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Abstract 

Background:  Bioactive lipids play an important role in insulin secretion and sensitivity, contributing to the patho‑
physiology of type 2 diabetes (T2D). This study aimed to identify novel lipid species associated with incident T2D in a 
nested case–control study within a long-term prospective Chinese community-based cohort with a median follow-
up of ~ 16 years.

Methods:  Plasma samples from 196 incident T2D cases and 196 age- and sex-matched non-T2D controls recruited 
from the Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS) were first analyzed using untargeted 
lipidomics. Potential predictive lipid species selected by the Boruta analysis were then verified by targeted lipidomics. 
The associations between these lipid species and incident T2D were assessed. Effects of novel lipid species on insulin 
secretion in mouse islets were investigated.

Results:  Boruta analysis identified 16 potential lipid species. After adjustment for body mass index (BMI), triacylglyc‑
erol/high-density lipoprotein (TG/HDL) ratio and the presence of prediabetes, triacylglycerol (TG) 12:0_18:2_22:6, TG 
16:0_11:1_18:2, TG 49:0, TG 51:1 and diacylglycerol (DG) 18:2_22:6 were independently associated with increased T2D 
risk, whereas lyso-phosphatidylcholine (LPC) O-16:0, LPC P-16:0, LPC O-18:0 and LPC 18:1 were independently associ‑
ated with decreased T2D risk. Addition of the identified lipid species to the clinical prediction model, comprised of 
BMI, TG/HDL ratio and the presence of prediabetes, achieved a 3.8% improvement in the area under the receiver oper‑
ating characteristics curve (AUROC) (p = 0.0026). Further functional study revealed that, LPC O-16:0 and LPC O-18:0 
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Introduction
The global epidemic of type 2 diabetes (T2D) has been 
growing faster than expected over the last two decades, 
rising from over 150 million cases in 2000 to more than 
530 million cases in 2021 [1]. This number was projected 
to further increase to more than 640 million in 2030 and 
over 780 million in 2045 [1]. To reduce the global burden 
of diabetes, it is important to discover novel biomarkers 
both for the early prediction of T2D onset and a compre-
hensive understanding of the pathophysiological changes 
preceding the disease.

Bioactive lipids play an important role in the regulation 
of glucose homeostasis [2, 3]. It is well established that 
the dysregulation of these lipids leads to the development 
of T2D. The overflow of lipids leads to lipotoxicity, caus-
ing impaired insulin signaling in skeletal muscle, altered 
secretion of hepatokines in the liver [4], and pancreatic 
β-cell dysfunction or cell loss [5]. On the other hand, 
certain lipids have shown a beneficial effect on insulin 
secretion [6]. Traditional indicators of lipid metabolism 
measured in the blood, such as triacylglycerols (TGs), 
high-density lipoprotein (HDL), low-density lipoprotein 
(LDL), TG/HDL ratio and triglyceride-glucose (TyG) 
index, have been identified as predictors of T2D in previ-
ous studies [7]. However, the plasma lipidome comprises 
thousands of lipid species. Clinical assays of blood lipids 
failed to address the complexity and diversity of lipid spe-
cies. With the recent advances in lipidomics, the identifi-
cation resolution and coverage of lipid species have been 
unprecedentedly enhanced and expanded.

Accumulative studies have investigated the association 
between human plasma lipidome and the pathogenesis of 
T2D [8–14]. Lipid species identified by lipidomics have 
been shown to be superior over the traditional lipotox-
icity indicators in the prediction of T2D development. 
Prospective lipidomic studies in Asians assessing the link 
between lipid species and the risk of T2D have recently 
emerged [8, 9, 15–18]. However, most of them have 
relatively short follow-up duration and have adopted 
the targeted approach which has limited ability to pro-
vide a comprehensive investigation of novel predictive 
lipid species. Here we used a cohort of Chinese resi-
dents in Hong Kong (mean age ± standard deviation: 

51.13 ± 11.57  years) with a long follow-up period of 
almost 16  years to identify novel lipid species that are 
associated with incident T2D.

In the current study, we aimed to: (i) discover novel 
lipid species associated with incident T2D by performing 
an untargeted lipidomic analysis in a nested case–control 
study within a prospective population-based cohort; (ii) 
evaluate the improvement of prediction for incident T2D 
provided by the identified lipid species; and (iii) inves-
tigate the effect of the identified lipid species on insulin 
secretion.

