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Abstract 

Aim: Treatment algorithms define lines of glucose lowering medications (GLM) for the management of type 2 
diabetes (T2D), but whether therapeutic trajectories are associated with major adverse cardiovascular events (MACE) 
is unclear. We explored whether the temporal resolution of GLM usage discriminates patients who experienced a 
4P-MACE (heart failure, myocardial infarction, stroke, death for all causes).

Methods: We used an administrative database (Veneto region, North-East Italy, 2011–2018) and implemented 
recurrent neural networks (RNN) with outcome-specific attention maps. The model input included age, sex, diabetes 
duration, and a matrix of GLM pattern before the 4P-MACE or censoring. Model output was discrimination, reported 
as area under receiver characteristic curve (AUROC). Attention maps were produced to show medications whose 
time-resolved trajectories were the most important for discrimination.

Results: The analysis was conducted on 147,135 patients for training and model selection and on 10,000 patients for 
validation. Collected data spanned a period of ~ 6 years. The RNN model efficiently discriminated temporal patterns of 
GLM ending in a 4P-MACE vs. those ending in an event-free censoring with an AUROC of 0.911 (95% C.I. 0.904–0.919). 
This excellent performance was significantly better than that of other models not incorporating time-resolved GLM 
trajectories: (i) a logistic regression on the bag-of-words encoding all GLM ever taken by the patient (AUROC 0.754; 
95% C.I. 0.743–0.765); (ii) a model including the sequence of GLM without temporal relationships (AUROC 0.749; 95% 
C.I. 0.737–0.761); (iii) a RNN model with the same construction rules but including a time-inverted or randomised 
order of GLM. Attention maps identified the time-resolved pattern of most common first-line (metformin), second-
line (sulphonylureas) GLM, and insulin (glargine) as those determining discrimination capacity.

Conclusions: The time-resolved pattern of GLM use identified patients with subsequent cardiovascular events better 
than the mere list or sequence of prescribed GLM. Thus, a patient’s therapeutic trajectory could determine disease 
outcomes.
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Background
Type 2 diabetes (T2D) is a chronic progressive disorder 
requiring iterated adjustments of pharmacotherapy. The 
armamentarium for managing T2D has expanded expo-
nentially, and new drugs continue to be released at a fast 
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pace. Furthermore, there is an unprecedented wealth of 
evidence on safety and efficacy of various glucose low-
ering medications (GLM) in different populations of 
patients [1]. With availability of a multitude of treatment 
combinations, the prevailing concept is that pharmaco-
therapy of T2D should be tailored to each patient’s char-
acteristics. Scientific societies have issued therapeutic 
algorithms and guidelines that prioritise certain GLM in 
specific subgroups of patients while deprioritizing oth-
ers [2, 3]. This approach necessarily implies a preferred 
order of GLM and their combinations. For decades, 
metformin represented the undisputed first-line drug 
therapy for T2D, but this concept may be changing [3, 4]. 
Some classes of GLM, such as sulphonylureas, have been 
repositioned as later options but with considerable het-
erogeneity among countries and healthcare systems [5]. 
Initiation of insulin has been moved as a later strategy 
in most cases [6]. Current algorithms therefore illustrate 
ideal trajectories that patient should follow accord-
ing to the available evidence. As evidence and algo-
rithms change over time, many patients with established 
or long-standing T2D have followed trajectories that 
would not be appropriate based on today’s knowledge. 
While therapy can be adjusted to meet a more modern 
approach, the impact of the prior medication history 
remains unclear.

SGLT-2 inhibitors and GLP-1 receptor agonists are 
now considered ideal second-line GLM for most patients 
with T2D and have strong indications for those with 
established cardiovascular or renal disease [7–9]. Yet, 
randomised controlled trials (RCTs) generating such evi-
dence did not test drug positioning along the algorithm 
as first, second, or more advanced line of therapy. The 
cardio-renal benefits of these drugs, however, seems to 
be preserved in patients who were already on sulphony-
lurea or insulin [8, 9].

