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Abstract 

Background Low-density lipoprotein (LDL)-cholesterol is positively associated with cardiovascular disease (CVD) and 
inversely associated with type 2 diabetes, which could detract from lipid modification. Here, we examined whether 
lipid traits potentially relevant to CVD aetiology, i.e. apolipoprotein B (apoB), triglycerides (TG) and lipoprotein(a) 
[Lp(a)] exhibited the same associations. We investigated sex-specifically, including the role of sex hormones, because 
sex disparities exist in lipid profile and type 2 diabetes. We also replicated where possible.

Methods We used Mendelian randomization (MR) to examine sex-specific associations of apoB, TG and Lp(a) with 
type 2 diabetes, HbA1c, fasting insulin, fasting glucose, testosterone and estradiol in the largest relevant sex-specific 
genome-wide association studies (GWAS) in people of European ancestry and replicated where possible. We also 
assessed sex-specific associations of liability to type 2 diabetes with apoB, TG and Lp(a).

Results Genetically predicted apoB and Lp(a) had little association with type 2 diabetes or glycemic traits in women 
or men. Genetically predicted higher TG was associated with higher type 2 diabetes risk [odds ratio (OR) 1.44 per 
standard deviation (SD), 95% confidence interval (CI) 1.26 to 1.65], HbA1c and fasting insulin specifically in women. 
Higher TG was associated with lower testosterone in women and higher testosterone in men, but with lower estradiol 
in men and women. Genetic liability to type 2 diabetes was associated with higher TG in women, and possibly with 
lower apoB in men.

Conclusions Lipid traits potentially relevant to CVD aetiology do not exhibit contrasting associations with CVD and 
type 2 diabetes. However, higher TG is associated with higher type 2 diabetes risk and glycemic traits, which in turn 
further increases TG specifically in women, possibly driven by sex hormones.

Keywords Lipids, Mendelian randomization, Sex hormone, Type 2 diabetes

Introduction
Low-density lipoprotein (LDL)-cholesterol is associated 
with higher risk of cardiovascular disease (CVD) and 
lower risk of type 2 diabetes [1, 2]. Similar associations 
have been observed for a major lipid modifier, statins [3], 
and for familial hypercholesteremia [4], indicating either 
lipid traits are overlooked causes of type 2 diabetes or 
additional underlying factors with opposing effects on 
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CVD and type 2 diabetes exist, as previously suggested 
[5]. Understanding whether other lipids potentially rel-
evant to the aetiology of CVD have opposing effects on 
CVD and type 2 diabetes has public health implications 
for clinical interventions and drug development for CVD 
prevention.

Apolipoprotein B (apoB) is emerging as the predomi-
nant trait in the aetiology of CVD, probably account-
ing for the effect of LDL-cholesterol on CVD and 
lifespan [6, 7]. The causal roles of triglycerides (TG) [8] 
and lipoprotein(a) [Lp(a)] [9] in CVD are gaining accept-
ance, whilst the roles of high-density lipoprotein (HDL)-
cholesterol and correspondingly apolipoprotein A (apoA) 
are in doubt given drugs targeting HDL-cholesterol do 
not reduce CVD risk in trials [10, 11]. However, the asso-
ciation of apoB with type 2 diabetes risk remains unclear 
[7]. Previous studies investigating the associations of TG 
and Lp(a) with type 2 diabetes risk have yielded contra-
dictory results, suggesting inverse [1, 12], null [13–15] or 
positive [2, 7, 16] associations of TG, and inverse [17] or 
null [18] associations of Lp(a).

Women usually have a less atherogenic lipid profiles 
than men [19] and lipids have differing associations 
with CVD by sex [20], while diabetes incidence is simi-
lar in men and women although differences by sex exist 
in pathophysiology and complications of type 2 diabetes, 
possibly partly driven by sex hormones [21, 22]. Estro-
gen protects against type 2 diabetes in women [23], while 
testosterone protects against type 2 diabetes in men [24]. 
Few studies have evaluated sex-specific associations of 
lipid traits with type 2 diabetes risk [16]. Randomized 
controlled trials (RCTs) are not usually powered to detect 
sex differences. Given the correlation between lipid frac-
tions, it is also difficult to disentangle the role of each 
lipid fraction in the development of type 2 diabetes in an 
RCT.