Methods
Study population
A nested case–control study was performed in the Hong 
Kong Cardiovascular Risk Factor Prevalence Study 
(CRISPS). CRISPS is a prospective, population-based 
longitudinal cohort designed to study the development 
of cardiovascular risk factors, including diabetes, in 
Hong Kong from 1995 to 2018. Details of the CRISPS 
cohort were previously described elsewhere [19, 20]. 
Briefly, in 1995–1996 (CRISPS-1), 2895 Hong Kong 
Chinese, aged 25–74, were randomly recruited from 
the general population of Hong Kong to undergo a 
comprehensive assessment. Subjects were followed 
up in CRISPS-2 (2000–2004), CRISPS-3 (2005–2008), 
CRISPS-4 (2010–2012) and CRISPS-5 (2016–2018). All 
subjects had blood taken at each visit after an overnight 
fast of at least 10 h. Details of anthropometric measure-
ments and methods for the measurement of biochemical 
parameters were described previously [20]. Hyperten-
sion was defined as blood pressure ≥ 140/90  mmHg or 
the use of antihypertensive medications. A 75 g oral glu-
cose tolerance test (OGTT) was performed in all except 
those taking antidiabetic medications. T2D was defined 
as fasting plasma glucose ≥ 7.0  mmol/l or 2-h plasma 
glucose ≥ 11.1  mmol/l during OGTT, or on antidiabetic 
medications, according to the World Health Organiza-
tion (WHO) 1998 diagnostic criteria [21]. Impaired fast-
ing glucose (IFG) was defined as fasting plasma glucose 
6.1–6.9  mmol/L and 2-h plasma glucose < 7.8  mmol/L. 
Impaired glucose tolerance (IGT) was defined as fast-
ing plasma glucose < 7  mmol/L and 2-h plasma glucose 

significantly potentiated glucose induced insulin secretion (GSIS) in a dose-dependent manner, whereas neither DG 
18:2_22:6 nor TG 12:0_18:2_22:6 had any effect on GSIS.

Conclusions:  Addition of the lipid species substantially improved the prediction of T2D beyond the model based 
on clinical risk factors. Decreased levels of LPC O-16:0 and LPC O-18:0 may contribute to the development of T2D via 
reduced insulin secretion.

Keywords:  Type 2 diabetes, Lipidomic study, Prediction model, Glucose-stimulated insulin secretion, Triacylglycerol, 
Diacylglycerol, Lyso-phosphatidylcholine
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≥ 7.8 and < 11.1  mmol/L [21]. Prediabetes was defined 
as the presence of IFG and/or IGT. TG/HDL ratio 
was calculated by the following formula: TG/HDL 
ratio = TG (mg/dl)/HDL (mg/dl). Homeostatic model 
assessment of insulin resistance (HOMA-IR) was cal-
culated using the following formula: HOMA-IR = fast-
ing insulin (µU/l) × fasting glucose (mmol/l)/22.5 [22]. 
Homeostatic model assessment of β-cell function 
(HOMA-β) was calculated using the following formula: 
HOMA-β = [20 × fasting insulin (µU/ml)]/[fasting glu-
cose (mmol/l) − 3.5] [22]. All participants had given writ-
ten informed consent. Ethics approval was obtained from 
the Institutional Review Board of the University of Hong 
Kong/Hospital Authority, Hong Kong West Cluster. The 
lipidomic analysis was performed on the stored plasma 
samples collected at CRISPS-2, therefore, this visit was 
considered as the baseline of the current study.

Clinical outcome
Subjects who were free from T2D at CRISPS-2 (i.e., base-
line of the current study) were followed for their glycae-
mic status at the subsequent visits. Incident T2D cases 
included those who had developed T2D when assessed 
at the CRISPS-3, CRISPS-4 or CRISPS-5 visits. The 
persistent non-T2D controls were those who remained 
free from T2D at CRISPS-5. In this prospective nested 
case–control study, the eligible baseline population was 
limited to those who did not have T2D at baseline and 
with plasma samples available for the lipidomic analy-
sis. Subjects who were on lipid-lowering drugs at base-
line were further excluded to minimize the possible drug 
effects on lipid metabolism. Each of the 196 incident T2D 
cases who fulfilled the inclusion criteria was age- and 
sex-matched with a non-T2D control who remained free 
of T2D at the end of the follow-up (CRISPS-5) using the 
propensity score matching method.

Chemicals
All lipid standards were purchased from Avanti Polar 
Lipids except for triacylglycerol (TG) 15:0_15:0_15:0, 
lyso-phosphatidylcholine (LPC) O-16:0, LPC O-18:0 
and palmitic acid. TG 15:0_15:0_15:0 and palmitic acid 
were obtained from Sigma-Aldrich. DG 18:2_22:6 and 
TG 12:0_18:2_22:6 were synthesized using a method 
described by Halldorsson et al. [23], as detailed in Addi-
tional file 1: Methods. LPC O-16:0 and LPC O-18:0 were 
purchased from Cayman Chemical (Michigan, USA) and 
diluted in phosphate-buffered saline (PBS) at a stock 
concentration of 5 mmol/l prior to the analysis. Palmitic 
acid was dissolved in ethanol at a stock concentration of 
20  mmol/l. DG 18:2_22:6 and TG 12:0_18:2_22:6 were 
dissolved in dimethyl sulfoxide at a stock concentration 
of 20 mmol/l.