Thus, it is uncertain whether the patient’s detailed 
trajectory in terms of T2D pharmacotherapy can mod-
ify disease outcomes. Here, we wished to establish the 
value of the time-resolved trajectory of GLMs in iden-
tifying major adverse cardiovascular events (MACE) 
among patients with T2D. To do this, we compared the 
MACE discrimination ability of a deep learning model 
incorporating a patient’s entire time-resolved pattern of 
GLM usage versus a model fed by the ordered sequence 
of GLMs, and another by the list of drugs only. We 
also challenged the deep learning model with artificial 
reorderings of the original drug list. Furthermore, we 
explored the main trends in the relationship between 
individual GLM patterns and MACE occurrence via the 
attention mechanism implemented into the deep learning 
model. We hypothesised that, at means of GLM used in 
the patient’s history, the ordered, time-resolved patterns 

of therapy would better discriminate those with incident 
MACE from those who remained MACE-free relative to 
what could be achieved by considering either GLM types 
only or their non-time-characterised sequence.

Methods
Data source and study population
The data source used for this study was the administrative 
claims database of the Veneto region (~ 5 million inhab-
itants), in Northeast Italy, and, specifically, its prescrip-
tion medicine and hospital admission repositories with 
diagnostic discharge codes. Briefly, the Italian health-
care system mandates that all regions collect and share 
all transactional information on healthcare expenses, 
including prescription refills and hospitalisations, for 
reimbursement purposes. As a practical consequence, 
complete and timestamped information on prescription 
refills (mapped to ATC codes [10] as per official Ministry 
tables) and diagnoses at hospital discharge (encoded via 
ICD-9-CM codes [11]) was available for this study. Addi-
tionally, it was also possible to query the regional registry 
of healthcare beneficiaries [12], to confirm demograph-
ics, standing with the regional healthcare system (includ-
ing month of death), and exemptions from co-payment.

The inclusion criteria for this study were the following: 
Italian citizenship and residence in the Veneto region; 
T2D as identified via a validated claims-based algorithm 
(98% precision, 96% sensitivity) [13]; at least two years of 
eligibility as per the regional registry of healthcare ben-
eficiaries between 11 January 2011 and 30 September 
2018; at least four refilled prescriptions of GLMs (ATC 
class A10, “drugs used in diabetes”) during the period. 
Exclusion criteria were: evidence cancer from diagnos-
tic and exemption codes; evidence of prior heart failure, 
myocardial infarction, or stroke before the start of the 
observation period.

Outcome definition and modelling question
The cardiovascular outcome of interest for this study 
was a version of the 4-point MACE (4P-MACE) com-
posite indicator, defined as the occurrence of at least one 
between: hospitalisation for heart failure (ICD-9-CM 
codes starting with 428), myocardial infarction (410–
414), or stroke (431–436); or death for any cause.

As previously stated, our objective was to demonstrate 
whether and to what extent temporal GLM usage pat-
terns, combined with basic information (age, sex, diabe-
tes duration), could identify patients whose trajectories 
ended on a 4P-MACE. We formalised this task as the 
following modelling question: “Given the sequence and 
timing of all GLM prescriptions refilled by a patient (cod-
ing resolution: full ATC code; time resolution: trimes-
ters before end-of-observation), and their age, sex, and 
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diabetes duration, does the sequence end on a 4P-MACE, 
or with the patient’s event-free exit from the database?” 
Note that this was a classification, rather than tempo-
ral prediction, question: in other words, we were only 
interested in determining where each GLM usage pat-
tern would immediately lead (4P-MACE vs. no event), 
and not in developing a predicting model to infer some-
thing about the future (e.g., survival analysis to determine 
4P-MACE probability).

Data preparation and dataset split
The ground truth for each patient was a set of 5 binary 
indicators, one for 4P-MACE (primary outcome), and 
one for each of its components. The 4P-MACE label was 
equal to 1 if and only if the observed GLM pattern ended 
immediately before a 4P-MACE, and to 0 in case of 
event-free exit from the database. Each component label 
was equal to 1 if and only if the observed 4P-MACE was 
attributable to that component specifically, and to 0 oth-
erwise (i.e., no 4P-MACE, or 4P-MACE but component 
not involved); multiple components could be equal to 1 
at the same time (e.g., fatal myocardial infarction).