To examine sex-specific associations of lipid traits 
potentially relevant to the aetiology of CVD, i.e. apoB, 
TG and Lp(a), with type 2 diabetes risk, glycemic traits 
and sex hormones, we conducted a Mendelian randomi-
zation (MR) study, i.e., an instrumental variable analysis 
with genetic instruments [25]. MR studies take advantage 
of genetic randomization at conception to obtain less 
confounded estimates [25]. We used multivariable MR to 
assess the robustness of the findings [26], and replicated, 
where possible, i.e. in East Asians.

Methods
Study design
We performed a two-sample MR study to examine 
sex-specific associations of apoB, TG and Lp(a) with 
type 2 diabetes, glycemic traits and sex hormones, tak-
ing advantage of the largest relevant publicly available 

sex-specific genetic summary statistics. We extracted 
sex-specific independent  (r2 < 0.001) genome-wide sig-
nificant (p value < 5 ×  10–8) genetic instruments for each 
lipid trait from the UK Biobank (http:// www. neale lab. 
is/ uk- bioba nk/), and where possible, ancestry-specific 
genetic instruments from the Global Lipids Genetics 
Consortium (GLGC) excluding the UK Biobank partici-
pants [27] for replication. We applied them to the largest 
sex-specific genome-wide association study (GWAS) of 
type 2 diabetes, with different participants from the UK 
Biobank, in people of European ancestry [28], and then 
replicated in East Asians [29]. To give greatly granular-
ity, we also applied these genetic instruments to the larg-
est relevant sex-specific GWAS of HbA1c, fasting insulin, 
fasting glucose, testosterone and estradiol in people of 
European ancestry [30–32]. We used multivariable MR 
to assess the role of each lipid trait taking into account 
the others and additionally body mass index (BMI) [26], 
because BMI affects both lipid traits and type 2 diabetes 
[33], and might confound their associations given genetic 
instruments for lipid traits may also predict BMI. We 
also assessed sex-specific associations of genetic liability 
to type 2 diabetes with lipid traits, because bidirectional 
relationships between lipids and glycemic traits have pre-
viously been suggested [34].

Genetic predictors for lipid traits
We extracted sex-specific independent  (r2 < 0.001) 
genome-wide significant (p value < 5 ×  10–8) genetic 
instruments for apoB (184,377 women/158,213 men), 
TG (184,885 women/159,107 men) and Lp(a) (147,684 
women/126,212 men) from sex-specific GWAS of the UK 
Biobank (http:// www. neale lab. is/ uk- bioba nk). The qual-
ity controlled GWAS included people of white British 
ancestry, intended age 40–69 years, adjusted for age,  age2, 
and the first 20 principal components. We also extracted 
ancestry-specific independent  (r2 < 0.001) genome-wide 
significant (p value < 5 ×  10–8) genetic instruments for TG 
(864,240/83,965 people of European/East Asian ancestry) 
from GLGC excluding the UK Biobank participants [27] 
for replication. Summary statistics were adjusted for age, 
 age2, sex, principal components of ancestry and study-
specific covariates [27].We excluded genetic variants 
located on the GCKR or FADS1 genes as previously [13, 
14, 16], because they are strongly associated with other 
traits relevant to type 2 diabetes.

To assess the validity of sex-specific genetic instru-
ments from the UK Biobank in East Asians, we used cor-
onary artery disease (CAD) (cases = 7708 women/21,611 
men, controls = 95,398 women/87,736 men) from 
Biobank Japan [35] as a positive control outcome. Sum-
mary statistics were adjusted for age and top five princi-
pal components [35].

http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank
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We conducted multivariable MR using sex-specific 
genetic instruments from the UK Biobank to identify 
the direct effect of each lipid, i.e. apoB, TG and Lp(a), 
accounting for potential confounding or mediation by 
the other lipids considered [26]. As the effects of lipid 
traits on type 2 diabetes might also be confounded by 
BMI [33], we additionally included BMI in the multi-
variable MR analyses. We obtained sex-specific genetic 
associations with BMI (193,570 women/166,413 men) 
from a GWAS of the UK Biobank (http:// www. neale lab. 
is/ uk- bioba nk), adjusted for age,  age2, and the first 20 
principal components. In multivariable MR, we com-
bined all the genetic instruments, dropped duplicated 
SNPs and removed correlated  (r2 ≥ 0.001) SNPs based 
on the minimum p value for genetic association with 
each trait. We extracted associations of the remaining 
SNPs with the exposures and the outcome, then fitted 
multivariable models.