Lipidomic analyses
Lipids were extracted from 40  μL of plasma based on a 
modified method of Matyash et al. [24]. Untargeted lipi-
domic analysis was performed on a Thermo UltiMate 
3000 ultra-high performance liquid chromatography 
tandem mass spectrometry (UHPLC) system coupled to 
a Thermo Orbitrap Fusion mass spectrometer [25]. Tar-
geted lipidomic analysis of the selected lipids was per-
formed on a Vanquish™ UHPLC Systems coupled to TSQ 
Altis™ Triple Quadrupole Mass Spectrometer (Thermo 
Scientific, USA). More details are provided in Additional 
file 1: Methods.

Mouse islet isolation
Mouse pancreatic islets were isolated, cultured over-
night and picked under a microscope for the glucose-
stimulated insulin secretion assay (GSIS). The detail of 
islet isolation is described in Additional file 1: Methods. 
All animal experimental protocols were approved by the 
Animal Ethics Committee of The University of Hong 
Kong.

Glucose‑stimulated insulin secretion assay
The isolated mouse islets were fasted for 120  min 
with glucose-free Krebs buffer containing 10  mmol/l 
HEPES, 129  mmol/l NaCl, 4.8  mmol/l KCl, 1.2  mmol/l 
MgSO4∙7H2O, 1.2  mmol/l KH2PO4, 2.5  mmol/l 
CaCl2∙2H2O, 5 mmol/l NaHCO3 and 0.1% fatty acid-free 
bovine serum albumin (pH 7.4). Next, the islets were 
incubated with Krebs buffer containing 2 mmol/l glucose, 
20 mmol/l glucose, or 20 mmol/l glucose with 10 μmol/l 
or 50 μmol/l of LPC O-16:0, LPC O-18:0, DG 18:2_22:6, 
TG 12:0_18:2_22:6, and palmitic acid for another 30 min 
(n = 9 in each experimental group with 10 islets per well). 
The buffer samples were then collected for the measure-
ment of insulin level using an in-house mouse high-sen-
sitive insulin ELISA kit (ImmunoDiagnostics Limited, 
The University of Hong Kong).

Statistical analyses
All analyses were conducted in R v4.3.0. Normally dis-
tributed data were presented as means ± standard devia-
tion. Non-normally distributed data (determined by 
Kolmogorov–Smirnov test) were transformed by natural 
logarithm to near normality before the analysis and pre-
sented as median (interquartile). Missing data were rare 
(Table 1) and median imputation was used for the miss-
ing values. Student t-tests were used to compare continu-
ous variables while Pearson χ2 tests and Fisher’s exact 
tests were applied to compare categorical variables at 
baseline examination between the incident case and non-
T2D control groups.
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Lipid species levels were transformed by natural loga-
rithm to near normality before the analysis. To inves-
tigate the connection within the lipid species, the R 
package “weighted gene co-expression network analysis 
(WGCNA)” was used to determine modules of highly 
interconnected lipid species. It includes feature co-
expression, network construction, module identifica-
tion, module-phenotype correlation recognition, and key 
driver gene identification. Highly connected lipid species 
were defined in a colored module by topological overlap 
measure (TOM). Finally, a weighted co-expression net-
work generated by WGCNA was visualized by Cytoscape 
(version 3.7.1).

Boruta analysis was applied to select features that were 
most important for the prediction of T2D. The algorithm 
generates randomly shuffled copies of lipid species con-
centrations (shadow features). Lipid species with higher 
Z-scores than the maximum Z-score of their shadow fea-
tures were categorized either as confirmed or tentative 
features [26]. These lipid species were then selected and 
quantified using the targeted lipidomic analysis.

Stepwise model selection approach was used to 
identify the best model that comprised the most 
important clinical variables for incident T2D. Multi-
ple conditional logistic regression analyses were then 

performed to assess the independent associations of 
the lipid species with incident T2D after adjustment 
for the most important clinical predictors identified. 
The false discovery rate (FDR) using the Benjamin-
Hochberg method was employed for the correction 
of multiple testing. A two-sided p-value < 0.05 and an 
FDR-adjusted p-value (q-value) < 0.1 was considered 
statistically significant. Area under the receiver oper-
ating curves (AUROCs) was estimated to evaluate the 
predictive ability of the lipid species that showed sta-
tistically significant and independent associations with 
incident T2D. The Delong test was used for comparing 
the AUROCs. The improvement of the predictive abil-
ity given by the lipid species was further quantified by 
continuous net reclassification index (cNRI) and inte-
grated discrimination index (IDI) [27]. A two-tailed 
p-value < 0.05 was considered statistically significant.

