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Abstract 

Background:  New biomarkers to identify cardiovascular disease (CVD) risk earlier in its course are needed to enable 
targeted approaches for primordial prevention. We evaluated whether intraindividual changes in blood metabolites 
in response to an oral glucose tolerance test (OGTT) may provide incremental information regarding the risk of future 
CVD and mortality in the community.

Methods:  An OGTT (75 g glucose) was administered to a subsample of Framingham Heart Study participants free 
from diabetes (n = 361). Profiling of 211 plasma metabolites was performed from blood samples drawn before and 
2 h after OGTT. The log2(post/pre) metabolite levels (Δmetabolites) were related to incident CVD and mortality in Cox 
regression models adjusted for age, sex, baseline metabolite level, systolic blood pressure, hypertension treatment, 
body mass index, smoking, and total/high-density lipoprotein cholesterol. Select metabolites were related to subclini-
cal cardiometabolic phenotypes using Spearman correlations adjusted for age, sex, and fasting metabolite level.

Results:  Our sample included 42% women, with a mean age of 56 ± 9 years and a body mass index of 30.2 ± 5.3 kg/
m2. The pre- to post-OGTT changes (Δmetabolite) were non-zero for 168 metabolites (at FDR ≤ 5%). A total of 132 
CVD events and 144 deaths occurred during median follow-up of 24.9 years. In Cox models adjusted for clinical risk 
factors, four Δmetabolites were associated with incident CVD (higher glutamate and deoxycholate, lower inosine 
and lysophosphatidylcholine 18:2) and six Δmetabolites (higher hydroxyphenylacetate, triacylglycerol 56:5, alpha-
ketogluturate, and lower phosphatidylcholine 32:0, glucuronate, N-monomethyl-arginine) were associated with 
death (P < 0.05). Notably, baseline metabolite levels were not associated with either outcome in models excluding 
Δmetabolites. The Δmetabolites exhibited varying cross-sectional correlation with subclinical risk factors such as 
visceral adiposity, insulin resistance, and vascular stiffness, but overall relations were modest. Significant Δmetabolites 
included those with established roles in cardiometabolic disease (e.g., glutamate, alpha-ketoglutarate) and metabo-
lites with less defined roles (e.g., glucuronate, lipid species).
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Introduction
Traditional cardiovascular disease (CVD) risk factors are 
highly prevalent in the general population and account 
for a significant proportion of attributable risk [1, 2]. 
Despite progress over recent decades in CVD risk predic-
tion and in treating clinical risk factors to prevent CVD 
events (primary prevention) [3], the global burden of 
CVD remains unacceptably high [4]. This high residual 
burden is attributable partly to the enormous challenge 
of reducing clinical risk factors to optimal levels in the 
general population [5]. Additionally, even when opti-
mal levels of a risk factor are achieved with medications, 
CVD risk often remains higher when compared to those 
who never developed the risk factors [6, 7]. Moreover, a 
substantial proportion of CVD events occur in individu-
als who are not predicted to be at elevated risk based on 
traditional risk factor thresholds [8]. Therefore, it is nec-
essary to identify novel biomarkers that are evident ear-
lier in the course of risk factor pathogenesis (primordial 
prevention) to augment clinical risk assessment, facilitate 
lifestyle interventions at earlier—and more modifiable 
[9]—stages of development of disease propensity, and 
identify new potential therapeutic targets.

Circulating metabolites are a valuable resource for the 
discovery of biomarkers of early disease risk as they pro-
vide a dynamic snapshot of diverse metabolic functions. 
Accordingly, fasting metabolite levels have been linked 
to important CVD-related outcomes such as diabetes 
[10–13], obesity [14, 15], hypertension [16], CVD [17, 
18], longevity [19], and mortality [20]. However, these 
prior studies are limited by a reliance on traditional risk 
factors to define metabolite profiles and by biomarker 
assessment at a single time point. As metabolites change 
dynamically in response to physiological conditions [21], 
they might also prove useful for characterizing interin-
dividual differences in the metabolic response to stress 
(perturbation), an emerging indicator of physiological 
health [22, 23]. Indeed, widespread changes in the circu-
lating metabolome have been reported in response to the 
acute metabolic stress of an oral glucose tolerance test 
(OGTT), with differences in these changes in individu-
als with versus without insulin resistance [24]. However, 
it is currently unknown whether such interindividual 
variability in metabolite changes after an OGTT might 
provide information on the long-term risk of CVD or 
premature mortality. To address this research question, 

blood metabolites were quantified before and 2  h after 
an OGTT in well-phenotyped, nondiabetic, community-
dwelling participants of the Framingham Heart Study 
(FHS) with > 20 years of longitudinal follow-up for CVD 
events and mortality. Our overall objective was to test the 
hypothesis that intraindividual changes in blood metabo-
lite levels following an OGTT can uncover interindivid-
ual variation in metabolic risk that is not apparent in the 
fasting state (Fig. 1).