Genetic associations with type 2 diabetes
We obtained sex-specific genetic associations with type 
2 diabetes from the DIAbetes Meta-ANalysis of Trans-
Ethnic association studies (DIAMANTE) consortium 
in people of European ancestry excluding UK Biobank 
participants (cases = 23,197 women/29,583 men, con-
trols = 201,329 women/193,076 men) [28]. Summary 
genetic associations were adjusted for study-specific 
covariates and principal components [28]. We extracted 
sex-specific independent  (r2 < 0.001) genome-wide signif-
icant (p value < 5 ×  10–8) genetic instruments for liability 
to type 2 diabetes from the GWAS [28].

We also obtained sex-specific associations with type 
2 diabetes (cases = 27,370 women/28,027 men, con-
trols = 135,055 women/89,312 men) from the Asian 
Genetic Epidemiology Network (AGEN) meta-analysis in 
East Asians, adjusted for age, sex, study-specific covari-
ates and principal components of ancestry [29].

Genetic associations with HbA1c, fasting insulin 
and fasting glucose
We obtained sex-specific genetic associations with 
HbA1c from a GWAS of the UK Biobank (185,022 
women/159,160 men), adjusted for age,  age2 and 20 
principal components (http:// www. neale lab. is/ uk- bioba 
nk/). We obtained sex-specific genetic associations with 
fasting insulin (50,404 women/47,806 men) and fasting 
glucose (73,089 women/67,506 men) from the Meta-
Analyses of Glucose and Insulin-related traits Consor-
tium (MAGIC) in people of European ancestry without 
diabetes, which were adjusted for age, study site and 
principal components [30].

Genetic associations with testosterone and estradiol
We obtained genetic associations with total testoster-
one in women (N = 230,454) and bioavailable testoster-
one, hereafter testosterone in men (N = 178,782), from 
a GWAS conducted in the UK Biobank, because they 
have little correlation with sex hormone-binding globu-
lin (SHBG) [31]. Estimates were adjusted for genotyping 
chip/release of genetic data, age at baseline, fasting time, 
center and 10 genetically derived principal components 
[31].

We obtained sex-specific genetic associations with 
estradiol (above detection limit = 37,461 women/13,367 
men, below detection limit = 126,524 women/134,323 
men) from a GWAS of the UK Biobank [32]. Summary 
quality controlled genetic associations were adjusted 
for age, BMI, the first 10 genetic principal components, 
genotyping array, and additionally hormone replacement 
therapy, oral contraceptive use, number of live births, 
menopausal status, and hysterectomy in women [32].

Statistical analysis
We used the F-statistic to assess instrument strength, 
obtained from the mean of the square of each SNP-
exposure association divided by the square of its stand-
ard error [36]. An F-statistic larger than 10 suggests weak 
instrument bias is unlikely. In multivariable MR, we used 
the conditional F-statistic FTS to examine the instrument 
strength for each exposure conditional on the other expo-
sures, and the Q-statistic to assess heterogeneity [37].

We aligned the SNPs based on alleles and/or allele fre-
quency and excluded palindromic SNPs with intermedi-
ate effect allele frequency (i.e. 0.42–0.58) when the strand 
direction was uncertain. We used proxy SNPs  (r2 ≥ 0.8), 
where possible, when SNPs were not in the outcome 
GWAS. We obtained MR estimates by meta-analyzing 
Wald estimates (i.e. genetic association with the out-
come divided by genetic association with the exposure) 
using inverse variance weighting (IVW) with first-order 
weights, and fixed effects for three SNPs or less and ran-
dom effects for four SNPs or more [38]. IVW assumes 
all the genetic variants are valid or have balanced pleiot-
ropy [38]. IVW using first-order weights gives unbiased 
estimates with or without the presence of heterogene-
ity, when the mean F-statistic is high [39]. To assess the 
validity of the IVW estimates, we conducted sensitivity 
analyses using methods with different assumptions, i.e. 
the weighted median [40], MR Egger [41] and the con-
tamination mixture method [42]. The weighted median 
is valid when more than half of the information derives 
from valid SNPs [40]. MR Egger assumes no consequence 
of the instruments confounds exposure on outcome [41]. 
We used the MR Egger intercept to assess whether the 

http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
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IVW estimate might be affected by violation of the exclu-
sion-restriction assumption [41]. The contamination 
mixture method is robust to outliers and horizontal plei-
otropy, with well-controlled type 1 error rates [42, 43]. 
We used multivariable IVW to assess the direct effect of 
each lipid trait controlling for the others. We used multi-
variable MR Egger and additional adjustment for BMI as 
sensitivity analysis.

