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Synergistic effect of chronic kidney disease, 
neuropathy, and retinopathy on all-cause 
mortality in type 1 and type 2 diabetes: 
a 21-year longitudinal study
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Anna Solini4*†   and Domenico Tricò1,2*†   

Abstract 

Background: The prognostic value of common and frequently associated diabetic microvascular complications 
(MVC), namely chronic kidney disease (CKD), cardiac autonomic neuropathy (CAN), peripheral neuropathy (DPN), and 
retinopathy (DR), is well established. However, the impact of their different combinations on long-term mortality has 
not been adequately assessed.

Methods: We retrospectively analyzed 21-year longitudinal data from 303 patients with long-standing type 1 (T1D) 
or type 2 diabetes (T2D), who were thoroughly characterized at baseline for the presence of MVC using 99mTc-DTPA 
dynamic renal scintigraphy, overnight urine collection, cardiovascular autonomic tests, monofilament testing, and 
dilated fundus oculi examination.

Results: After a 5,244 person-years follow-up, a total of 133 (43.9%) deaths occurred. The presence of CKD and 
CAN, regardless of other MVC, increased the adjusted all-cause mortality risk by 117% (HR 2.17 [1.45–3.26]) and 54% 
(HR 1.54 [1.01–2.36]), respectively. Concomitant CKD&CAN at baseline were associated with the highest mortality 
risk (HR 5.08 [2.52–10.26]), followed by CKD&DR (HR 2.95 [1.63–5.32]), and CAN&DR (HR 2.07 [1.11–3.85]). Compared 
with patients free from MVC, the mortality risk was only numerically higher in those with any isolated MVC (HR 1.52 
[0.87–2.67]), while increased by 203% (HR 3.03 [1.62–5.68]) and 692% (HR 7.92 [2.93–21.37]) in patients with two and 
three concomitant MVC, respectively.

Conclusions: Our study demonstrates the long-term, synergistic, negative effects of single and concomitant diabetic 
MVC on all-cause mortality, which should encourage comprehensive screenings for MCV in both T1D and T2D to 
improve risk stratification and treatment.

Keywords: Diabetes mellitus, Microvascular complications, Renal dynamic scintigraphy, Diabetic kidney disease, 
Cardiac autonomic neuropathy, Diabetic retinopathy
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Introduction
Chronic exposure to hyperglycemia in patients with 
diabetes mellitus impairs microvascular functions, fre-
quently leading to microvascular complications (MVC). 
Diabetes related MVC share a common pathophysiology 
and are often associated in the same individual, posing 
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a significant burden on both the healthcare systems and 
the patients. Among MVC, chronic kidney disease (CKD) 
has an estimated prevalence of 20–50% in type 1 diabetes 
(T1D) and type 2 diabetes (T2D) and is the leading cause 
of end-stage kidney disease (ESKD) [1]. Diabetic neurop-
athy, with an estimated prevalence of 6% to 51%, refers to 
a heterogeneous group of medical conditions, including 
cardiovascular autonomic neuropathy (CAN) and dia-
betic peripheral neuropathy (DPN), which can be com-
plicated by cardiovascular disease (CVD) and lower-limb 
disease [2]. Diabetic retinopathy (DR) affects a third of 
patients with diabetes [3] and is the most common cause 
of vision loss in working-age individuals [4].

Epidemiological studies indicate that diabetes related 
MVC can increase the risk of incident CVD and all-cause 
mortality [2, 5–7]. Nonetheless, the cumulative impact 
of the different types of MVC on life expectancy has not 
been adequately explored. Most of the available studies 
focused on the prognostic role of single, isolated MVC, 
overlooking the potential interaction with concomitant 
conditions. Furthermore, studies are often limited to 
patients with T1D and characterized by short follow-up 
periods. An extended follow-up beyond 10 years is fun-
damental to appreciate late time-dependent effects, given 
the increased life expectancy of people with diabetes sec-
ondary to improved standards of care [8].

In this study, we examined the long-term prognostic 
role of diabetes related MVC, alone or in combinations, 
on all-cause mortality in both T2D and T1D. For this 
purpose, we retrospectively analyzed longitudinal data of 
a well-characterized cohort of patients with long-stand-
ing diabetes who underwent an extensive screening for 
the presence of MCV in 1999–2000 and were followed 
up for more than 20 years.