We encoded the pattern of GLMs, plus age, sex, and 
diabetes duration into a single, 2-dimensional, masked 
tensor of size 51 features × 25 trimesters. The tensor was 
also right-aligned, meaning that the  jth column (j = 1, …, 
25) of the tensor photographed the situation at the (26 
– j)th trimester, with the trimester immediately preced-
ing end-of-observation in the last column, and the 25th 
(6.25 to 6 years before end-observation) in the first col-
umn. Observation periods longer than 25 trimesters 
were cut short by ignoring the oldest data points (26th 
and earlier trimesters). In case of observation periods 
shorter than 25 trimesters, the tensor was masked (mask-
ing value = –1), i.e., all columns corresponding to unob-
served trimesters were uniformly filled with the masking 
value. Each row of the 2-dimensional tensor encoded age, 
sex, diabetes duration, or the usage, trimester by trimes-
ter, of one of the 48 GLMs available in Veneto at the time 
of the experiment.

This process resulted in 151,175 2-dimensional tensors, 
which we split into three subsets: a larger training set 
for model development comprising the data of 131,175 
patients, a validation set of 10,000 patients for hyper-
parameter tuning (if needed), and a test set of 10,000 
patients for final performance evaluation.

Model architecture and output
Our model is based on the deep recurrent neural network 
(RNN) architecture proposed in [14], and adapted from 
the context of clinical event prediction to GLM usage 
pattern classification. The main feature of both the origi-
nal and our version of the architecture is its input-level 

attention mechanism, i.e., the presence of a specific layer 
that established a relative importance weighting between 
ATC classes at each time point [15].

Our model architecture conceptually implements a 
cascade of four logical steps, namely: tensor ingestion, 
the attention mechanism, a recurrent layer, final predic-
tion via fully connected layers (Fig. 1). First, the 2-dimen-
sional input tensor is duplicated: one of the copies is 
passed to the attention mechanism, the other is trans-
posed and ready to be multiplied by an attention matrix. 
At this point, the network splits into four parallel, iden-
tically structured subnetworks, one for each 4P-MACE 
component. Within each subnetwork, to implement the 
attention definition used in [14] (plus a bias term) using 
the computationally efficient tools available within the 
main deep learning libraries, the first copy of the tensor 
enters a dense layer of 25 (number of trimesters) neurons 
equipped with a softmax activation function. This pro-
cess results in an attention matrix that assigns a weight 
to each GLM used in each trimester such that the sum 
over time of the weights is equal to 1, while the sum 
over all features of the weights attributed to a trimester 
is unbounded. In other words, for each subject, the net-
work tries to establish the relative importance of each 
GLM within each trimester and the overall importance of 
the trimester. After computation, the attention matrix is 
transposed and multiplied elementwise by the transposed 
copy of the input two-dimensional tensor, thus imple-
menting the input-level attention mechanism. As there 
are four subnetworks, we also obtain four (different) 
attention matrices and four attention-weighted tensors. 
Each weighted tensor, then, passes through a recurrent 
layer (a LSTM [16] or GRU [17], possibly with dropout) 
that squeezes the dynamic, variable-length information 
carried by the tensor into a single, fixed-length vector. A 
dense layer with a single neuron and sigmoid activation 
yields each subnetwork’s output, to be compared to the 
ground truth of the corresponding 4P-MACE compo-
nent. Finally, the four subnetworks are brought together 
via concatenation of the four terminal pre-activation 
logits, and the resulting 4-element vector is passed to a 
dense layer with a single neuron, which outputs the final 
4P-MACE prediction.

In summary, the model has one primary output, i.e., 
the score (or probability) associated with the likelihood 
of an observation window ending on a 4P-MACE vs. on 
an event-free exit from the database, and four compo-
nent-specific secondary outputs.

As retrieval of outcome-specific attention maps was 
possible for all subjects, we produced four average atten-
tion matrices, one for each 4P-MACE component. We 
turned each map into an attention landscape, re-nor-
malised, for legibility, within each trimester, to show the 
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time-resolved patterns of GLMs that most contributed to 
classification.