Methods
Study sample
The FHS Offspring cohort is an observational, prospec-
tive, community-based cohort initially recruited in 1971 
and followed with serial examinations subsequently [25]. 
At their 5th examination cycle (1991–1995), a subsam-
ple of this cohort without diabetes underwent an OGTT 
with blood sampling for metabolite profiling pre-OGTT 
and 2 h post [24]. This subsample included 189 individu-
als who subsequently developed diabetes and 189 pro-
pensity-matched controls who did not develop diabetes, 
as described previously [10]. For the present investiga-
tion, we included 361 individuals with metabolite profil-
ing performed and who were free of CVD at the baseline 
(5th) examination cycle. The study was approved by the 
Institutional Review Board at Boston University Medical 
Campus/Boston Medical Center and all participants pro-
vided written informed consent.

OGTT protocol and metabolite profiling
Participants presented after a ≥ 8  h fast. Blood samples 
were drawn before and 2  hafter a 75  g OGTT. Samples 
were centrifuged immediately and stored at −  80  °C 
until assayed. Plasma metabolites were analyzed using 
liquid chromatography–mass spectrometry (LC–MS) 
methods at the Broad Institute of Harvard and Massa-
chusetts Institute of Technology (Cambridge, MA) in 
2008–2011, as described [10, 24]. Briefly, metabolites 
were extracted with 75% acetonitrile/25% methanol for 
positively charged polar compounds and 80% methanol 
for negatively charged polar compounds. Samples were 
centrifuged (10 min, 10,000 rpm, 4 °C) and supernatants 
were injected directly. LC–MS data were acquired using 
a 4000 QTRAP triple quadrupole mass spectrometer 
(Applied Biosystems/Sciex, Foster City, CA) and a mul-
tiplexed LC system comprised of two 1200 Series pumps 

Conclusions:  Dynamic changes in metabolite levels with an OGTT are associated with incident CVD and mortality 
and have potential relevance for identifying CVD risk earlier in its development and for discovering new potential 
therapeutic targets.
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(Agilent Technologies, Santa Clara, CA). Polar plasma 
metabolites were measured using hydrophilic interac-
tion chromatography and tandem MS with electrospray 
ionization and multiple reaction monitoring scans in the 
positive ion mode. Complementary analysis of small mol-
ecules ionized in the negative mode were also assayed. 
After excluding drug metabolites and metabolites with 
more than 25% missingness, 211 metabolites were avail-
able for analysis.

Covariate and outcome assessment
Diabetes was defined as a fasting blood glucose ≥ 126 mg/
dL, nonfasting glucose ≥ 200 mg/dL, or the use of blood 
sugar-lowering medications. Systolic blood pressure was 
measured by manual mercury column sphygmomanome-
ter on seated participants and the average of two readings 
was recorded. Smoking status (in the year preceding the 
FHS examination) was assessed by self-report. Dietary 

quality and physical activity were assessed by question-
naire and expressed as the Alternative Healthy Eating 
Index-2010 and physical activity index [26, 27]. Homeo-
static Model of Insulin Resistance (HOMA-IR) was cal-
culated as fasting glucose (nmol/L) * fasting insulin (µU/
ml)/22.5. The estimated glomerular filtration rate was 
calculated using the Chronic Kidney Disease Epidemiol-
ogy Collaboration Equation.  [28]. Left ventricular mass 
was assessed by a transthoracic echocardiogram and 
calculated using the Devereux formula [29]. At the 7th 
examination cycle (1998–2001), carotid-femoral pulse 
wave velocity (CFPWV; analyzed as −1000/CFPWV), 
coronary artery calcium (analyzed as natural log[1 + cor-
onary artery calcium score]), and subcutaneous and 
visceral adipose tissue volume were assessed using stand-
ardized protocols [30–32]. FHS participants are under 
surveillance for the development of CVD events, which 
are adjudicated during a consensus review of pertinent 

Fig. 1  Schematic of the study design
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medical records by three investigators. For the present 
investigation, incident CVD events were defined as fatal 
or nonfatal myocardial infarction, stroke, intermittent 
claudication, or heart failure using standardized criteria 
[33].

