.3) 709 (20.7) 0.01

 Hypertension registry* n (%) 2390 (69.8) 2376 (69.4) 0.01

 BMI kg/m2 Mean (SD) 33.6 (5.1) 33.3 (5.6) 0.05

Missing, n (%) 125 (3.7%) 129 (3.8%)

 HbA1c (%) Mean (SD) 9.0 (1.4) 9.0 (1.5) −0.01

Missing, n (%) 3 (0.1) 8 (0.2)

Medications

 Metformin n (%) 3316 (96.8) 3335 (97.4) −0.03

 Sulfonylureas 2nd generation n (%) 1860 (54.3) 1858 (54.3) 0.00

 SGLT2i n (%) 475 (13.9) 475 (13.9) 0.00

 RAAS inhibitors n (%) 2582 (75.4) 2547 (74.4) 0.02

 Thiazolidinediones n (%) 233 (6.8) 247 (7.2) −0.02

 Fast acting insulin n (%) 34 (1.0) 35 (1.0) 0.00

 Beta blockers n (%) 1320 (38.6) 1286 (37.6) 0.02

 Aldosterone antagonists n (%) 100 (2.9) 88 (2.6) 0.02

 Antihypertensives n (%) 2742 (80.1) 2729 (79.7) 0.01

Kidney markers

 eGFR (ml/min/1.73  m2)  > 90, n (%) 2080 (60.7) 2080 (60.7) 0.00

60–90, n (%) 1046 (30.5) 1046 (30.5)

45–60, n (%) 219 (6.4) 219 (6.4)

30–45, n (%) 70 (2.0) 70 (2.0)

15–30, n (%) 9 (0.3) 9 (0.3)

Mean (SD) 90.1 (18.8) 91.2 (19.8) −0.06

 UACR (mg/g) Below detectable, n (%) 1167 (34.1) 1211 (35.4) 0.04

 < 15, n (%) 448 (13.1) 426 (12.4)

15‑ < 30, n (%) 472 (13.8) 470 (13.7)

30‑ < 300, n (%) 864 (25.2) 874 (25.5)

 ≥ 300, n (%) 256 (7.5) 234 (6.8)

Missing, n (%) 217 (6.3) 209 (6.1)

Median (IQR), n 14.8 (0.0–55.0) 14.2 (0.0–54.7) 0.03
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RAs versus basal insulin was 0.53 [−0.23 to 1.28] and 
0.41  mL/min/1.73   m2/year [0.07–0.74] in those with or 
without SGLT2i therapy at baseline (Fig. 5).

Discussion
We used over a decade of real-world data to compare kid-
ney outcomes between initiators of GLP-1 RAs and basal 
insulin. GLP-1 RAs initiators had a lower risk of albumi-
nuria progression, compared with basal insulin. They also 
had a lower risk for a composite outcome of  ≥ 40% eGFR 
loss or ESKD, accompanied by mitigation of eGFR slope, 
in the AT, but not in the ITT analysis. The treatment 

effects seemed to be more pronounced in patients with 
eGFR  < 90 compared with  ≥ 90 mL/min/1.73   m2. All in 
all, these findings suggest that continuous use of GLP-1 
RAs may be associated with lower kidney risk in a gen-
eral population of patients with T2D, warranting further 
investigation.

Most data regarding the kidney effects of GLP-1 RAs 
come from cardiovascular outcome trials (CVOTs) 
enrolling patients with type 2 diabetes at high cardio-
vascular risk [12, 15] with a paucity of real-world data 
[18]. One study found a smaller eGFR decline after one 
year of treatment with GLP-1 RAs, compared to other 