Methods
Study protocol
The “CHronic diabetes complications and All-cause 
Mortality in Pisa from 1999 ONwards” (CHAMP1ON) 
study is a single-center, observational study involving 
497 consecutive outpatients referred to the University 
Hospital of Pisa for dysglycemia between 1999 and 2000 
[9]. Inclusion criteria were age between 18 and 75 years, 
both women and men, history of diabetes or prediabetes 
(either impaired fasting glucose or impaired glucose tol-
erance). Most patients presented at baseline with comor-
bidities commonly associated with diabetes, including 
obesity and dyslipidemia. Exclusion criteria were con-
comitant acute or chronic diseases associated with 
a  reduction in life expectancy, including ESKD, lung, 
hepatic, neoplastic or inflammatory diseases, and CVD 
events in the previous 12 months. At enrollment, all par-
ticipants underwent a physical examination by a trained 

physician and a full clinical history was obtained. Patients 
were extensively characterized via biochemical and clini-
cal exams and were thoroughly screened for the presence 
of major MVC, namely CKD, CAN, DPN, and DR.

After enrollment, participants periodically attended the 
clinic in relation to their clinical needs and were treated 
according to the best clinical practice relevant to that 
time for the control of major cardiovascular risk fac-
tors. The vital status of study participants was retrieved 
in April 2021 from the Italian Health Care database, 
which provides updated information on current Italian 
residents. In this retrospective longitudinal study, we 
analyzed data of CHAMP1ON study participants with 
diabetes who were screened for at least two MVC and 
had available survival data (Fig. 1).

The study was approved by the local Human Ethics 
Committee and conducted in accordance with the princi-
ples expressed in the Declaration of Helsinki. All subjects 
provided written informed consent prior to enrollment.

Assessment of diabetes MVC
The measured glomerular filtration rate (mGFR) was 
determined using dynamic renal scintigraphy with 
99mTc-DTPA, a glomerular-specific radiotracer [10]. 
The estimated glomerular filtration rate (eGFR) was 
calculated using the CKD-EPI creatinine equation [11]. 
Urinary albumin excretion was measured via radio-
immunoassay using timed overnight urine collection, 
excluding samples that were indicative of significant 
urinary tract infection or hematuria. CKD was defined 
as a reduced mGFR (< 60  ml/min/1.73  m2) and/or 
microalbuminuria (20–200  µg/min) or macroalbumi-
nuria (> 200 µg/min), in the absence of signs or symp-
toms of other primary causes of kidney damage [12].

497 subjects in the
CHAMP1ON study cohort

453 patients with diabetes

401 patients screened for 
diabetic complications

303 patients included in 
survival analysis

218 patients with 
type 2 diabetes

85 patients with 
type 1 diabetes

44 subjects without diabetes

52 patients lost at follow-up

98 patients screened for < 2 
microvascular complications

Fig. 1 Flow diagram of patients’ selection
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A battery of validated cardiovascular tests for the 
assessment of heart rate variability (HRV) during lying-
to-standing, standing-to-lying, and deep breathing was 
performed using a portable computerized system (Car-
dionomic, Medimatica, Martinsicuro, Italy) [13]. CAN 
was defined as at least two cardiovascular tests showing 
reduced HRV and/or orthostatic hypotension, defined 
as ≥ 20 mmHg reduction in SBP within 3 min of stand-
ing, according to the current diagnostic criteria [14]. 
A standardized questionnaire for symptoms of DPN, 
physical exam, and monofilament testing were used for 
the screening of DPN according to standard procedures 
[15]. If suspected, DPN was subsequently confirmed by 
electroneurography and electromyography.

Dilated fundus oculi examination was performed by 
a trained ophthalmologist using an ophthalmoscope. 
Pre-proliferative or proliferative DR was defined by 
the presence of any characteristic lesions, including 
intraretinal microvascular abnormalities, microaneu-
rysms, hemorrhages, cotton wool spots, venous bead-
ing or dilation, hard exudates, and new vessels [16].