For the GSIS study, data were presented as the 
mean ± mean standard error (SEM) and were analyzed 
using student’s t-test or one-way analysis of variance 
with the post-hoc test. A two-sided p-value < 0.05 was 
considered statistically significant.

Table 1  Baseline characteristics of study participants according to glycaemic status on long-term follow-up

Data are presented as mean ± SD or median (interquartile range)

T2D type 2 diabetes, BMI body mass index, HOMA-IR homeostasis model assessment of insulin resistance, HOMA-β homeostasis model assessment of β-cell function, 
TC total cholesterol, TG triacylglycerol, LDL-C low-density lipoprotein-cholesterol, HDL-C, high-density lipoprotein cholesterol, TG/HDL ratio triacylglycerol to high-
density lipoprotein cholesterol ratio, CVD cardiovascular disease
a Natural log-transformed before analysis
b P values of plasma indicators were obtained from independent samples tests or Pearson tests for the binary variables

Incident T2D
n = 196

Persistent non-T2D
n = 196

Missing data (n) p-valueb

Age (years) 51.7 ± 9.8 52.1 ± 9.8 0 0.719

Male (%) 48.5 48.0 0 1.00

BMI (kg/m2) 25.8 ± 3.4 24.1 ± 2.9 0  < 0.001

Fasting glucose (mmol/l) 5.40 ± 0.55 5.06 ± 0.45 0  < 0.001

2-h glucose (mmol/l) 8.09 ± 1.69 6.51 ± 1.56 0  < 0.001

Prediabetes (%) 60.20 27.55 0  < 0.001

HOMA-IRa 2.3 (1.5-3.1) 1.6 (1.1-2.2) 1  < 0.001

HOMA-βa 100.0 (66.5–156.1) 98.7 (72.8–130) 1 0.387

TC (mmol/l)a 5.40 (4.80–5.90) 5.30 (4.80–5.80) 2 0.454

TG (mmol/l)a 1.35 (1.00–2.00) 1.00 (0.80–1.43) 2  < 0.001

LDL-C (mmol/l)a 3.40 (2.90–3.90) 3.40 (2.90–3.80) 5 0.971

HDL-C (mmol/l)a 1.24 (1.03–1.45) 1.30 (1.16–1.63) 2  < 0.001

TG/HDL ratio 2.48 (1.66–4.17) 1.70 (1.15–2.56) 2  < 0.001

Creatinine (μmol/l)a 80.0 (67.00–96.00) 79.0 (62.75–94.00) 1 0.232

Hypertension (%) 30.1 21.9 0 0.066

CVD (%) 3.1 0.5 0 0.122
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Results
The baseline characteristics of the study participants are 
presented in Table 1. The median follow-up time of the 
196 incident T2D cases and 196 age- and sex-matched 
non-T2D controls was 15.57  years (interquartile range 
[IQR] 9.98–16.97). As expected, subjects who had 
developed T2D showed significantly higher BMI, fast-
ing glucose, 2-h glucose, the presence of prediabetes, 
HOMA-IR, TG, and TG/HDL ratio at baseline compared 
to the non-T2D controls. Based on stepwise model selec-
tion, the best clinical model predictive of incident T2D 
comprised of BMI, TG/HDL ratio and the presence of 
prediabetes (Additional file 2: Table S1).

Lipid profiling and co‑expression network
A total of 301 lipid species across 13 classes were detected 
from the untargeted lipidomic analysis (Additional file 2: 
Table S2). To understand the complex processes of lipid 
dysregulation preceding T2D, a lipid co-expression net-
work was constructed using WGCNA and 13 modules 
were generated (Additional file  1: Fig. S1a–c and Addi-
tional file 2: Table S3). The lipid species that were not co-
expressed with other lipid species were grouped in the 
grey module, which was ignored in further analyses. The 
threshold analyses and the cluster dendrogram of the net-
work construction were shown in Additional file  1: Fig. 
S1a–c. After adjustment for BMI, TG/HDL ratio and the 

presence of prediabetes, the eigenvalues of the blue, pink, 
green-yellow, black, and turquoise modules contain-
ing lipid classes of TG, diacylglycerol (DG), phosphati-
dylcholine (PC) and phosphatidylethanolamine (PE), 
were positively correlated with incident T2D (p < 0.05), 
whereas the red, green, yellow and brown modules com-
prising of the ether-PCs, ether-PEs, sphingomyelins 
(SMs), acyl-LPCs and ether-LPCs were negatively asso-
ciated with T2D risk (Additional file  1: Fig. S1d, e). An 
interaction network generated by Cytoscape 3.8.2 based 
on these modules was shown in Additional file 1: Fig. S1f. 
Lipid species with higher connectivity were closer to the 
center of the network. In the multiple conditional logis-
tic regression analysis based on the quartiles of module 
eigenvalues, the highest quartile of module blue (mainly 
TGs and PCs) was positively associated with T2D com-
pared to the lowest quartile (OR [95% CI] 2.18 [1.13–
4.22]; p for trend = 0.001) after adjustments for BMI, TG/
HDL ratio and the presence of prediabetes. On the other 
hand, module brown (mainly acyl-LPCs and ether-LPCs) 
was inversely associated with T2D (lowest OR [95% CI] 
0.21 [0.09–0.47]; p for trend = 0.035) (Table 2).