Fig. 1 The association between initiation of GLP‑1 RAs versus basal insulin and the risk of the composite kidney outcome. The risk of the composite 
kidney outcome (confirmed ≥ 40% eGFR decline or new end‑stage kidney disease) was compared between initiators of GLP‑1 RAs versus basal 
insulin. Presented are cumulating incidence functions. In an intention‑to‑treat (ITT) analysis, patients were followed until October 2021, the end of 
data availability, or death (A). In an as‑treated (AT) analysis, follow‑up was also censored at study drug discontinuation or comparator‑initiation (B). 
In an ITT‑48 months (ITT‑48mo) analysis, to emulate the LEADER study, the ITT follow‑up was also censored at four years when a large proportion of 
the participants were still on the study drugs (C). Cox proportional hazards regression models were applied to compare between treatment arms. 
GLP-1 RA Glucagon‑like peptide‑1 receptor agonists, eGFR estimated glomerular filtration rate
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GLAs [27]. In another study with a median follow-up 
duration of 1.0–1.5  years, the use of GLP-1 RAs was 
associated with a lower risk for the composite outcome 
of  > 50% eGFR decline, ESKD, or all-cause mortal-
ity, compared to either initiators of DPP4 inhibitors or 
sulfonylureas [28]. A longer study (mean follow-up of 
3 years), found a lower risk for a composite outcome of 
kidney replacement therapy, or kidney failure-related 
hospitalization or death in initiators of GLP-1 RAs 
compared with DPP4i [29]. The current analysis adds 
several aspects to these studies. First, we use an inject-
able insulin comparator, which like GLP-1 RAs is often 
used in more advanced diabetes stages, in Israel and 
other countries. Second, owing to the large and granu-
lar number of eGFR samples during follow-up (median 
of 13 measurements over 84  months), we portrayed 
in detail the change in eGFR at different time points. 
Third, we assessed the annual eGFR slope over time 
with each treatment. Fourth, we confirm the favorable 
effects of GLP-1 RAs on albuminuria-based outcomes, 

as shown in clinical trials. Fifth, we provide impor-
tant data regarding the kidney effects of GLP-1 RAs in 
patients already treated with SGLT2i.

In most CVOTs involving GLP-1 RA, the drugs 
reduced the risk of new macroalbuminuria compared to 
placebo [12, 15], however these trials sampled popula-
tions of patients at increased cardiovascular and kidney 
risk. It is unclear whether these benefits are transfer-
able to the general population of patients with T2D with 
lower baseline cardiovascular and kidney risk, such as 
the participants in the current study. Due to the granular 
UACR data in MHS, we were able to analyze albuminu-
ria outcomes. We found that compared with basal insu-
lin, the use of GLP-1 RAs in real-world was associated 
with a lower risk for a single- and confirmed-categorical 
increase in UACR, or single-measurement new mac-
roalbuminuria. The risk of confirmed new macroalbu-
minuria was not different between the groups. The lack 
of statistically significant effect on this outcome, which 
was repeatedly demonstrated to improve in the CVOTs 

Fig. 2 The association between initiation of GLP‑1 RAs versus basal insulin and the risk of the composite kidney outcome by baseline subgroups. 
The risk of the composite kidney outcome (confirmed ≥ 40% eGFR decline or new end‑stage kidney disease) was compared between initiators of 
GLP‑1 RA and initiators of basal insulin across subgroups. In the intention‑to‑treat (ITT) analysis, patients were followed until October 2021, end 
of data availability or death. In the as‑treated (AT) analysis, follow‑up was also censored at study drug discontinuation or comparator‑initiation. 
Cox proportional hazards regression models were applied to compare treatment arms, with an interaction term between subgroups and 
the treatment arm. Event rates (ER) are per 100 patients‑years. BDL below detectable levels, BMI body mass index, CV cardiovascular, GLP-1 RA 
Glucagon‑like peptide‑1 receptor agonists, HbA1c glycated hemoglobin A1c, eGFR estimated glomerular filtration rate, RAAS Renin angiotensin 
aldosterone system, SGLT2 sodium‑glucose co‑transporter 2 inhibitors, UACR  urine albumin‑to‑creatinine ratio
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with GLP-1 RAs [12], can be explained by the irregularity 
of UACR sampling in real-world setting compared with 
CVOTs. Of relevance, single-measurement albuminu-
ria outcomes were shown to be sufficient to detect the 
treatment effects of drugs [30, 31]. Taken together, our 
findings suggest that the albuminuria-lowering effects of 
GLP-1 RAs observed in RCTs are also relevant in a gen-
eral population of patients with type 2 diabetes with a 
lower cardiovascular and kidney risk profile.