Statistical analysis
Variables were tested for normality using the Shap-
iro–Wilk test. Continuous normally and non-normally 
distributed variables are presented as mean ± SD or 
median [interquartile range, or IQR], respectively. 
Categorical variables are presented as count (percent-
age). Overall survival (OS) was calculated as the time 
between the ascertained time of death and the date 
of enrollment. Kaplan–Meier curves were compared 
with the log-rank test. Cox proportional hazards mod-
els were used to estimate hazard ratios (HR) and 95% 
confidence intervals for all-cause mortality adjusted 
for age, sex, glycemic control (HbA1c), BMI, as well as 
duration and type of diabetes. Kaplan–Meier curves 
predicted by multivariate Cox regression models are 
shown. The effect of diabetes type was further exam-
ined by adding an interaction term between the type of 
diabetes and the variable of interest in all the adjusted 
models. Subgroup analyses by diabetes type were per-
formed if a significant interaction was observed. The 
proportional hazards assumption was respected in all 
models. Group differences for continuous and categori-
cal variables were tested using Mann–Whitney test or 
Fisher exact test, respectively. Statistical analysis was 
performed with JMP Pro software version 16 (SAS 
Institutes, Cary, NC) and STATA software version 16 
(StataCorp, College Station, TX) at a two-sided α level 
of 0.05.

Results
Study participants
The study population consisted of 303 subjects, includ-
ing 218 (71.9%) patients with T2D and 85 (28.1%) 
patients with T1D (Fig.  1). Demographic, clinical, and 
metabolic characteristics of study participants at enrol-
ment are presented in Table  1. Women and men were 
evenly represented. Most patients had long diabetes 

Table 1 Baseline characteristics of study participants

ACEi angiotensin converting enzyme inhibitors, ARB angiotensin II receptors 
blockers, eGFR estimated glomerular filtration rate, HDL high-density lipoprotein, 
IQR interquartile range, LDL low-density lipoprotein, mGFR measured glomerular 
filtration rate

Characteristics

N 303

Age, years—median [IQR] 58 [19]

Women—no. (%) 155 (51.2)

Body weight, kg—median [IQR] 77 [19]

Body mass index, kg/m2—median [IQR] 27.7 [7.5]

Systolic blood pressure, mmHg—median [IQR] 140 [29]

Diastolic blood pressure, mmHg—median [IQR] 78 [11]

Diabetes mellitus—no. (%)

  Type 2 Diabetes—no. (%) 218 (71.9)

  Type 1 Diabetes—no. (%) 85 (28.1)

Duration of diabetes—median [IQR] 11 [16]

Smoke—no. (%) 95 (31.4)

Hypertension—no. (%) 168 (55.4)

Fasting glucose, mg/dl—median [IQR] 166 [92]

HbA1c, %—median [IQR] 8.8 [2.7]

Total cholesterol, mg/dl—median [IQR] 211 [68]

HDL cholesterol, mg/dl—median [IQR] 45 [16]

LDL cholesterol, mg/dl—median [IQR] 132 [56]

Triglycerides, mg/dl—median [IQR] 142 [102]

Creatinine, mg/dl—median [IQR] 0.87 [0.26]

mGFR, ml/min/1.73  m2—median [IQR] 99.5 [37.3]

eGFR, ml/min/1.73  m2—median [IQR] 84.4 [26.3]

Albuminuria, μg/min—median [IQR] 7.6 [14.6]

Glucose-lowering therapy—no. (%) 255 (84.2)

  Oral agents—no. (%) 117 (38.6)

    Biguanides—no. (%) 128 (42.2)

    Sulphonylureas—no. (%) 85 (28.1)

    Acarbose—no. (%) 9 (3.0)

  Insulin—no. (%) 152 (50.2)

  Insulin, UI/die—median [IQR] 40 [18]

Lipid-lowering therapy—no. (%) 26 (8.6)

Anti-hypertensive therapy—no. (%) 168 (55.5)

  ACEi/ARB—no. (%) 121 (39.9)

  Beta-Blockers—no. (%) 18 (5.9)

  Ca-Blockers—no. (%) 68 (22.4)

  Alpha-Blockers—no. (%) 33 (10.9)
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duration (> 5 years, 71.6%) and suboptimal glucose con-
trol (HbA1c > 7.5%, 76.2%); one half was under insulin 
treatment (50.2%) and 15.8% were treated with lifestyle 
interventions only. Furthermore, most patients had 
overweight or obesity (BMI > 25  kg/m2, 68.6%), hyper-
tension (55.9%) and hypercholesterolemia (LDL choles-
terol > 100 mg/dl, 62.7%), and 16.2% were active smokers. 
At enrollment, 60.7% of patients had at least one MVC, 
and 31.3% of patients had 2 or more MVC. The preva-
lence was 29.7% for CKD, 28.3% for CAN, 21.1% for 
DPN, and 35.4% for DR.