Model selection and primary performance evaluation
Given the architecture described above, we selected 
the final model via hyperparameter tuning based on an 
exhaustive grid search and early stopping. We tested 216 
hyperparameter combinations: presence or absence of 
a bias term in the attention mechanism, LSTM or GRU 
as the type of recurrent layer, 64, 128, 256 as the number 
of recurrent units, rectified linear unit (ReLu) or hyper-
bolic tangent as the recurrent layer’s activation function, 
0%, 10%, or 25% as recurrent layer’s dropout and recur-
rent dropout (independently). For each combination, 
we optimised all model parameters using the average 
binary crossentropy of 4P-MACE and its components as 
a cost function (ADAM algorithm, learning rate = 0.001); 
then, we evaluated the area under the receiver-operating 
characteristic curve (AUROC) for 4P-MACE on the val-
idation set (10,000 patients not used for parameter esti-
mation), stopping the training process after 10 epochs of 
no improvement, and retaining the best epoch’s param-
eters. We selected the best model among the 216 candi-
dates as the one maximising the 4P-MACE AUROC on 
the validation set.

We evaluated the final model’s performance in terms of 
the AUROCs associated with 4P-MACE and each of its 
components on the test set (untouched until this point), 

including 95% confidence intervals calculated via the 
DeLong method [18].

Secondary benchmarking analyses
The proposed model can leverage on the three funda-
mental aspects of GLM usage (namely, timing, sequence, 
and type of medication). However, this comes at the cost 
of having to handle relatively large (51 × 25) input ten-
sors. Hence, to quantify the possible impact of input type 
and dimensionality on classification performance, we set 
up one primary and three secondary analyses following 
the same experimental protocol and data splits used in 
the primary analysis. The outputs of each analysis were 
the classification AUROC on the test set, including 95% 
confidence interval, and the identification of statistically 
significant difference in performance vs. the proposed 
model.

First, to understand the impact and efficiency of 
sequence-based learning with respect to classification 
performance, we reran the performance evaluation phase 
on two artificially modified variations of the test set. 
Namely, we considered a variation where the unmasked 
portion of the tensor was randomly shuffled through 
time, and one where the order of refilled prescriptions 
was completely inverted (we pretended that the first 
GLM was prescribed at the date of the last GLM, the sec-
ond of the second-to-last, etc.).

Fig. 1 Architecture of the model. GLM, glucose lowering medications. RNN, recursive neural network. 4P-MACE 4 components of the major adverse 
cardiovascular event composite outcome
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Second, we implemented a strategy adapted from [19], 
which requires medication data in the form of variable 
length (hence masked and zero padded to 150 refills) 
sequences. On the one hand, the switch from tensor to 
sequences collapsed the “timing” dimension and reduced 
dimensionality; on the other, it removed the model’s abil-
ity to account for simultaneous therapies. In practice, we 
transformed each tensor into a zero padded (and masked 
with masking value = 0) sequence of integers (from 1 to 
48, each corresponding to a GLM ATC class) sorted from 
oldest to newest according to their prescription date; 
and treated age, sex, and diabetes duration as a separate 
input. We substituted the initial part of the proposed 
architecture (tensor ingestion and attention mecha-
nism) with the corresponding solution taken from [9], 
i.e., sequence ingestion, embedding, and concatenation 
of patient information with the output of the recurrent 
layer, using the following hyperparameters (216 com-
binations): learning rate = 0.001, embedding size (64 or 
128); recurrent layer type (LSTM or GRU) and number 
of units (64, 128, or 256), activation function (ReLu or 
hyperbolic tangent), dropout and recurrent dropout (for 
both, independently: no dropout, 10%, or 25%). The rest 
of the pipeline remained unaltered. Note that, at strong 
variance with the model in [9], here, we tackled a clas-
sification (vs. prediction) task, resulting in a much wider 
observation window of 6.25 years (vs. 1 year), and static 
(vs. dynamic, 1 to 5  years in the future) ground truth 
labels.

Third, we developed the simplest possible model, i.e., a 
logistic regression on the concatenation of age, sex, dia-
betes duration, and the bag-of-words vector of prescribed 
GLMs throughout the entire observation period. This 
analysis further collapsed all information carried by the 
“sequence” dimension into a static vector of 51 elements.

Results
Patient characteristics
The training, validation, and test sets were homogene-
ous in terms of both baseline characteristics and outcome 
incidence (Table 1). Patients were on average 45% female, 
71 years old, had had diabetes for approximately 11 years, 
and had 6.4 years of available baseline data. Overall, 21% 
of GLM usage patterns ended in a 4P-MACE, and, spe-
cifically, the cumulative incidence of the non-mutually-
exclusive components was 5.4% for heart failure, 6.4% 
for myocardial infarction, 4% for stroke, and 6.7% for all-
cause death.