We used Steiger filtering to identify SNPs explaining 
more of the variance in the outcome than in the expo-
sure (p value < 0.05) [44], given potentially bidirectional 
relationships between lipids and glycemic traits [34]. To 
assess whether MR estimates were affected by reverse 
causality, we conducted analyses including and excluding 
these SNPs.

Power was estimated based on the approximation 
that the sample size required for an MR study is the 
sample size for the conventional observational study 
divided by the variance in the exposure explained by the 
SNPs [45]. This variance was estimated as  the sum of 
2*beta2*MAF*(1-MAF), where beta is the standardized 
genetic association with the exposure and MAF is the 
minor allele frequency.

Sex differences were assessed using a two-sided 
z-test. A Bonferroni corrected significance level was 
set at α = 0.05/3 = 0.017, because 3 lipid fractions were 
included. All statistical analyses were conducted using 
R version 4.1.1 and the packages “TwoSampleMR” for 
harmonizing data, “MendelianRandomization” for uni-
variable and multivariable MR, “MVMR” for conditional 
F-statistics and Q-statistics, and “ieugwasr” for remov-
ing correlated SNPs. All analyses were based on publicly 
available summary statistics, which does not require ethi-
cal approval.

Results
Genetic instruments
We extracted 111 (women) and 80 (men) independent 
 (r2 < 0.001) genome-wide significant (p value < 5 ×  10–8) 
SNPs for apoB, 144 (women) and 96 (men) for TG, 
and 15 (women) and 10 (men) for Lp(a) from the UK 
Biobank. All the SNPs had an F-statistic larger than 
10. After excluding 2 genetic variants (rs780094 and 
rs1260326) located on GCKR, the mean F-statistics were 
170.9 (women) and 188.9 (men) for apoB, 117.7 (women) 
and 139.9 (men) for TG, and 673.3 (women) and 1101.5 
(men) for Lp(a). When instrumented by these SNPs, 

genetically predicted apoB, TG and Lp(a) were positively 
associated with the positive control outcome, i.e. CAD in 
East Asians, despite wide confidence intervals for Lp(a) 
(Additional file 1: Table S1).

We also extracted 238 (European) and 29 (East Asian) 
independent  (r2 < 0.001) genome-wide significant (p 
value < 5 ×  10–8) SNPs for TG from GLGC excluding the 
UK Biobank participants for replication. We excluded 2 
SNPs (rs150419156 and rs1260326) on GCKR and 1 SNP 
(rs7394579) on FADS1. The F-statistics were all greater 
than 10, with mean 236.3 and 192.6 for people of Euro-
pean and East Asian ancestry, respectively.

In multivariable MR including apoB, TG and Lp(a), 
the conditional F-statistics were 68.1 (women) and 96.8 
(men) for apoB, 69.6 (women) and 80.2 (men) for TG, 
and 46.8 (women) and 72.5 (men) for Lp(a). We extracted 
148 (women) and 134 (men) independent  (r2 < 0.001) 
genome-wide significant (p value < 5 ×  10–8) SNPs for 
BMI, and additionally included BMI in the multivariable 
MR, when the conditional F-statistics were 43.4 (women) 
and 53.3 (men) for apoB, 49.3 (women) and 50.2 (men) 
for TG, 34.4 (women) and 45.7 (men) for Lp(a), and 21.7 
(women) and 24.2 (men) for BMI.

We also extracted 33 (women) and 48 (men) inde-
pendent  (r2 < 0.001) genome-wide significant (p 
value < 5 ×  10–8) genetic instruments for liability to type 2 
diabetes from DIAMANTE in people of European ances-
try excluding UK Biobank participants. The F-statistics 
were all greater than 10, with mean 63.5 and 68.3 for 
women and men, respectively.

Results of power calculations are shown in Additional 
file 1: Table S2.