When meta-analyzing data of CVOTs, the effects of 
GLP-1 RAs on worsening kidney function (excluding the 
albuminuria component) reached only marginal statisti-
cal significance with high heterogeneity among trials [12]. 
A recent pooled analysis of the LEADER and SUSTAIN-6 
studies demonstrated a lower risk for persistent  ≥ 40% 
or ≥ 50% reduction in eGFR from baseline [32]. 
These effects were more pronounced in patients with 
eGFR < 60 mL/min/1.73  m2, or with UACR ≥ 30 mg/g. In 
the PIONEER 5 study enrolling patients with T2D and 
CKD, oral semaglutide use for one year versus placebo 
did not exert statistically significant changes in eGFR 
levels [33]. However, the AWARD-7 study demonstrated 
that in patients with T2D and CKD, dulaglutide mitigated 

eGFR loss compared with insulin glargine [34], especially 
in a subgroup of patients with macroalbuminuria at base-
line [35]. Consistent with these data, we found that the 
association between GLP-1 RAs use and the kidney out-
come seemed to be more pronounced in patients with 
lower eGFR. The ongoing FLOW trial investigates the 
kidney effects of once-weekly semaglutide s.c. in patients 
with T2D and CKD. Enrollment is stratified by treatment 
with SGLT2i at baseline (15.5% of the participants [17]). 
Findings of this study are expected to shed light on the 
effects of GLP-1 RA on kidney outcomes in patients with 
T2D and reduced kidney function, and whether SGLT2i 
use modifies these effects.

Studies from the past decade show that GLP-1 RA and 
SGLT2i are disease-modifying drugs with kidney and 
cardiovascular benefits that exceed their glucose-lower-
ing effects [36]. Because these drugs were developed and 
studied simultaneously, there is limited long-term data 
on whether their combination has an additive cardio-
vascular or kidney protection. In our study, 950 patients 
received SGLT2i at baseline, more than in any CVOT 
with GLP-1RA [12]. The kidney benefits with GLP-1 RAs 
observed in the AT analysis did not seem to be mitigated 

Fig. 3 The association between initiation of GLP‑1 RAs versus basal insulin and the risk of categorical eGFR decline or albuminuria progression in 
the ITT and AT analyses. The risks of GFR decline (by different thresholds) or albuminuria progression were compared between initiators of GLP‑1 
RAs and initiators of basal insulin. In the intention‑to‑treat (ITT) analysis, patients were followed until October 2021, end of data availability or death. 
In an as‑treated (AT) analysis, follow‑up was also censored at study‑drug discontinuation or comparator‑initiation. A categorical increase of UACR 
was defined for the following categories: < 30, 30‑ < 300 or ≥ 300 mg/g. New‑onset macroalbuminuria was defined as UACR ≥ 300 among those 
with UACR ≤ 230 mg/g at baseline (resembling a ≥ 30% increase in UACR). Outcomes were assessed as single‑ or confirmed measurement. Cox 
proportional hazards regression models were applied to compare between treatment arms. Event rates are per 100 patients‑years. c ‑ confirmed 
measurement, GLP-1 RAs Glucagon‑like peptide‑1 receptor agonists, eGFR estimated glomerular filtration rate, ER event rate, ESKD End‑stage kidney 
disease, s ‑single measurement, UACR  Urine albumin‑to‑creatinine ratio
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in patients treated with SGLT2i at baseline, although the 
population was not stratified by the use of SGLT2i. In the 
AMPLITUDE-O trial, which was stratified by baseline 
SGLT2i therapy, the effects of efpeglenatide versus pla-
cebo on the cardiovascular and kidney outcomes were 
consistent by SGLT2i use [32]. Among the 618 (15.2%) 
participants who used SGLT2i at baseline, efpeglenatide 
improved the composite kidney outcome of incident 
macroalbuminuria, confirmed  ≥ 40% loss, or ESKD by 
48% (95% CI [17–67]). These cumulating data are rel-
evant to an important clinical question on whether to 

recommend the combined use of GLP-1 RA and SGLT2i 
for additional cardiovascular and kidney protection.