Lipid species selection
Boruta analysis was used to select the most impor-
tant lipid species for the prediction of T2D. The levels 
of importance of the lipid species were compared with 

Table 2  Associations between weighted gene co-expression network analysis module eigenvalues and incident type 2 diabetes

The results of the modules significantly correlated to incident type 2 diabetes were shown. Boldface type indicates p for trend < 0.05 for the association with type 2 
diabetes. The model is adjusted for BMI, TG/HDL ratio and prediabetes

OR odds ratio, BMI body mass index, TG triacylglycerol, HDL high-density lipoprotein, LCFA long-chain fatty acid, VLCFA very-long-chain fatty acid, DG diacylglycerol, PC 
phosphatidylcholine, PE phosphatidylethanolamine, LPC lyso-phosphatidylcholine, Cer ceramide, SM sphingomyelin

Modules Q1 Q2 (ORs [95% CI]) Q3 (ORs [95% CI]) Q4 (ORs [95% CI]) Ptrend

Blue: TGs, DGs and PCs with a 22:6 fatty acid and other LCFA; number of lipid species = 35

1 1.03(0.51–2.07) 1.61(0.81–3.20) 2.18(1.13–4.22) 0.012
Red: ether-PCs and ether-PEs with an unsaturated-LCFA; number of lipid species = 16

1 0.74(0.38–1.44) 0.99(0.47–2.09) 1.08(0.52–2.26) 0.700

Green: ether-PCs with a saturated-LCFA; number of lipid species = 18

1 1.76(0.93–3.32) 1.25(0.63–2.48) 1.21(0.53–2.77) 0.322

Yellow: SMs with LCFA; number of lipid species = 25

1 1.64(0.81–3.30) 1.28(0.62–2.67) 1.39(0.64–3.02) 0.457

Pink: TGs with at least one 18:2 FA; number of lipid species = 13

1 0.88(0.44–1.73) 0.84(0.42–1.68) 1.46(0.75–2.84) 0.121

Green-yellow: DGs with LCFA; number of lipid species = 10

1 0.66(0.32–1.36) 0.80(0.38–1.69) 0.52(0.22–1.27) 0.709

Black: PEs with a saturated-LCFA and an unsaturated-LCFA; number of lipid species = 14

1 1.47(0.78–2.77) 1.64(0.83–3.24) 1.32(0.62–2.82) 0.073

Turquoise: TGs containing LCFA with less than 2 double bonds and PCs with LCFA; number of lipid species = 47

1 0.63(0.32–1.23) 0.74(0.36–1.52) 1.03(0.48–2.21) 0.209

Brown: LPCs and ether LPCs containing LCFA and VLCFA; number of lipid species = 30

1 0.64(0.33–1.25) 0.21(0.09–0.47) 0.55(0.27–1.12) 0.035
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the shadow-max value and 16 confirmed lipid species 
were identified as potential predictors of incident T2D 
(Additional file 2: Table S4 and Additional file 1: Fig. S2). 
Among these, 11 lipid species were also highlighted in 
the interaction network analysis (Additional file  1: Fig. 
S1f ). These 16 selected lipid species, including 4 PCs, 5 
TGs, 2 DGs, 4 LPCs and one PE, were then carried for-
ward for absolute quantification using the targeted lipid-
omic analysis.

Lipid species and the risk of T2D
All of the selected lipid species quantified by the tar-
geted lipidomic analysis, except DG 18:0_18:0, were sig-
nificantly different between the incident T2D cases and 
non-T2D controls (all unadjusted p < 0.01; q-value < 0.10) 
(Additional file 1: Fig. S3). Lipid species of the same cat-
egory were highly correlated and the LPCs were inversely 
correlated with DGs as well as TGs (Additional file 1: Fig. 
S4).

Multiple conditional logistic regression analysis was 
adopted to identify the independent lipid predictors 
for incident T2D (Table  3). After adjustment for BMI, 
TG/HDL ratio, and the presence of prediabetes, TG 
12:0_18:2_22:6, TG 16:0_11:1_18:2, TG 49:0, TG 51:1 and 
DG 18:2_22:6 were shown to be positively associated with 
incident T2D, and LPC O-16:0, LPC P-16:0, LPC O-18:0 
and LPC 18:1 were inversely associated with incident 

T2D (p < 0.05, q-value < 0.10) (Table  3). Recognizing the 
potential collinearity between TG and TG/HDL ratio, we 
replaced TG/HDL ratio with TG in the analysis and the 
result remained similar.