Statistical analysis
First, we compared pre- and post-OGTT log2(metabolite 
levels) using paired t-tests. For each metabolite with 
changes from pre- to post-OGTT at a false discovery 
rate (FDR) of ≤ 5%, we calculated the log2 fold change 
(log2[post/pre]) and fold-changes were standardized 
to mean = 0, standard deviation = 1. Metabolite fold-
changes were then related to incident CVD and mortal-
ity in multivariable-adjusted Cox proportional hazards 
regression models. Models were initially adjusted for 
age, sex, and baseline (fasting) metabolite level and were 
then additionally adjusted for traditional CVD risk fac-
tors used for clinical risk prediction: systolic blood pres-
sure, hypertension treatment status, body mass index, 
smoking status, and total/HDL cholesterol [34]. In sep-
arate models, we evaluated the associations of the fast-
ing metabolite levels with CVD and death to facilitate 
comparison. We conducted sensitivity analyses in which 
metabolites associated with CVD or mortality were addi-
tionally adjusted for fasting blood glucose and HOMA-
IR. Hazard ratios (HRs) were calculated by taking the 
exponential of the regression coefficient (exp(β)) from 
the corresponding Cox proportional hazard model along 
with a 95% confidence interval (CI). In exploratory analy-
ses, we evaluated the relations of the metabolite fold-
changes with clinical risk factors and subclinical CVD 
markers using partial correlations (Spearman) adjusted 
for age, sex, and fasting metabolite level. Risk factors and 
subclinical CVD markers included BMI, smoking, sys-
tolic blood pressure, blood pressure medication use, total 
cholesterol, high-density lipoprotein cholesterol, triglyc-
erides, fasting blood glucose, HOMA-IR, physical activity 
index, alternate health eating index, estimated glomeru-
lar filtration rate, left ventricular mass, carotid-femoral 
pulse wave velocity, coronary artery calcium, subcutane-
ous and visceral adipose tissue density. A 2-sided P < 0.05 
was used to determine the statistical significance without 
adjustment for multiple testing. Analyses were conducted 
using SAS version 9.4 (Cary, NC) and with R statistical 
software, version 4.03 (Foundation for Statistical Com-
puting, Vienna, Austria).

Results
Study sample characteristics
Our analytic subsample consisted of 361 individuals 
(mean age 56 ± 9  years) with 151 (42%) women, and a 
mean body mass index in the obese range (30.2 ± 5.3 kg/

m2), Table  1 and Additional file  1: Table  S1. Compared 
with the larger FHS Generation 2 cohort, this subsam-
ple had similar age, with a lower proportion of women 
and modestly higher levels of cardiovascular risk factors 
(Additional file 1: Table S2).

Association of pre‑ to post‑OGTT metabolite changes 
with incident CVD
Of the 211 assayed metabolites, changes from pre- to 
post-OGTT were observed for 168 metabolites (80%) 
at FDR ≤ 5% (Additional file  1: Table  S3). During a 
median follow-up of 24.9 (limits 7.5–28.3) years, a first 
CVD event occurred in 132 individuals. In Cox models 
adjusted for age, sex, and fasting metabolite level, the pre- 
to post-OGTT change in the levels (Δmetabolite) of 13 
metabolites were associated with incident CVD (Table 2). 
A nominal significance threshold of P < 0.05 was used for 
all prospective analyses. This included several triacylglyc-
erol (TAG) species, metabolites with putative links with 
cardiometabolic disease (e.g., glutamate, lactate, isoleu-
cine, alanine [35]), and metabolites with less well-estab-
lished roles in cardiometabolic disease (e.g., gentisate, 
cholesterol ester 20:5), Table  2. After additional adjust-
ment for traditional CVD risk factors, the association of 
four Δmetabolites and incident CVD remained statisti-
cally significant: higher glutamate and deoxycholate and 
lower lysophosphatidylcholine (LPC)18:2 and inosine 
(Table 2). Notably, in models not accounting for the post-
OGTT change, six metabolites were associated with inci-
dent CVD in age- and sex-adjusted models (exhibiting 
directional concordance with the Δmetabolite analyses), 
but none of the fasting metabolite levels were associated 
with incident CVD in models adjusted for traditional 
CVD risk factors in our sample (Table 2).

Association of pre‑ to post‑OGTT metabolite changes 
with incident death
A total of 144 deaths occurred during the follow up 
period. In Cox models adjusted for age, sex, and fasting 
metabolite levels, five Δmetabolites were associated with 
mortality (p < 0.05, Table  3): hydroyphenylacetate, TAG 
56:5, glucuronate, sucrose, and propionate. After addi-
tional adjustment for traditional clinical risk factors, six 
Δmetabolites were associated with mortality (Table  3). 
These included lipid species such as TAG 56:5 and phos-
phatidylcholine 32:0, as well as the phenol hydroxyphe-
nylacetate (previously implicated in unhealthy aging[36, 
37]), nitric oxide inhibitor N-monomethyl arginine 
(NMMA), and ⍺-ketoglutarate, which promotes lon-
gevity in animal models [38] (Table  4). Fasting metabo-
lite levels were not statistically significantly associated 
with death in models that did not account for changes in 
metabolites in response to the OGTT (Table 3).
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Sensitivity analyses
By comparison, the change in glucose 2  h post-OGTT 
was not associated with incident CVD (P = 0.65) or mor-
tality (P = 0.17) in multivariable-adjusted models in our 
study. To evaluate whether the information provided by 
Δmetabolites was complementary (i.e., additive) to tradi-
tional measures of dysglycemia and insulin resistance, we 
performed sensitivity analyses adjusting our multivari-
able models additionally for fasting glucose and HOMA-
IR (Additional file  1: Table  S4). We observed minimal 
attenuation of the effect estimates for Δmetabolites asso-
ciated with CVD or mortality with these additional 
adjustments.