Long‑term prognostic value of single MVC
After 5,244 person-years of follow-up (median follow-
up 21.0 [IQR 6.7] years), a total of 133 (43.9%) deaths 
occurred. Kaplan–Meier and model-predicted survival 
curves for each single MVC, regardless of the presence of 
other MCV, are shown in Fig. 2.

The presence of CKD reduced mean OS by 2.6  years 
(− 14.4%; log-rank test p < 0.0001) and increased the mor-
tality risk by 117% in the adjusted model (HR 2.17 [1.45–
3.26]) (Fig.  2A). Consistently, mean OS was reduced by 
1.6  years (−  9.0%) in patients with mGFR between 60 
and 90  ml/min/1.73  m2, and by 4.9  years (−  27.2%) in 
patients with mGFR < 60 ml/min/1.73  m2, compared with 
patients with mGFR > 90  ml/min/1.73  m2 (log-rank test 
p < 0.0001) (Fig. 2B). An mGFR < 60 ml/min/1.73  m2 was 
associated with a 122% increase in the adjusted risk for 
all-cause mortality (HR 2.22 [1.27–3.40]) compared with 
mGFR > 90  ml/min/1.73  m2, while there was no differ-
ence in the adjusted mortality risk between the groups 
with mGFR 60–90 ml/min/1.73  m2 and > 90 ml/min/1.73 
 m2. Patients with albuminuria (of whom 25.5% with mac-
roalbuminuria) had a reduction in mean OS of 2.3 years 
(− 12.9%; log-rank test p = 0.004) and a 74% increase in 
all-cause mortality risk in the adjusted model (HR 1.74 
[1.13–2.68]) (Fig. 2C).

Patients with CAN showed a reduction in mean OS 
of 1.4  years (−  8.1%; log-rank test p = 0.046) and a 54% 
increase in all-cause mortality risk in the adjusted 
model (HR 1.54 [1.01–2.36]) compared with those with-
out CAN. In contrast, DPN was not associated with OS 
reduction (log-rank test p = 0.79) or adjusted mortality 
risk (HR 1.14 [0.73–1.81]).

The presence of DR reduced mean OS by 1.3  years 
(−  7.4%; log-rank test p = 0.02) (Fig.  2D). The adjusted 
risk for all-cause mortality in patients with DR was 
numerically higher, albeit not statistically different, than 
in  those without DR (HR 1.23 [0.82–1.84]). This result 
was confirmed in secondary analyses adjusted by mean 
systolic blood pressure and hypertension.

When testing for the influence of diabetes type on the 
prognostic role of each MVC, a significant interaction 

was found for CAN only (p = 0.043), while CKD, DPN, 
and DR had similar effects in both T2D and T1D. In 
subgroup analyses by type of diabetes, CAN increased 
the adjusted mortality risk in patients with T2D (HR 
1.78 [1.13–2.81]) but not in patients with T1D (HR 0.98 
[0.30–3.18]).

Long‑term prognostic value of different MVC pairs
Kaplan–Meier and model-predicted survival curves for 
the different pairwise combinations of MVC associated 
with reduced life expectancy in our cohort are shown in 
Fig. 3.

Concomitant CKD and CAN were associated with a 
reduction of 2.83  years in mean OS (−  15.9%; log-rank 
test p = 0.0006) and with the greatest increase in the 
adjusted risk for all-cause mortality (HR 5.08 [2.52–
10.26]), compared with patients free from CKD and CAN 
(Fig. 3A). The presence of both CKD and DR was associ-
ated with the greatest reduction in mean OS (3.90 years 
or − 21.9%; log-rank test p < 0.0001) and a 195% increase 
in the adjusted mortality risk (HR 2.95 [1.63–5.32]) 
(Fig. 3B). Finally, patients with concomitant CAN and DR 
showed a 1.96-year (− 11.0%) reduction in mean OS (log-
rank test p = 0.03) and 107% increased risk of all-cause 
mortality (HR 2.07 [1.11–3.85]) (Fig. 3C).

Long‑term prognostic value of multiple concomitant MVC
The subgroup of patients fully characterized for the 
presence of CKD, CAN, and DR had similar character-
istics (Additional file 1: Table S1) and MCV distribution 
(Fig. 4A) compared with the whole study cohort. Baseline 
characteristics of these subjects stratified by the number 
of MVC are summarized in Additional file  1: Table  S2. 
Kaplan–Meier and model-predicted survival curves for 
the total number of MVC among CKD, CAN, and DR are 
shown in Fig. 4B.