Challenges and limitations
This is an observational study, and while we used dif-
ferent approaches to emulate an RCT setting, no cau-
sation can be concluded. Real-world analyses pose 
several challenges requiring careful expertise. In this 
study, we followed recent recommendations [37]. 
Namely, we used a predefined protocol with new-initi-
ators design, defined specific outcomes, used an insulin 

Fig. 4 The change in eGFR overtime in initiators of GLP‑1 RA versus basal insulin. At each time point (every 6 months for the first 3 years and then 
yearly), we considered the eGFR measurement closest to the end of the period for each patient. Mixed models with repeated measurements were 
applied to measure the change from baseline in eGFR at each time point and to calculate the p‑value for the difference between groups (presented 
near each point). GLP-1 RAs Glucagon‑like peptide‑1 receptor agonists, eGFR estimated glomerular filtration rate
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comparator that is also indicated in advanced stages of 
type 2 diabetes, and applied PS matching to balance the 
cohorts. However, the baseline characteristics of the 
study cohorts before matching were unbalanced, and 
no statistical method is capable to completely emu-
late randomization, thus residual confounding cannot 
be excluded. Also, PS matching limits the generaliz-
ability of the results to populations that were dropped 
out in the process. We also predefined both ITT and 
AT analyses, each considers different aspects of real-
world effectiveness of drugs. The ITT follow-up had a 
long median duration of 81.1 months. However, during 
most of the follow-up period, patients were not treated 
with the index drug alone—either stopping it or initiat-
ing the comparator drug, along with potential changes 
in other drugs during follow-up. Therefore, previ-
ous studies favored an AT analysis to assess treatment 
effects of eGFR slopes [38]. On the other hand, the AT 
analysis is prone to biases due to imbalanced censor-
ing. For example, the event rate (per 100 patients-years) 
for mortality in the AT follow-up with basal insulin and 
GLP-1 RAs was 1.3 and 0.5, respectively. This difference 

is much more than shown in RCTs [12]. It may not be 
attributed directly to the treatment allocation, and is 
possibly explained by discontinuation of GLP-1 RA or 
initiation of insulin among patients who experience 
a pronounced deterioration in their clinical status. To 
address these challenges, we performed an additional 
analysis censoring the ITT follow-up at 4  years, emu-
lating the LEADER study [13, 19]. This analysis still 
follows the ITT principle, but censoring is stopped 
when most participants are still on index treatment. 
The number of events in this analysis was relatively low 
owing to the low baseline risk of the population, reduc-
ing the power to detect treatment effects. However, the 
treatment effects were closer to those seen in the AT 
analysis. Finally, the dissimilarity between the baseline 
characteristics of the pre-matched cohorts, required 
extensive matching. Finaly, this study includes one 
healthcare organization, limiting  the study’s external 
validity to other populations or healthcare systems.

Fig. 5 The change in eGFR overtime in initiators of GLP‑1 RAs versus basal insulin in the ITT and AT analyses, by baseline subgroups. We calculated 
an eGFR slope per patient by fitting a linear regression model. We then calculated the mean eGFR slope over time for each group and used t‑test 
to compare the treatment groups. eGFR slopes are presented as mL/min/1.73  m2/year. BDL below detectable levels, BMI body mass index, CVD 
cardiovascular disease, eGFR estimated glomerular filtration rate, GLP-1 RAs glucagon‑like peptide 1 receptor agonist, HbA1c glycated hemoglobin 
A1c, RAAS renin angiotensin aldosterone system, SGLT2i sodium‑glucose transporter 2 inhibitors, UACR  urine albumin‑to‑creatinine ratio
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Conclusion
Compared with basal insulin, initiation of GLP-1 RAs in 
a real-world setting is associated with a reduced risk of 
albuminuria progression and possible mitigation of kid-
ney function loss in patients with T2D and mostly pre-
served kidney function. The association between GLP-1 
RAs use and the kidney outcome seemed to be observed 
primarily among those with baseline eGFR < 90  mL/
min/1.73  m2.
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