Sex‑specific associations of lipid traits with type 2 diabetes 
and glycemic traits
In the univariable MR analyses, genetically predicted 
apoB was not associated with type 2 diabetes risk or with 
any glycemic trait in women or men (Figs. 1, 2). Geneti-
cally predicted higher TG was associated with higher 
type 2 diabetes risk, HbA1c and fasting insulin in women, 
but not men (Figs. 1, 2). Findings were similar when using 
ancestry-specific TG SNPs from GLGC excluding the UK 
Biobank participants, although the MR Egger intercept 
indicated possible pleiotropy (Additional file 1: Table S3). 
Genetically predicted Lp(a) was not associated with type 

(See figure on next page.)
Fig. 1 Ancestry- and sex-specific associations of genetically predicted lipid fractions (instrumented by the SNPs from the UK Biobank) with type 
2 diabetes. a. MVMR multivariable MR, UVMR univariable MR, b. MVMR estimates for each lipid fraction were adjusted for the other two traits; c. 
Estimates were derived using inverse variance weighted approach, and were expressed in standard deviation for lipid fractions, and in odds ratio for 
type 2 diabetes
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Fig. 1 (See legend on previous page.)
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Fig. 2 Sex-specific associations of genetically predicted lipid fractions (instrumented by the SNPs from the UK Biobank) with glycemic traits in 
people of European ancestry. a. MVMR multivariable MR, UVMR univariable MR, b. MVMR estimates for each lipid fraction were adjusted for the other 
two traits; c. Estimates were derived using inverse variance weighted approach, and were expressed in standard deviation for lipid fractions and 
HbA1c, in pmol/L (natural log transformed) for fasting insulin, and in mmol/L for fasting glucose
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2 diabetes risk in women or men (Fig. 1), despite a posi-
tive association with HbA1c (Fig. 2).

In the multivariable MR analyses, the associations of 
apoB with type 2 diabetes and glycemic traits were simi-
lar when taking into account TG and Lp(a) (Figs. 1, 2). The 
positive association of TG with type 2 diabetes became 
pronounced in men of European ancestry after control-
ling for apoB and Lp(a) (Fig.  1); however, the p value did 
not reach Bonferroni corrected significance. The positive 
association of Lp(a) with HbA1c was attenuated towards 
the null after controlling for apoB and TG (Fig. 2). These 
associations were robust to different analytic methods, 
additional adjustment for BMI and exclusion of SNPs 
explaining more of the variance in the outcome than in the 
exposure (Additional file 1: Table S4, S5, S6, S7). The asso-
ciations of lipid traits with type 2 diabetes were replicated 
in East Asians (Fig. 1).

Sex‑specific associations of lipid traits with testosterone 
and estradiol
In the univariable MR analyses, genetically predicted apoB 
had little association with sex hormones in women or men 
(Fig.  3). Genetically predicted higher TG was associated 
with lower testosterone in women and higher testoster-
one in men, but with lower estradiol in men and women 
(Fig.  3). Findings were similar when instrumented by TG 
SNPs from GLGC excluding the UK Biobank (Additional 
file  1: Table  S3). Genetically predicted higher Lp(a) was 
possibly associated with higher estradiol in women, but 
not in men (Fig. 3). Multivariable MR analyses taking into 
account the effects of other lipid traits gave consistent 
results (Fig. 3).

The MR Egger intercept indicated possible pleiotropy, 
and the Q-statistics suggested heterogeneity in multivari-
able MR (Additional file 1: Table S8). Nevertheless, findings 
were similar when using different analytic methods, addi-
tionally adjusting for BMI and excluding SNPs explaining 
more of the variance in the outcome than in the exposure 
(Additional file 1: Table S8, S9).

Sex‑specific associations of liability to type 2 diabetes 
with lipid traits
Genetic liability to type 2 diabetes was associated with 
higher TG in women, and possibly with lower apoB in men 
(Table 1, p values for sex difference 0.002 and 0.067, respec-
tively). Findings were similar when using different analytic 
methods, and the MR Egger intercept did not indicate pos-
sible pleiotropy (Table 1). The inverse association of liability 
to type 2 diabetes with apoB became pronounced in men 
after excluding SNPs explaining more of the variance in the 
outcome than in the exposure (Table 1, p values for sex dif-
ference 0.001).

Discussion
Consistent with previous studies [2, 7, 16, 18], we found 
a positive association of TG with type 2 diabetes but lit-
tle association of Lp(a) with type 2 diabetes. We added by 
showing apoB was not associated with type 2 diabetes or 
glycemic traits, but TG was positively associated with type 
2 diabetes and glycemic traits specifically in women. The 
finding that lipid traits potentially relevant to the aetiology 
of CVD do not exhibit contrasting associations with risk of 
CVD and type 2 diabetes is novel and has implications for 
interventions and drug development for CVD prevention.