Compared with patients without any MVC, patients 
with one, two, or three MVC showed a progressive 
reduction in mean OS of 0.48 years (− 2.7%), 2.52 years 
(−  14.0%), and 2.96  years (−  16.4%), respectively (log-
rank test p = 0.0016). The adjusted risk for all-cause 
mortality was numerically higher in patients with any 
isolated MVC compared with those without MVC (HR 
1.52 [0.87–2.67]), and increased by 203% (HR 3.03 [1.62–
5.68]) and 692% (HR 7.92 [2.93–21.37]) in patients with 
two or three concomitant MVC, respectively.

Discussion
In this study, we elucidated the long-term prognostic role 
of single and concomitant MVC in a cohort of middle-
aged patients with long-standing T1D or T2D. Over 
a remarkably long follow-up period of 21  years, CKD, 
CAN, and DR, but not DPN, reduced life expectancy 
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Fig. 2 Kaplan–Meier and model-predicted survival curves for single diabetic microvascular complications, including chronic kidney disease (A) 
and its components, namely reduced glomerular filtration rate (B) and albuminuria (C), cardiac autonomic neuropathy (D), diabetic peripheral 
neuropathy (E), and diabetic retinopathy (F)
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by 1.3 to 2.6  years, and CKD and CAN increased the 
adjusted all-cause mortality by 117% and 54%, respec-
tively. Importantly, the accurate assessment of multiple 
concomitant MVC allowed us to establish the synergistic 
effect of their combination on all-cause mortality, which 
is of clinical relevance as diabetic MVC are frequently 
associated. The presence of both CKD and CAN mark-
edly increased mortality risk by fivefold. Furthermore, 
their combination with DR was associated with an even 
greater reduction in survival and increased mortality 
risk, as compared with the presence of any isolated MVC. 
This novel evidence substantiates the clinical value of a 
comprehensive screening for isolated or combined MVC 
in patients with diabetes for better risk stratification.

Previous studies with indirect estimation of GFR (cal-
culated eGFR) established the role of CKD on CVD-
related and all-cause mortality risk, regardless of the 
presence of other complications, often over follow-up 
periods shorter than 5–10  years [17–22]. Although the 
estimation of GFR based on serum creatinine level is fea-
sible and widely used in large-scale studies and clinical 
practice, numerous limitations are known in reflecting 
measured renal function. Indeed, eGFR may differ from 
mGFR by ± 30%, resulting in 30–60% misclassification 
of CKD stage [23]. Furthermore, creatinine-based eGFR 
formulae are adjusted for clinical factors that can directly 
affect mortality rate, including age, sex, and race, which 
would eventually lead to an over- or underestimation 
of the mortality risk associated with CKD. Our findings 
extend previous indirect evidence [17–22] confirming the 
prognostic value of GFR in diabetes using a direct meas-
urement of GFR, based on 99Tc-DTPA renal dynamic 
scintigraphy, and exploiting a follow-up period of more 
than 20  years. This long observation period, approach-
ing the life expectancy of a typical adult patient referred 
for complicated T2D, is apt to appreciate the full magni-
tude of the time-dependent, negative prognostic impact 
of MVC. This is particularly important for CKD and its 
components, whose effects on mortality risk become 
increasingly evident after 5 to 10  years of observation 
(Fig. 2A–C).

Diabetic neuropathy is a frequent but often overlooked 
MVC associated with CVD and mortality [24–34]. In a 
recent meta-analysis [35], CAN demonstrated a pooled 
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relative risk of all-cause mortality of 3.17 [2.11–4.78], 
which was higher in T1D than T2D. In the 19 available 
studies identified, however, the follow-up length ranged 
widely (up to 21 years in DCCT/EDIC study participants 
with T1D [31]) and the number of abnormal autonomic 
function tests used to define CAN varied from 1 to 3, 
thus making results difficult to compare, especially for the 
T2D subgroup [35]. In our analyses, CAN was defined by 
applying newer diagnostic criteria [14], which reduce the 
risk of overestimating the incidence of CAN, and its neg-
ative prognostic role was reappraised in both T2D and 
T1D over an extended follow-up period. In contrast to 
previous observations, in our cohort CAN increased the 
mortality risk preferentially in T2D, even though patients 
with T1D showed similar CAN prevalence and severity. 
This finding should be interpreted with caution, as it may 
depend on several unaccounted factors, including differ-
ent disease duration or therapeutic management in the 
two groups, and on the limited number of participants 
with T1D and CAN in our cohort. The same considera-
tions, along with the low prevalence of complicated DPN 
(e.g. foot ulcers), may explain our negative result on the 
prognostic value of DPN [28, 32–34, 34].