Model characteristics
The final deep learning model was based on 128 GRU 
units with ReLu activation, had no dropout at the 

Table 1 Characteristics of the study population

Training Validation Test

N. subjects 137,175
(87.3%)

10,000
(6.4%)

10,000
(6.4%)

Female sex 62,103
(45.3%)

4561
(45.6%)

4484
(44.8%)

Age (years) 71.2 ± 13.5 71.2 ± 13.5 71.0 ± 13.8

Diabetes duration accord-
ing to claims (months)

131.9 ± 71.9 131.7 ± 72.1 131.2 ± 72.2

N. hospitalised at baseline 55,762
(40.7%)

4052
(40.5%)

4056
(40.6%)

Baseline length (days) 2338.5 ± 86.0 2338.3 ± 87.4 2337.2 ± 86.8

Long-acting insulin 39,566
(28.8%)

2877
(28.8%)

2983
(29.8%)

Fast-acting insulin 29,926
(21.8%)

2195
(21.9%)

2241
(22.4%)

DPP4i 24,656
(18.0%)

1748
(17.5%)

1793
(17.9%)

GLP-1RA 7372
(5.4%)

512
(5.1%)

513
(5.1%)

SGLT2i 6053
(4.4%)

456
(4.6%)

487
(4.9%)

Sulfonylureas 66,412
(48.4%)

4843
(48.4%)

4822
(48.2%)

Ischemic heart disease 9,672
(7.1%)

734
(7.3%)

694
(6.9%)

Pioglitazone 12,379
(9.0%)

879
(8.8%)

893
(8.9%)

Cardiovascular disease 12,108
(8.8%)

915
(9.2%)

876
(8.8%)

Platelet aggregation 
inhibitors

67,386
(49.1%)

4927
(49.3%)

4853
(48.5%)

Chronic kidney disease 4866
(3.5%)

354
(3.5%)

340
(3.4%)

Statins 82,802
(60.4%)

5996
(60.0%)

5926
(59.3%)

Dyslipidaemia 87,415
(63.7%)

6343
(63.4%)

6271
(62.7%)

Metformin 111,113
(81.0%)

8141
(81.4%)

8049
(80.5%)

Beta blockers 50,873
(37.1%)

3750
(37.5%)

3643
(36.4%)

Other antihypertensives 16,030
(11.7%)

1202
(12.0%)

1176
(11.8%)

Charlson comorbidity 
index

0.3 ± 1.0 0.4 ± 1.1 0.4 ± 1.0

Ocular complications 611
(0.4%)

52
(0.5%)

41
(0.4%)

ACE inhibitors 98,958
(72.1%)

7107
(71.1%)

7184
(71.8%)

Hypertension 114,058
(83.1%)

8233
(82.3%)

8301
(83.0%)

Diuretics 45,756
(33.4%)

3337
(33.4%)

3299
(33.0%)

Chronic pulmonary disease 45,942
(33.5%)

3357
(33.6%)

3307
(33.1%)

Fibrates or omega-3 14,049
(10.2%)

991
(9.9%)

1041
(10.4%)
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recurrent layer level, but a recurrent dropout of 10%, 
and did not make use of a bias term in the attention 
mechanism.

Discrimination capacity
Table  2 summarises the results of the primary and first 
secondary analyses. The proposed models yielded an 
excellent test set AUROC of 0.911 (95% CI 0.904–0.919) 
for 4P-MACE. The AUROCs for heart failure (0.807, 
95% CI 0.790–0.824), myocardial infarction (0.811, 95% 
CI 0.795–0.826), and stroke (0.835, 95% CI 0.814–0.855) 

were also satisfactory. The AUROC for death (0.752, 95% 
CI 0.734–0.770), while lower, was also acceptable, and 
significantly better than random (0.5).

Efficiency of sequence learning
The first secondary analysis highlighted that the overall 
4P-MACE performance was very sensitive to any arti-
ficial alteration of the true order of GLMs: a random 
shuffle of trimester caused a statistically significant drop 
0.006 points of AUROC, while a completely inverted 
ordering one of 0.019. We observed another distinct pat-
tern for myocardial infarction, with drops of, respectively 
0.007 and 0.012, and a similar but non-significant one for 
stroke (0.004 and 0.007). Heart failure classification per-
formance appeared unaltered, while death exhibited the 
opposite phenomenon, with sequence alteration yielding 
counterintuitive, but highly unstable improvements.