Clinical and subclinical correlates of Δmetabolites
Next, we sought to further understand the clinical and 
subclinical correlates of changes in circulating metabo-
lites that were related to CVD or mortality in risk factor-
adjusted models (Fig.  2 and Additional file 1: Table S5). 
Overall, we observed modest correlations between 
Δmetabolites and traditional risk factors, health behav-
iors (e.g., physical activity, dietary quality), and subclinical 
disease measures, with variation across specific metabo-
lites. For example, ΔTAG 56:5 (which was directly related 
to mortality) was correlated with lower HDL cholesterol 
and higher total triglycerides, eGFR, and subcutaneous 

adipose tissue volume, whereas Δhydroxyphenylacetate 
(also directly related to mortality) was correlated with 
higher body mass index, lower fasting blood glucose, and 
higher (adverse) CFPWV.

Clinical implications
Understanding the clinical implications (and direction-
ality) of a higher change in Δmetabolites requires the 
integration of fasting metabolite levels and the direc-
tion of change after an OGTT. For example, a 1-SD 
higher change in glutamate from pre- to post-OGTT 
is associated with a 24% higher risk of CVD (in models 
adjusted for clinical risk factors), but on average, gluta-
mate decreased by 20% with an OGTT in our sample. In 
Fig. 3A, we plot the pre-OGTT glutamate levels against 
their fold changes post-OGTT and estimated hazard 
ratios for each individual. As expected based on prior 
studies [39, 40], individuals with higher levels of fasting 
(i.e., pre-OGTT) glutamate had a higher predicted haz-
ard of CVD. However, the post-OGTT fold-change pro-
vided incremental information on estimated CVD risk, 
with individuals with the highest fasting glutamate levels 
and increases in glutamate post-OGTT having a much 
higher risk of CVD when compared with those with 
higher resting levels but reduced glutamate post-OGTT. 
In addition, individuals with low fasting glutamate levels 

Table 1  Characteristics of the study sample

Sample sizes for variables not available in all participants: HOMA-IR, N = 359; physical activity index, N = 352; alternate healthy eating index, N = 331; estimated 
glomerular filtration rate, N = 319; left ventricular mass, N = 253; carotid-femoral pulse wave velocity, N = 234; coronary artery calcium, N = 131; subcutaneous adipose 
tissue, N = 138; visceral adipose tissue, N = 138

Data in the table are mean ± SD, median (25th–75th percentile), or N(% of total)

Characteristic Study sample (N = 361)

  Age, years 56 ± 9

  Women 151 (42%)

  Body mass index, kg/m2 30.2 ± 5.3

  Systolic blood pressure, mm Hg 133 ± 18

  Hypertension treatment 103 (29%)

  Current smoking 58 (16%)

  Total cholesterol, mg/dl 210.8 ± 36.3

  HDL cholesterol, mg/dl 45.3 ± 12.9

  Triglycerides, mg/dl 170 ± 105

  Fasting blood glucose, mg/dl 105 ± 9

  HOMA-IR 1.30 ± 0.52

  Physical activity index 35 ± 8

  Alternate healthy eating index 52 ± 12

  Estimated glomerular filtration rate, ml/min/1.73 m2 89 ± 19

  Left ventricular mass, grams 177 ± 40

  Carotid femoral pulse wave velocity, m/s 10.4 (8.6–12.2)

  Coronary artery calcium, Hounsfield units 147 (12–568)

  Subcutaneous adipose tissue, cm3 3209 ± 1337

  Visceral adipose tissue, cm3 2852 ± 1104
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Table 2  Association of Δmetabolites with incident CVD

Δ Metabolite is the log2 fold-change from pre- to post-OGTT and baseline metabolites were log-transformed. Baseline and change metabolite values were 
standardized (mean 0 and SD 1)

The hazard ratio (HR) represents the relative hazard for a 1-SD higher log2 fold-change in the metabolite

P-values are not adjusted for multiple hypothesis testing. Values in bold represent statistically significant associations at a P < 0.05 level

The Δ metabolite models are also adjusted for fasting metabolite levels

Model 1 is adjusted for age and sex

Model 2 is adjusted also for BMI, smoking, hypertension treatment, systolic blood pressure, and total/HDL cholesterol