Next, we assessed whether the independent lipid spe-
cies showed an incremental prediction value on the 
development of T2D using ROC curves analyses (Fig. 1). 
Adding TG 12:0_18:2_22:6, TG 16:0_11:1_18:2, TG 
16:0_16:0_17:0, TG 16:0_17:0_18:1, DG 18:2_22:6, LPC 
O-16:0, LPC P-16:0, LPC O-18:0 and LPC 18:1 to the 
clinical risk model significantly increased the AUROC 
from 0.785 to 0.823 (improved by 3.8%, p = 0.0026). 
The improvement was further confirmed by both cNRI 
(37.8%, [95% CI 18.4–57.1%], p < 0.001) and IDI (3.7% 
[95% CI 1.9–5.6%], p < 0.001).

LPC O‑16:0 and LPC O‑18:0, but not DG 18:2_22:6 and TG 
12:0_18:2_22:6, potentiated glucose‑stimulated insulin 
secretion in mouse islets
The majority of East Asian patients with T2D, includ-
ing Chinese, show prominent defects in insulin secre-
tion relative to insulin resistance, and β-cell dysfunction 
plays a key role in the development of T2D among East 
Asian populations [28, 29]. We observed an inverse asso-
ciation of several LPCs but positive correlation of some 
glycerolipids with the risk of incident T2D. To inter-
rogate whether the newly identified LPC O-16:0, LPC 
O-18:0, DG 18:2_22:6 and TG 12:0_18:2_22:6 modulate 
insulin secretion, we further investigated their possible 
effects on GSIS using mouse islets. Isolated mouse islets 
were incubated with 20  mmol/l glucose only or fur-
ther supplemented with 10  µmol/l or 50  µmol/l of LPC 
O-16:0, LPC O-18:0, DG 18:2_22:6, TG 12:0_18:2_22:6, 
or palmitic acid. Under high (20 mmol/l) glucose condi-
tion, LPC O-16:0 and LPC O-18:0 significantly potenti-
ated GSIS in a dose-dependent manner, 50  µmol/l of 
LPC O-16:0 and LPC O-18:0 increased GSIS by 4- and 
16-fold, respectively. On the other hand, DG 18:2_22:6, 
TG 12:0_18:2_22:6 and palmitic acid showed no effect on 
GSIS (Fig. 2).

Conclusions
In this study, we identified specific TG, DG, and LPC 
species that were independently associated with incident 
T2D in a phenotypically well-characterized Chinese pop-
ulation-based cohort with a long follow-up of ~ 16 years. 
These lipid predictors are reported in a prospective study 
for the first time and were able to achieve a substantial 
increase in the prediction of incident T2D beyond a 
predictive model based on the most important clinical 
risk factors identified in this cohort. We demonstrated 
their pathophysiological involvement in the onset of the 

Table 3  Associations between lipid species and incident T2D

Lipid species with p-value < 0.05 and q-value < 0.1 are in bold

OR odds ratio, CI confidence interval, BMI body mass index, TG/HDL ratio 
triacylglycerol to high-density lipoprotein cholesterol ratio, DG diacylglycerol, 
TG triacylglycerol, PC phosphatidylcholine, PE phosphatidylethanolamine, LPC 
lyso-phosphatidylcholine

*Adjusted for BMI, TG/HDL ratio, and prediabetes

OR (95% CI) p-value* q-value*

TG 12:0_18:2_22:6 1.24(1.06–1.44) 0.006 0.032
TG 16:0_11:1_18:2 1.25(1.04–1.49) 0.017 0.045
TG 48:0 1.12(0.93–1.34) 0.231 0.334

TG 49:0 1.28(1.02–1.62) 0.034 0.075
TG 51:1 1.27(1.00–1.61) 0.047 0.083
DG 18:0_18:0 1.06(0.73–1.52) 0.774 0.774

DG 18:2_22:6 1.36(1.10–1.68) 0.005 0.032
PC O-16:1_18:1 0.70(0.27–1.80) 0.462 0.528

PC O-16:1_18:2 0.68(0.35–1. 31) 0.251 0.334

PC O-24:1_18:2 0.75(0.44–1.29) 0.299 0.368

PC O-34:1 0.51(0.18–1.49) 0.220 0.334

PE O-34:2 0.76(0.25–2.29) 0.631 0.673

LPC O-16:0 0.69(0.52–0.91) 0.009 0.037
LPC P-16:0 0.62(0.45–0.86) 0.004 0.032
LPC O-18:0 0.69(0.51–0.93) 0.014 0.044
LPC 18:1 0.53(0.30–0.96) 0.037 0.075
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disease and identified potential therapeutic targets for 
the treatment of T2D.