Performance over standard models
The second and third secondary analyses, focused on 
challenging the assumption that all three dimensions 
(timing, sequence, and GLM type) were useful for pre-
diction, showed that neither the sequence-based model 
(AUROC 0.749, 95% CI 0.737–0.761), nor the bag-of-
words logistic regression (0.754, 95% CI 0.743–0.765) 
could approach the 4P-MACE classification ability of 
the proposed RNN model (Table  3). In fact, the com-
parator models’ performance was almost superimpos-
able and approximately 16% worse. The sequence-based 
model’s hyperparameters were: embedding size of 64, 64 
GRU units, ReLu activation, 10% dropout and recurrent 
dropout. Figure 2 summarizes the discrimination perfor-
mance in terms of AUROC of RNN models versus stand-
ard models.

Patient characteristics in the training, validation, and test sets are shown 
as count (percentage) for dichotomous variables, and as mean ± standard 
deviation for all others. Outcome prevalence is reported in the last five rows

Table 1 (continued)

Training Validation Test

Ezetimibe 3575
(2.6%)

292
(2.9%)

237
(2.4%)

Severe hypoglycaemia 1947
(1.4%)

140
(1.4%)

151
(1.5%)

Systemic inflammatory 
disease

2768
(2.0%)

193
(1.9%)

207
(2.1%)

Renal complications 851
(0.6%)

67
(0.7%)

62
(0.6%)

Neurological complications 707
(0.5%)

59
(0.6%)

41
(0.4%)

4P-MACE 28,880
(21.1%)

2105
(21.1%)

2106
(21.1%)

Death (all causes) 9258
(6.7%)

680
(6.8%)

660
(6.6%)

Heart failure 7,374
(5.4%)

513
(5.1%)

569
(5.7%)

Infarction 8,746
(6.4%)

667
(6.7%)

661
(6.6%)

Stroke 5511
(4.0%)

392
(3.9%)

378
(3.8%)

Table 2 Model discrimination performance

The table shows the AUROC of the proposed model on 4P-MACE and its four components on the test set (N = 10,000) when fed by the actual sequence of GLMs 
(second column), and an inverted and a randomised versions thereof (third and fourth columns). *p < 0.05 versus the true sequence

RNN model (2D input: GLMs and time)

Outcome True sequence Inverted sequence Random sequence

4P-MACE 0.911
(0.904–0.919)

0.892
(0.883–0.900)*

0.905
(0.897–0.912)*

Heart failure 0.807
(0.790–0.824)

0.808
(0.790–0.826)

0.807
(0.789–0.824)

Myocardial infarction 0.811
(0.795–0.826)

0.799
(0.783–0.815)*

0.804
(0.789–0.819)*

Stroke 0.835
(0.814–0.855)

0.828
(0.808–0.848)

0.831
(0.810–0.852)

All-cause mortality 0.752
(0.734–0.770)

0.794
(0.777–0.811)*

0.777
(0.760–0.795)*
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Attention landscapes
The average, renormalized attention landscapes for each 
of the four 4P-MACE components were qualitatively sim-
ilar: they highlighted age and sex, and a small minority 
of GLMs as those presenting a consistent temporal pat-
tern associated with 4P-MACE. Specifically, these were 
metformin (for all outcomes), combination of metformin 
and sulphonylureas (for myocardial infarction, stroke, 
and death), gliclazide (for heart failure and death), glime-
piride (for myocardial infarction and stroke), and insulin 
glargine (for heart failure). With regards to the relevance 
of time, the attention landscape for heart failure high-
lighted the latest period of the observation interval as 
the most important for prediction. Myocardial infarction 
and stroke showed attention landscapes divided between 
early and late trimesters. The attention landscape for 
mortality was divided between the near past and the lat-
est observations (Fig. 3).