Δ metabolites Fasting metabolites

Model 1 Model 2 Model 1 Model 2

Metabolite HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Glutamate 1.22 (1.02–1.47) 0.033 1.24 (1.03–1.5) 0.026 1.15 (0.96–1.37) 0.13 1.13 (0.93–1.36) 0.22

Deoxycholate 1.13 (0.93–1.37) 0.21 1.26 (1.02–1.55) 0.030 1.02 (0.84–1.23) 0.84 1.05 (0.87–1.27) 0.61

LPC 18:2 0.82 (0.67–1.00) 0.056 0.80 (0.65–0.99) 0.037 0.79 (0.63–0.99) 0.041 0.84 (0.66–1.07) 0.15

Inosine 0.93 (0.77–1.13) 0.47 0.82 (0.67–0.99) 0.043 1.07 (0.88–1.29) 0.49 0.97 (0.80–1.18) 0.78

TAG 58:12 1.24 (1.03–1.49) 0.023 1.20 (1.00–1.43) 0.052 1.22 (1.01–1.46) 0.034 1.17 (0.96–1.42) 0.12

TAG 50:2 1.32 (1.08–1.61) 0.007 1.22 (0.99–1.51) 0.07 1.30 (1.08–1.57) 0.005 1.11 (0.90–1.36) 0.33

Lactate 0.81 (0.67–0.97) 0.026 0.84 (0.69–1.02) 0.08 1.11 (0.93–1.34) 0.25 1.10 (0.91–1.33) 0.32

Isoleucine 1.20 (1.00–1.43) 0.046 1.16 (0.97–1.38) 0.12 1.06 (0.88–1.28) 0.55 0.96 (0.78–1.18) 0.69

Cholesterol ester 20:5 0.82 (0.68–0.98) 0.032 0.87 (0.72–1.04) 0.13 0.93 (0.78–1.10) 0.39 1.00 (0.83–1.22) 0.97

TAG 48:1 1.25 (1.04–1.51) 0.018 1.17 (0.96–1.43) 0.13 1.24 (1.03–1.49) 0.022 1.06 (0.87–1.30) 0.55

TAG 50:3 1.27 (1.04–1.54) 0.017 1.16 (0.95–1.43) 0.14 1.24 (1.03–1.50) 0.025 1.05 (0.84–1.32) 0.67

Alanine 0.80 (0.66–0.97) 0.024 0.86 (0.70–1.05) 0.15 1.00 (0.83–1.21) 0.97 0.95 (0.78–1.16) 0.61

Aminoisobutyric 1.20 (1.00–1.43) 0.044 1.13 (0.94–1.36) 0.18 0.97 (0.81–1.16) 0.74 1.04 (0.87–1.25) 0.64

Gentisate 0.82 (0.68–0.99) 0.038 0.90 (0.74–1.09) 0.27 0.85 (0.70–1.04) 0.11 0.83 (0.68–1.01) 0.06

TAG 54:3 1.21 (1.01–1.45) 0.040 1.11 (0.91–1.34) 0.29 1.18 (0.99–1.41) 0.07 1.01 (0.82–1.25) 0.92

TAG 48:2 1.21 (1.00–1.45) 0.046 1.11 (0.91–1.35) 0.32 1.21 (1.01–1.45) 0.041 1.03 (0.83–1.28) 0.78

Table 3  Association of Δmetabolites with mortality

Δ Metabolite is the log2 fold-change from pre- to post-OGTT and baseline metabolites were log-transformed. Baseline and change metabolite values were 
standardized (mean 0 and SD 1)

The hazard ratio (HR) represents the relative hazard for a 1-SD higher log2 fold-change in the metabolite. P-values are not adjusted for multiple hypothesis 
testing. Values in bold represent statistically significant associations at a P < 0.05 level

The Δ metabolite models are also adjusted for fasting metabolite levels

Model 1 is adjusted for age and sex

Model 2 is adjusted also for BMI, smoking, hypertension treatment, systolic blood pressure, and total/HDL cholesterol

Metabolite Δ metabolites Fasting metabolites

Model 1 Model 2 Model 1 Model 2

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Hydroxyphenylacetate 1.29 (1.07–1.56) 0.007 1.29 (1.06–1.57) 0.010 0.98 (0.82–1.17) 0.82 0.96 (0.80–1.15) 0.64

PC 32:0 0.86 (0.73–1.00) 0.053 0.81 (0.69–0.95) 0.011 1.10 (0.91–1.32) 0.31 1.05 (0.87–1.27) 0.59

TAG 56:5 1.26 (1.04–1.53) 0.02 1.27 (1.03–1.55) 0.023 1.03 (0.86–1.23) 0.73 0.95 (0.79–1.14) 0.56

Glucuronate 0.85 (0.74–0.99) 0.033 0.84 (0.72–0.98) 0.028 0.99 (0.83–1.18) 0.87 0.95 (0.78–1.14) 0.56