We found apoB, the predominant trait in the aetiology of 
CVD [6, 46], was not associated with type 2 diabetes or any 
glycemic trait, in contrast to previous MR studies showing 
an inverse association of LDL-cholesterol with type 2 dia-
betes [1, 2]. Despite the high correlation between apoB and 
LDL-cholesterol, the mass of cholesterol per apoB particle 
is not uniform [47]. For a given value of apoB, the level of 
LDL-cholesterol increases when apoB particles are choles-
terol-enriched [47]. In this situation, the uptake of choles-
terol via the LDL receptor reduces, which might improve 
beta cell function and protect against type 2 diabetes [48]. 
Although diabetogenic effects of lipid modifiers have been 
observed, these effects are drug-specific rather than a gen-
eral property of lipid lowering. Meta-analysis of RCTs sug-
gest that only statins, of lipid modifiers currently in use, 
increase the risk of incident diabetes [49], possibly due to 
underlying factors with opposite effects on CVD and type 2 
diabetes, such as sex hormones [5].

Our finding that higher TG was associated with higher 
type 2 diabetes risk and glycemic traits specifically in 
women is inconsistent with some previous MR studies 
showing inverse [1, 12] or null [13–15] associations of TG 
with type 2 diabetes. However, these studies used fewer 
SNPs [13–15], had smaller sample sizes [12–15], did not 
use analytic methods robust to pleiotropy [1, 12], and did 
not assess sex-specific associations [1, 12–15]. Our finding 
is consistent with an RCT showing bezafibrate lowering 
TG decreases type 2 diabetes incidence [50]. Differences 
by sex are consistent with observational studies showing a 
stronger relation of TG with diabetes in women than men 
[51, 52], but inconsistent with the Tehran Lipid and Glu-
cose Study suggesting women experience more adverse 
changes in BMI and TG than men before the onset of dia-
betes [53]. However, this observation is possibly due to 
higher insulin sensitivity in women [21], and thus they may 
experience a greater burden of metabolic risk factors than 
men before diabetes becomes evident. Notably, the causal 
relation of BMI with type 2 diabetes is also stronger in 
women than men [54].

Genetically predicted TG had an inverse association 
with estradiol, and had sex-specific associations with tes-
tosterone, which may underlie sex-specific associations 
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Fig. 3 Sex-specific associations of genetically predicted lipid fractions (instrumented by the SNPs from the UK Biobank) with sex hormones in 
people of European ancestry. a. MVMR multivariable MR, UVMR univariable MR, b. MVMR estimates for each lipid fraction were adjusted for the 
other traits; c. Estimates were derived using inverse variance weighted approach, and were expressed in standard deviation for lipid fractions and 
testosterone, and in log odds for estradiol (above and below the limit of detection)
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of TG with type 2 diabetes and glycemic traits. Estrogen 
protects against type 2 diabetes in women in trials [23], 
mainly through activating estrogen receptor α in various 
tissues (e.g. brain, liver, skeletal muscle, adipose tissue 
and pancreatic beta cells) and thereby improving adipos-
ity, insulin sensitivity and glucose tolerance [21]. TG low-
ering estradiol in women could increase the risk of type 
2 diabetes specifically in women. Consistently, higher 
TG is also associated with lower breast cancer risk [55] 
and lower bone mineral density [56]. Testosterone pro-
tects against type 2 diabetes in men [24], possibly due to 
improvement in body composition and insulin sensitivity 
[57]. Thus, TG increasing testosterone in men may ame-
liorate any effects of TG on type 2 diabetes. TG may also 
work via altering insulin-like growth factor-1 (IGF-1) and 
increase type 2 diabetes risk [58, 59]. However, the causal 
association of IGF-1 with type 2 diabetes is complex and 
differs by underlying molecular pathway [60]. Further-
more, sex disparities in the treatment of dyslipidemia 
could contribute to the positive association of TG with 
type 2 diabetes in women [61], but would not explain 
why the difference is specific to TG.