Discussion
In this study, we addressed the question of whether the 
detailed temporal trajectory of GLM in the patient’s his-
tory is associated with subsequent cardiovascular events, 

beyond the use of specific classes of drugs. To this end, 
we developed a new RNN model incorporating GLM 
sequence and temporal information, such as order, dura-
tion, and contemporaneity of treatments. It yielded an 
excellent capacity for discriminating MACE with > 91% 
AUROC in a test-set of 10,000 patients, i.e. after being 
developed and validated in completely separated cohorts 
of patients. For individual 4P-MACE components, dis-
crimination was greater for heart failure and athero-
thrombotic events than for all-cause mortality. This 
may be due to the fact that all-cause mortality can have 
several causes not reflected by GLMs and their time-
resolved trajectory. We underline that, in this study, we 
used all-cause mortality in place of cardiovascular mor-
tality as a MACE component because causes of death 
were not available in the database. Of note, in the last 
decade, cancer is taking over cardiovascular diseases as 
a cause of death among people with diabetes [20]. There-
fore, all-cause mortality is likely less associated to the his-
tory of GLM among patients with diabetes.

We then evaluated whether the RNN model out-
performed other models and which was the most 
important dimension driving improved discrimina-
tion capacity. First, we found that altering the GLM 
sequence led to a significantly worse 4P-MACE dis-
crimination. This means that the true sequence of 
GLMs in the patient’s history has a substantial impact 
on the ability to identify patients with subsequent 
MACE, independently of other temporal features, 
such as duration and contemporaneity of treatments. 
Of note, exploding 4P-MACE components, it appears 
that the RNN model with the true GLM sequence out-
performed RNN models with the inverted or random 

Table 3 Comparison with standard models

The table shows the AUROC of the proposed model on 4P-MACE on the test 
set (N = 10,000) compared to that of a sequence-based model and of a logistic 
regression on GLM types. *p < 0.05 versus RNN model

Model AUROC (4P-MACE)

RNN model (2D input: GLMs and time) 0.911 (0.904–0.919)

Sequence-based model (1D input: GLMs) 0.749 (0.737–0.761)*

Logistic regression (static input: GLM types) 0.754 (0.743–0.765)*

Fig. 2. 4P-MACE discrimination performance. The figure summarizes the area under ROC curves (AUROC) for the discrimination of 4P-MACE by the 
models shown in Tables 2 and 3. *p < 0.05 versus the RNN model with true GLM sequence
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sequence for discriminating occurrence of myocardial 
infarction, while a paradoxical worse performance was 
observed for all-cause death. Reasons for this latter 

unexpected finding may be found in the competing risk 
issue or in the de-prescription of GLMs that occurs in 
some patients with very short life expectancy, for whom 
diabetes management is no longer a priority [21, 22].

Fig. 3 Attention landscapes associated with 4P-MACE components. Each panel shows the average attention profile associated with the respective 
outcome, normalised trimester by trimester. The X axis represents time in months as a negative offset to event or exit time; the Y axis represents 
the input variable (age, sex, diabetes duration, or GLM ATCs); the Z axis is the normalised average attention matrix across all training subjects. The 
variables with the most varied attention landscapes for each outcome are highlighted via solid polygons. A10BB09, gliclazide. A10BB12, glimepiride. 
A10BA02, metformin. A10BD02, metformin and sulfonylureas. A10AE04, insulin glargine
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Second, we tested to what extent other temporal 
dimensions contributed to the excellent discrimination 
capacity of the time-resolved RNN model. RNN models 
considering only the sequence of GLM without other 
temporal dimensions had dramatically worse 4P-MACE 
performance as did a logistic (non-RNN) model devoid 
of all temporal information, with an absolute ~ 16% lower 
AUROC (0.75 vs. 0.91). The difference was similar for 
individual components of the composite outcome, except 
for discrimination of all-cause mortality, which displayed 
no significant difference, likely for the reasons explained 
above.

The drop in performance resulting from discarding all 
the temporal information was substantially greater than 
that observed after only altering the GLM sequence. This 
leads to the speculation that features of the GLM tra-
jectory unrelated to their order are more important in 
determining the outcome than the sequence itself. There-
fore, it emerges that the GLM combination pattern and 
the duration of treatment are strongly associated with 
subsequent cardiovascular events. These features have 
important clinical implications. First, attention should be 
paid to combination therapies, as not all possible GLM 
combinations are rational and validated by dedicated 
trials. Second, choosing GLM regimens provided with 
greater durability could result in better outcomes, as 
this would imply a longer duration of treatment with the 
same regimen.