⍺-ketoglutarate 1.21 (1.00–1.46) 0.052 1.22 (1.01–1.46) 0.037 1.12 (0.92–1.37) 0.24 1.06 (0.86–1.30) 0.61

NMMA 0.86 (0.72–1.02) 0.09 0.83 (0.69–1.00) 0.045 1.11 (0.93–1.33) 0.26 1.10 (0.91–1.32) 0.33

Sucrose 1.22 (1.01–1.46) 0.037 1.21 (0.99–1.47) 0.058 0.95 (0.76–1.19) 0.67 0.88 (0.70–1.11) 0.27

Propionate 1.27 (1.02–1.59) 0.032 1.25 (0.99–1.59) 0.06 0.97 (0.76–1.24) 0.80 0.99 (0.77–1.27) 0.92
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Table 4  Functional significance of select metabolites

Metabolite Biological pathway/function Direction of change 
with OGTT (fold 
change) (%)

Direction of 
association of 
change after 
OGTT with

Biological functions and 
previous association with CVD 
and cardiometabolic disease

CVD Mortality

Glutamate Glutamate/glutamine cycle ↓ (20) ↑ Contributes to gluconeogenesis, 
proteolysis, inflammation [52, 53], 
cellular metabolism (anaplerosis); 
high fasting glutamate associated 
with higher CVD and diabetes risk 
[39, 40]

Inosine Nucleoside ↓ (58) ↓ Intermediate in purine biosynthe-
sis and secondary metabolite of 
purine degradation (from hypox-
anthine); fasting levels higher in 
diabetes, but theorized to have 
cardioprotective effects [56, 57]

Deoxycholate Bile acid ↓ (28) ↑ Product of cholesterol metabo-
lism; higher fasting levels linked 
with diabetes risk [54]; total bile 
acids associated with CVD [58]; 
pro-inflammatory [59]

Phosphatidylcholine (PC) 32:0 Glycerophospholipid ↓ (4) ↓ Structural role in cell membranes; 
reservoir for circulating fatty acids 
[60]; several PCs have been associ-
ated (both directly and inversely) 
with CVD with direct mechanisms 
unknown [61]

LysoPC 18:2 Glycerophospholipid ↓ (4) ↓ Produced from partial hydrolysis 
of PCs; bioactive lipid involved in 
monocyte recruitment, vascular 
smooth muscle proliferation, 
endothelial dysfunction; fasting 
levels associated with lower risk of 
atherosclerosis [60, 62]

Hydroxy phenylacetate Phenol ↓ (18) ↑ Derived from acetate metabo-
lism; implicated in CVD risk and 
unhealthy aging [36, 37], affected 
by microbial metabolism [63]

Triacylglycerol (TAG) 56:5 Triacylglycerol ↑ (8) ↑ TAG species demonstrate different 
associations with cardiometabolic 
disease; lower carbon number and 
double bond content associated 
with insulin resistance and higher 
diabetes risk [13]; uptake from 
blood stimulated by the liver so 
increased circulating after a meal 
may partially reflect insulin resist-
ance [64]

Glucuronate Vitamin C precursor ↓ (10) ↓ Derived from glucose, aids in the 
elimination of toxins; plasma levels 
have been previously related to 
reduced longevity [65]

⍺-Ketoglutarate Tricarboxylic acid cycle inter-
mediate

↓ (7) ↑ Various metabolic functions 
including central metabolism, 
collagen synthesis, stem cell 
proliferation, and epigenetic regu-
lation; leads to extended lifespan 
in mice [38]; in nutrient excess, 
promotes branched-chain amino 
acid catabolism [14]; stimulates 
autophagy [66]
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but increased levels post-OGTT demonstrated higher 
estimated CVD risk than would be expected by fasting 
measures alone. Similar trends were observed for other 
metabolite associations with CVD (Fig. 3).

Discussion
We evaluated whether intraindividual changes in cir-
culating metabolites in response to an OGTT would 
provide incremental information on the risk of CVD 
and mortality in community-dwelling individuals. We 
observed associations of metabolite changes in response 
to an OGTT with both CVD and mortality in models 
adjusted for fasting metabolite levels and clinical risk 
factors. Moreover, the fasting metabolite levels were not 
statistically significantly associated with CVD or mortal-
ity in comprehensively adjusted models in our sample, 
indicating that the OGTT-induced changes may pro-
vide prognostic information beyond fasting metabolites. 
Indeed, while changes in metabolites with an OGTT 
were only modestly correlated with clinical risk factors 
and subclinical disease measures, they helped to clarify 
risk assessments based on fasting metabolite levels. These 
findings demonstrate that the metabolomic response to 
a discrete metabolic perturbation (in this case, OGTT) 
may provide incremental information to baseline levels 
themselves.