It has been reported that individuals with DR have 
a  greater incidence of CVD and lower survival rates 
than those without DR [36–40]. In the meta-analysis 
by Kramer et  al. [39], the presence of DR was linked 
to a markedly increased risk for all-cause mortality in 
both T2D (OR 2.41 [1.87–3.10]) and T1D (OR 3.65 

[1.05–12.66]). Our findings are partially in agreement 
with these results, as we observed an increase in the rela-
tive mortality risk associated with DR, which, however, 
lost statistical significance after accounting for potential 
confounders. This observation is consistent with two 
recent studies in large cohorts of patients with T2D [41] 
and T1D [42] showing that DR has a neutral effect on 
mortality independently of known confounders. None-
theless, our negative findings can derive as well from 
peculiar participants’ characteristics and limited statisti-
cal power to assess the independent effect of DR in our 
cohort.

Multiple diseases with a common pathophysiology 
may compete for determining negative health outcomes, 
resulting in less-than-additive effects. In contrast, sparse 
evidence indicates that having two or more concomitant 
MVC may result in an additive or even synergistic effect 
on incident CVD and survival rates, compared with hav-
ing a single isolated MVC, particularly in T1D [42–45]. 
In fact, CAN [30] and DR [46] were independent predic-
tors of mortality only in T1D patients with CKD, but not 
in those without CKD, in two 5- to 10-year longitudinal 
studies. Consistently, we observed a steep increase in 
mortality rates when CAN and/or DR were associated 
with CKD, extending previous observations to patients 
with both T1D and T2D on a longer follow up.

Study participants presented with poor metabolic 
control, high prevalence of MCV (especially DR), and 
were naïve from any novel disease-modifier treatment. 
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In fact, therapeutic targets of traditional risk factors in 
the late nineties were not as strict as today, and refer-
ral of patients with diabetes to a tertiary level clinic 
was often delayed. Also, the two classes of drugs with 
glucose-independent protective effects against diabetic 
MVC, namely glucagon-like peptide 1 (GLP-1) recep-
tor agonists [47] and sodium-glucose co-transporter 
2 (SGLT-2) inhibitors [48], were approved in T2D in 
2005 and 2013, respectively, and became widely used 
only  later. This partly justifies the high mortality rate 
in our cohort with respect to current life expectancy, 
being in line with studies performed in the same years 
[49]. It also underscores the significant ameliorations 
in quality of life and survival secondary to the recent 
advances in diabetes research and clinical practice, 
confirming that an early and vigorous control of gly-
cemia and cardiovascular risk factors can deeply affect 
survival in diabetes, which would be otherwise poor 
when MVC arise.

There are some limitations to the present study, mostly 
related to its retrospective design. First, we could not 
retrieve reliable information on incident CVD events or 
the cause of death. Although MVC are stronger risk fac-
tors for CVD mortality than for non-CVD mortality [28], 
this precluded us to detail the prognostic role of each 
MVC on relevant clinical outcomes. Second, we could 
not evaluate the time course of MVC, clinical parameters 
including glycemic control, nor treatment changes after 
enrollment, which may influence study results. Thus, the 
prognostic role of the temporal association between dif-
ferent MVC and the potential effects of time-changing 
unaccounted factors should be assessed in future studies. 
Third, the number of subjects and events in some anal-
yses was limited, especially when dealing with the T1D 
subgroup, which warrants caution in the interpretation 
of negative findings. Forth, the diagnosis of DR relied on 
a single operator-dependent assessment, which however 
was performed by a trained ophthalmologist to minimize 
the risk of misclassifications.

In conclusion, our study demonstrates the long-term, 
synergistic, negative effects of diabetes MVC on all-cause 
mortality in patients with both T2D and T1D. The sub-
stantial burden of MVC in diabetes fosters a compre-
hensive baseline screening to identify the subgroup of 
patients with higher mortality risk, who may benefit the 
most from targeted interventions to improve survival and 
quality of life.
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