Our untargeted lipidomic analysis covered over 300 
lipid species, which is larger than most of the previous 
studies in Asian populations [8, 9, 15–18]. The network 
analysis revealed a collective effect of TGs, DGs and 
PCs with a common docosahexaenoic acid chain (22:6), 
which was associated with increased T2D risks. TGs with 
a common linoleic acid (18:2), as well as LPCs and ether 
LPCs containing long-chain fatty acids and very-long-
chain fatty acids showed a collective effect in the associa-
tion with the onset of T2D. Our network analysis further 
showed that most of the lipid species independently asso-
ciated with T2D were also inter-connected with a large 
number of other lipids that contain similar fatty acid 
chains, indicating that they may play a nexus role in the 
metabolic pathways of those lipids.

In this study, several LPCs were detected to be inversely 
associated with incident T2D after adjustments for BMI, 
TG/HDL ratio and the presence of prediabetes, the most 
important clinical predictors identified with the stepwise 
model selection approach. Among them, LPC P-16:0 and 

LPC 18:1 have previously been reported to be associated 
with T2D [11, 30], while our study is the first to show the 
inverse associations of LPC O-16:0 and LPC O-18:0 with 
incident T2D. Our findings are in agreement with previ-
ous cross-sectional studies which reported a significantly 
lower level of LPC O-16:0 in the skeletal muscle of T2D 
patients [31] and a negative association between plasma 
LPC O-18:0 and dysglycemia [32]. LPC O-16:0 and LPC 
O-18:0 are ether-linked LPCs which are also known as 
lyso-platelet-activating factors (lyso-PAFs). Three other 
lyso-PAFs, LPC O-22:0, O-24:1 and O-24:2, have been 
shown to be associated with a decreased risk of T2D in a 
prospective study conducted in the Australian Diabetes, 
Obesity and Lifestyle Study [33]. Lyso-PAF has long been 
considered as an inactive precursor of PAF, but emerging 
evidence suggests that lyso-PAF has its unique functions 
such as inhibiting the PAF-potentiated NADPH oxidase 
activation in neutrophils [34]. However, the role of lyso-
PAFs in the pathogenesis of T2D remains unknown. Our 
functional study demonstrated that LPC O-16:0 and LPC 
O-18:0 dose-dependently potentiated GSIS in mouse 
islets, thereby providing evidence for their potential 

Fig. 1  ROC curve analysis showing the AUROCs of different models for the prediction of T2D. Lipids included in the analysis were TG 12:0_18:2_22:6, 
TG 16:0_11:1_18:2, TG 49:0, TG 51:1, DG 18:2_22:6, LPC O-16:0, LPC P-16:0, LPC O-18:0 and LPC 18:1
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effect on β-cell function. It has been observed that Asians 
with T2D tend to have prominent impairment in β-cell 
function, better insulin sensitivity and lower BMI com-
pared to Caucasians [28, 29, 35]. In this collection, our 
study raised the possibility that lower LPC O-16:0 and 
LPC O-18:0 levels may contribute to impaired insu-
lin secretion and T2D in Chinese. This is further sup-
ported by our observation that LPC O-16:0 and LPC 
O-18:0 potently stimulated GSIS at the physiological 
range whereas the same concentrations of palmitic acid, 
were unable to demonstrate such an effect. Indeed, con-
sistent with our findings, previous studies reported that 
palmitic acid stimulated GSIS only at a high concentra-
tion of 500 µmol/l, which is out of the physiological range 
[36, 37]. Such observation suggests that LPC O-16:0 
and LPC O-18:0 may stimulate GSIS through a possibly 
unknown molecular pathway independent of the classical 
glycerolipid/free fatty acid pathway [38]. Further investi-
gations are warranted to explore the signaling pathways 
whereby LPC O-16:0 and LPC O-18:0 potentiate GSIS 
and to explore their therapeutic potential for T2D.

We also detected independent associations of TG 
12:0_18:2_22:6, TG 16:0_11:1_18:2, TG 49:0, TG 51:1 
and DG 18:2_22:6 with increased risk of incident T2D. 