In the search for new CVD biomarkers, many prior 
studies have related resting metabolite levels to cross-
sectional and prospective cardiometabolic and CVD 
outcomes [10–20], but there is increasing interest in 
understanding how dynamic changes in metabolites 
within individuals may further uncover their underly-
ing metabolic risk [21, 41, 42]. Prior studies have evalu-
ated how responses of the circulating metabolome to 
an OGTT vary among individuals with prevalent risk 
factors. For example, Ho et  al. reported on metabolite 
changes with an OGTT in this same sample, demonstrat-
ing significant changes in the majority of assayed metab-
olites [24]. These changes included metabolites reflecting 
reduced proteolysis and ketogenesis and increased glyco-
lysis, as would be expected with glucose ingestion after a 
period of fasting, and were concordant with findings from 

Wang et al. reporting increased glycolysis intermediates, 
decreased branched-chain amino acids, ketone bod-
ies, glycerol, and triglycerides in response to an OGTT 
[43]. There are also large shifts in different lipid species 
in response to an OGTT including reductions in circulat-
ing acylcarnitines (especially medium-chain), sphingolip-
ids, and higher risk TAG and diacylglycerol species [13, 
44]. Additionally, across several studies, many of these 
post-OGTT responses were blunted in individuals with 
insulin resistance compared to controls [13, 24, 43]. As 
insulin promotes glycolysis and suppresses lipolysis and 
proteolysis, these findings have been partially attributed 
to insulin resistance [44–46]. Moreover, Li-Gao et  al. 
recently used genetic interrogation of the metabolomic 
response to an oral mixed meal tolerance test to identify 
novel loci regulating glycemic and lipid responses with 
links to diabetes and cardiometabolic disease [47]. How-
ever, the implications of metabolite changes in response 
to an OGTT on future health risk remain incompletely 
elucidated.

Our observed associations of metabolite changes in 
response to an OGTT with future CVD and mortality 
are noteworthy and open new avenues for further stud-
ies. We observed relations of OGTT-induced changes 
in metabolites with previous relations to cardiometa-
bolic disease (e.g., glutamate, deoxycholate, TAGs, LPC 
18:2) and metabolites with less defined links to cardio-
metabolic disease (e.g., inosine, hydroxyphenylacetate) 
to be associated with incident CVD and mortality. 
We suspect that our sample size may have limited our 
ability to detect statistically significant associations of 
some fasting metabolites. Yet, the observation of sta-
tistically significant associations of Δmetabolites with 
CVD and mortality risk is intriguing and raises the pos-
sibility that changes in metabolite levels in response 
to systemic perturbation might provide incremental 
information beyond baseline measures. In addition, 
intraindividual changes in a biomarker in response 
to stress/perturbation may have several advantages 
over single measurements as they can more readily 
account for measurement variability and confound-
ing than can single timepoint measurements. Overall, 

Table 4  (continued)

Metabolite Biological pathway/function Direction of change 
with OGTT (fold 
change) (%)

Direction of 
association of 
change after 
OGTT with

Biological functions and 
previous association with CVD 
and cardiometabolic disease

CVD Mortality

NMMA (N-monomethyl-
arginine)

Arginine derivative ↓ (20) ↓ Inhibitor of nitric oxide and potent 
vasoconstrictor [67]; exogenous 
administration leads to early 
satiety [68]
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Fig. 2  Clinical and subclinical correlates of Δmetabolites. Partial correlations (Spearman; adjusted for age, sex, and fasting metabolite level) of 
Δmetabolites (log2[post/pre] metabolite level) with clinical and subclinical measures are displayed. Carotid-femoral pulse wave velocity, coronary 
artery calcium, subcutaneous and visceral adipose tissue measures are from the 7th examination cycle (sample sizes shown in Table 1 footnote). All 
other measures were assessed contemporaneously with metabolites (5th examination cycle). Carotid-femoral pulse wave velocity was expressed 
as −1000/value, HOMA-iR was log-transformed, and coronary artery calcium was analyzed as the natural log of (value + 1). The area of each circle is 
proportional to the magnitude of the correlation coefficient and the circle color reflects the magnitude and direction of the correlation coefficient. 
Overlain “X” indicated that the correlation is not statistically significant at the P < 0.05 level
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our findings are consistent with the previous observa-
tion that blood glucose after a meal challenge is a bet-
ter predictor of cardiovascular events in type 2 diabetes 
[48]. A glycemic load following a fast leads to a coor-
dinated program of metabolic responses involving a 
shift from catabolic to anabolic processes. Limitations 
in rapidly switching metabolic states are an indicator of 
impaired “phenotypic flexibility”, an increasingly rec-
ognized indicator of metabolic health [23, 49, 50]. In 
this case, functional insulin resistance may play a role 
in blunted responses of circulating metabolites to a 
glycemic load and may partially underly these associa-
tions. While we did not observe significant correlations 
of key Δmetabolites with the measure of insulin resist-
ance used in our study (HOMA-IR), insulin resistance 
can be challenging to assess and our findings there-
fore should not be interpreted as precluding a role for 

insulin resistance in impacting metabolic responses to 
an OGTT [51].