One typical issue when dealing with the outputs of 
machine learning approaches refers to the logical inter-
pretation framework, i.e., the extent of extrapolation 
needed to derive clinical salience from the findings. Our 
analysis clearly shows that learning with time-resolved 
GLM data allows better discrimination of patients who 
experienced a subsequent MACE, but this approach is 
not suitable to dissect which are the GLM regimens or 
trajectories associated with lower or higher MACE rates. 
To gather further insight on this point, we incorporated 
attention maps into the RNN model. In image classifi-
cation by artificial intelligence (a common example is 
Google lens), attention maps allow identifying elements 
of the image that are highlighted as helpful as com-
pared to the background. In our model, the landscapes 
derived from averaged attention maps highlight thera-
pies whose time-resolved trends are particularly linked to 
the outcomes. This is, to date, the best we can do to dis-
sect components of the GLM trajectory that most con-
tribute to discrimination. Interestingly, these therapies 
were metformin, sulphonylureas, and insulin glargine. 
Besides being the most common therapies for the man-
agement of T2D during the period of observation, they 
appear to be the major determinants of the RNN model’s 
ability to discriminate patients with subsequent MACE. 

Sulphonylureas and insulin have been repeatedly shown 
to be associated with adverse cardiovascular outcomes 
in several observational studies [23], though RCTs show 
these drugs may be considered safe from a cardiovascular 
standpoint when compared to placebo or to cardiovascu-
lar-neutral comparator [24–26]. However, none of prior 
observational studies explored the impact of the order, 
combination, and duration of treatment. We speculate 
that early initiation of sulphonylureas or insulin, or long 
treatment with the metformin/sulphonylurea fixed-ratio 
combination in the patient’s history is a major driver of 
the RNN model’s discrimination capacity toward MACE. 
Further studies will be needed to verify this point. On 
the other side, no attention was drawn to GLM known 
to be provided with cardiovascular protective effects, 
namely SGLT-2 inhibitors and GLP-1 receptor agonists. 
Although we have already shown the protective effects 
of such drugs in the same database [27–30], it is possible 
that a reverse causality association with 4P-MACE and 
the lack of patient matching for covariates diluted or nul-
lified the evidence for lower MACE rates among users of 
these two drug classes. We herein do not want to chal-
lenge data on cardioprotective drugs, which were used by 
a small minority of patients as compared to metformin, 
sulphonylureas and basal insulin, limiting their contribu-
tion to the average attention landscape toward MACE. 
Repeating the same analysis with data updated to most 
recent prescription patterns might identify trajectories of 
newer drugs as relevant for outcome discrimination.

Another interesting observation from attention land-
scapes is related to the timing of attention, which dif-
fers for the type of 4P-MACE component. A difference 
was noted between discrimination of athero-thrombotic 
events and heart failure, with the latter being more influ-
enced by the latest GLM pattern before the event. This 
may reflect the different pathophysiology of heart failure 
and the timing of its occurrence, as opposed to the slow 
progression of atherosclerosis.

Difficulty in determining the best GLM trajectories is 
a major limitation of this approach, along with its clas-
sification intent, which was not to predict future events 
as it could be done with other methods like Dynamic-
DeepHit [31]. Further limitations of this study are 
intrinsic to the nature of the source data. In fact, the 
administrative database typically does not contain sev-
eral relevant clinical-level information, such as body 
mass index, blood pressure, smoking status, glycaemic 
control, and lipid profile. Incorporation of all these 
time-varying factors, together with the availability of 
wider observation intervals (the current version of 
our model is limited to approximately 6 years of input 
data) may modify the relative importance of the GLM 
patterns. Future work in this direction may include 
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extending the same experimental framework to a wider 
array of drugs, such as lipid-lowering, anti-platelet, 
and anti-hypertensive agents; and identifying a suit-
able modelling technique to highlight specific patterns 
of usage and their positive or negative correlation with 
4P-MACE. This would allow evaluating the interaction 
between GLM trajectories and other medications typi-
cally used by people with T2D.

Conclusion
In summary, this novel approach of classification by a 
deep RNN model with attention landscapes reveals the 
importance of the detailed patient’s trajectory of GLM 
use over time in discriminating subsequent occurrence of 
a 4P-MACE and highlights some drugs driving the dis-
crimination. While further data analytics will be needed 
to better calculate the best treatment trajectories, from a 
clinical perspective, these findings reinforce the concept 
that the patient’s past GLM history can impact future 
cardiovascular outcomes.
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