Consistent with a previous MR study suggesting bidi-
rectional relationships between lipids and glycemic traits 
[34], we add by showing these relationships may differ by 
sex. Specifically, higher TG was associated with higher 
type 2 diabetes risk and glycemic traits, which in turn 
would increase TG in women. It has clinical implications 
that women might benefit more from early control of TG 
than men. Observationally, the relative risk of CVD asso-
ciated with TG is higher in women than men [62], though 
not consistently so [63]. Further studies are warranted 
to assess whether the associations of TG with CVD and 
lifespan differ by sex, and to investigate the role of sex 
hormones in mediating these associations.

This is the first MR study comprehensively assess-
ing sex-specific associations of lipid traits relevant to 
the aetiology of CVD with type 2 diabetes and glyce-
mic traits, in both people of European and East Asian 
ancestry. Nevertheless, this study has several limitations. 
First, MR should fulfill three rigorous assumptions of rel-
evance, independence and exclusion-restriction [25]. To 
fulfill the relevance assumption, we checked that F-statis-
tics and conditional F-statistics were > 10, which suggests 
little weak instrument bias. To satisfy the independence 
assumption, we excluded the genetic variants located 
on the GCKR or FADS1 genes as previously [13, 14, 16], 
because these genes are strongly associated with other 
traits relevant to type 2 diabetes. To address the exclu-
sion restriction assumption, we used analytic methods 
with different assumptions and multivariable MR to con-
trol for potential pleiotropy via other lipid traits and BMI, 
which gave consistent conclusions. Second, we extracted 

genetic instruments for lipid traits from the same study 
(i.e. the UK Biobank) as we obtained the genetic effects 
on sex hormones. However, two-sample MR methods in 
a one-sample setting perform well within large biobanks, 
except for the MR Egger estimate, when the variabil-
ity of instrument strength across variants  (I2

GX) is < 97% 
[64], which was not the case here. The bias due to over-
lapping sample is proportional to 1/F-statistic [65] and 
unlikely changes the results substantially given the high 
F-statistics (average F-statistics larger than 100 for all 
lipid traits in women and men). In addition, the associa-
tions of TG with sex hormones were replicated using the 
genetic instruments extracted from GLGC excluding the 
UK Biobank participants. Third, we extracted genetic 
instruments for lipid traits from a GWAS performed in 
people of European ancestry and used them to derive 
MR estimates in East Asians. However, using these SNPs 
gave expected results for CAD in East Asians. In addi-
tion, findings were similar when using TG SNPs obtained 
from East Asians. Fourth, MR, particularly for dichoto-
mous outcomes, could be open to selection bias [66]. The 
associations of lipid traits with type 2 diabetes could be 
biased when the underlying sample is selected on surviv-
ing to recruitment on genetic make-up and competing 
risks of type 2 diabetes [66]. However, the participants 
were relatively young likely obviating selective survival 
to recruitment on genetic endowment. Furthermore, we 
obtained similar findings when using continuous out-
comes, i.e. glycemic traits which are less likely affected 
by selection bias [66]. We obtained genetic associations 
of fasting insulin and fasting glucose from MAGIC only 
including individuals without diabetes [30], which may 
underestimate the associations. Fifth, the associations in 
people of European ancestry may not be transportable 
to other populations. However, causal effects should act 
consistently across settings, unless the mediating mecha-
nisms differ [67]. We replicated the associations in East 
Asians; further investigation in other populations would 
be worthwhile. Sixth, we assessed whether MR estimates 
were affected by reverse causality using Steiger filtering, 
which calculated the variance explained in the expo-
sure and the outcome by the genetic instruments [44]. 
However, Steiger filtering might have reduced statistical 
power or infer the wrong direction when measurement 
error differs between the exposure and the outcome 
[44]. Seventh, estradiol was taken as a binary phenotype 
(above and below the limit of detection) [32], and thus it 
is difficult to interpretate the magnitude of the estimates 
and compare the associations of lipid traits with estradiol 
between women and men. Finally, MR assesses lifetime 
effects of lipids, which could differ from the short-term 
effects of lipid-lowering drugs.
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Conclusions
Lipid traits potentially relevant to the aetiology of CVD 
do not exhibit contrasting associations with risk of CVD 
and type 2 diabetes. However, higher TG was positively 
associated with type 2 diabetes risk and glycemic traits, 
which in turn would increase TG specifically in women, 
possibly driven by sex hormones. These insights have 
implications for public health interventions and drug 
development for CVD prevention including identifying 
potential side-effects and reinforcing the importance of 
using sex-specific approaches in the investigation, pre-
vention, treatment and management of CVD and type 2 
diabetes.
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