We observed changes in four metabolites to be associ-
ated with future CVD and six to be associated with future 
mortality in models adjusted for traditional clinical risk 
factors and fasting metabolite levels. Fasting glutamate 
levels have been linked with cardiometabolic disease 
implicating several putative mechanisms including glu-
coneogenesis, proteolysis, and inflammation [52, 53] 
(Table 4), and its levels usually fall after an OGTT. In our 
study, a blunted decrease (or even an increase) in gluta-
mate following an OGTT was associated with a higher 
CVD risk. This finding is consistent with prior observa-
tions that blunting of metabolic changes with an OGTT 
is observed in individuals with higher cardiometabolic 
risk [24]. Similar blunting of OGTT-induced decreases 

Fig. 3  Clinical implications of Δmetabolite associations. Hazard ratios (adjusted for age, sex, fasting metabolite level, BMI, smoking, hypertension 
treatment, systolic blood pressure, total/HDL cholesterol) are represented by triangles and are plotted for each participant against the fasting 
metabolite level and the fold-change in response to an OGTT for the 4 metabolites with statistically significant associations of Δmetabolite and CVD 
(A glutamate; B deoxycholate; C LPC18:2, and D inosine)
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in metabolites with established or putative links to car-
diometabolic risk were observed for deoxycholate [54], 
and hydroxyphenylacetate [36, 37]. On the other hand, 
inosine, certain phosphatidylcholine (PC) species, lysoPC 
18:2, and glucuronate share putative protective mecha-
nisms in cardiometabolic disease and are observed to 
decrease with an OGTT. For these metabolites, less of 
a decrease in response to an OGTT was observed to be 
associated with a lower risk CVD or mortality. Taken 
together, these findings suggest that information about 
how an individual’s metabolism can adapt to a glucose 
challenge can provide incremental information regarding 
metabolic health, and conversely, metabolic risk.

Our study is one of the first to demonstrate long-
term prospective associations of post-OGTT metabolite 
changes with relevant health outcomes. Nevertheless, 
there are several limitations of the present investiga-
tion. Our sample size was limited to individuals in whom 
OGTT was performed with metabolite profiling pre- and 
post-challenge. While this allowed us to evaluate asso-
ciations with prospective outcomes and to compare the 
associations of resting metabolites and their delta, our 
statistical power was constrained, which likely explains 
why fasting levels of several metabolites previously linked 
with future CVD and mortality did not reach statistical 
significance in our sample. Due the limited sample size, 
we elected to determine statistical significance at a nom-
inal threshold of P < 0.05 in this discovery effort; future 
studies in larger sample sizes with more racial diversity 
and inclusion of socioeconomic status assessment will 
be necessary to confirm these hypothesis-generating 
observations. Notably, our study sample included indi-
viduals with average BMI in the obese range and rela-
tively high levels of other cardiometabolic risk factors. 
Therefore, whether our findings are applicable to indi-
viduals with more favorable cardiometabolic profiles is 
unknown. In addition, whether metabolite associations 
reflect causal mechanisms in CVD development vs. bio-
markers of other biological processes (e.g., metabolic 
stress, inflammation) cannot be assessed by the current 
investigation and requires dedicated mechanistic stud-
ies. Metabolites were measured at two time points (pre- 
and post-OGTT); previous studies have shown that both 
shorter-term and longer-term changes in circulating ana-
lytes might provide additional information in response to 
a dietary challenge [55].

In conclusion, intraindividual changes in circulating 
metabolites in response to an OGTT are associated 
with CVD and mortality, are largely independent of 
traditional CVD risk factors, and provide incremental 
prognostic information beyond fasting metabolite lev-
els. These findings indicate that metabolic responses 
to an OGTT may be able to identify individuals at 

increased risk before developing overt traditional risk 
factors, providing new opportunities for targeting ear-
lier, and even “primordial,” prevention of CVD and 
cardiometabolic disease. Further studies are necessary 
to confirm these findings in larger samples with more 
diverse populations in which rigorous assessment for 
risk prediction can be performed and to assess whether 
other systemic responses to discrete perturbations may 
also augment traditional risk prediction methods.
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