Our findings were consistent with previous clinical 
studies showing positive associations of TGs with the 
risk of T2D [10, 13]. In contrast, some other studies 
suggested that certain TGs were inversely associated 
with the risk of T2D [9, 11, 14]. However, these studies 
were conducted over relatively shorter follow-up dura-
tions, thus the cumulative detrimental effect of TGs 
was not prominent. Indeed, previous studies which are 
consistent with our findings also had a longer follow-
up, with an average of 20  years [10, 13]. Our present 
study identified TG 12:0_18:2_22:6 and DG 18:2_22:6, 
which are structurally similar, as novel lipid species 
associated with incident T2D. Although the exact role 
of these two lipid species in T2D is unknown, Szen-
droedi et al. previously demonstrated a strong positive 
relationship of several DG lipid species (DG 16:0_18:2, 
18:1_18:2, 18:2_18:2, and 18:2_18:0) comprised of a 
common α-linoleic acid (fatty acid 18:2) chain with 
protein kinase C theta (PKC-θ) activation in human 
muscle cells [39]. The activated PKC-θ would lead to 
a decrease in insulin-stimulated insulin receptor sub-
strate-1 (IRS-1)/IRS-2 tyrosine phosphorylation and 
subsequently disturbed downstream insulin signal-
ing, inducing insulin resistance in the muscle. In our 

Fig. 2  Effect of various lipid species on glucose stimulated insulin secretion in mouse islets. Mouse islets were incubated in Krebs buffer with 
0 mmol/l glucose for 2 h and then treated with Krebs buffer containing 2 mmol/l glucose, 20 mmol/l glucose or 20 mmol/l glucose with increasing 
doses of LPC O-16:0, LPC O-18:0, DG 18:2_22:6, TG 12:0_18:2_22:6 or palmitic acid for 30 min (n = 9 in each experimental group with 10 islets per 
well). Insulin levels are shown as the fold change relative to the insulin secreted at 20 mmol/l glucose. Note: vehicles (ethanol or DMSO) used in the 
GSIS did not affect insulin secretion. ###p < 0.001 for 2 mmol/l glucose group vs. 20 mmol/l glucose only group; *p < 0.05, **p < 0.01 and ***p < 0.001 
for test groups vs. 20 mmol/l glucose only group
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functional analysis, we did not observe a direct effect 
of the newly identified TG 12:0_18:2_22:6 and DG 
18:2_22:6 on GSIS. It is possible that these lipid spe-
cies may affect the development of T2D via a pathway 
independent of insulin secretion. Previous studies have 
reported that the downstream products of TGs, such as 
acyl-CoA, DG and ceramide, impair the insulin signal-
ing pathways thereby leading to T2D risk [40]. Further 
functional analyses to elucidate the potential role of 
these novel lipid species in T2D are warranted.

With the addition of only 9 lipid species, we were able 
to achieve a significantly increased predictive power 
compared to the clinical predictive model comprising 
of BMI, TG/HDL ratio and the presence of prediabetes 
(enhanced by 3.8%, p = 0.0026). Our results appeared to 
show a better improvement in prediction with the addi-
tion of lipid species compared to previous studies which 
commonly increased the prediction value by 1.0–3.2%, 
even with over 50 lipid species [10, 11].

The major strength of this study was the use of a phe-
notypically well-characterized prospective popula-
tion-based CRISPS cohort which has a relatively long 
follow-up period compared to most of the population-
based studies among the Asian population. Another 
strength was the use of the high-throughput untargeted 
lipidomic profiling, which is a robust, non-biased strategy 
for lipidomic depiction and discovery of novel biomark-
ers. On the other hand, targeted lipidomic analyses have 
higher sensitivity, specificity, and quantification ability, 
which is applicable to known compounds. Merging of 
untargeted and targeted analyses provides an alternative 
way to combine the advantages of novel biomarker dis-
covery and accurate quantification. Given the enormous 
complexities of the human plasma lipidome, UHPLC-
mass spectrometry based-lipidomics is the preferred 
method for in-depth studies of lipid-related pathological 
mechanisms and the identification of predictive biomark-
ers for diabetes. Moreover, the employment of untar-
geted lipidomics, which has provided comprehensive 
coverage of various categories of lipids, has allowed us to 
analyze the interactions among lipids using WGCNA and 
select potential factors from a large pool of lipids using a 
machine-learning method.

We acknowledge that the limitations of our study 
included the relatively small sample size and lack of an 
external validation cohort. Furthermore, hemoglobin 
A1c (HbA1c) was not evaluated in our cohort because 
the 1998 WHO diagnostic criteria was employed in 
CRISPS-2 (2000–2004), when the baseline data for the 
current study were collected. Nonetheless, recent stud-
ies showed that HbA1c only added 0.5% to the preva-
lence of diabetes diagnosed by OGTT in the Chinese 

population [41]. Finally, all the participants were of 
Chinese ancestry, and hence our findings may not be 
generalizable to other populations.

In conclusion, our results provided novel insights 
into the underlying mechanisms of lipid species in the 
development of T2D. We discovered several novel lipid 
species associated with the pathophysiological changes 
before T2D onset. The identified lipid species substan-
tially increased the predictive value beyond the tradi-
tional risk factors. Further validations in independent 
prospective population-based cohorts are required to 
confirm our findings. Future functional studies to elu-
cidate the mechanistic pathways of the lipid species in 
T2D are warranted.
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