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Abstract 

The epidemic of diabetes mellitus (DM) necessitates the development of novel therapeutic and preventative strate‑
gies to attenuate complications of this debilitating disease. Diabetic cardiomyopathy (DCM) is a frequent disorder 
affecting individuals diagnosed with DM characterized by left ventricular hypertrophy, diastolic and systolic dysfunc‑
tion and myocardial fibrosis in the absence of other heart diseases. Progression of DCM is associated with impaired 
cardiac insulin metabolic signaling, increased oxidative stress, impaired mitochondrial and cardiomyocyte calcium 
metabolism, and inflammation. Various non‑coding RNAs, such as microRNAs (miRNAs) and long non‑coding RNAs 
(lncRNAs), as well as their target genes are implicated in the complex pathophysiology of DCM. It has been demon‑
strated that miRNAs and lncRNAs play an important role in maintaining homeostasis through regulation of multiple 
genes, thus they attract substantial scientific interest as biomarkers for diagnosis, prognosis and as a potential thera‑
peutic strategy in DM complications. This article will review the different miRNAs and lncRNA studied in the context of 
DM, including type 1 and type 2 diabetes and the contribution of pathophysiological mechanisms including inflam‑
matory response, oxidative stress, apoptosis, hypertrophy and fibrosis to the development of DCM .
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Background
Diabetes mellitus (DM) is a disease characterized by 
chronic hyperglycemia and impaired metabolism of 
carbohydrates, proteins, and lipids caused by impaired 
insulin secretion and action. Approximately 463 million 
people aged 20–79  years are currently living with DM. 
The number of affected people is estimated to reach 578 
million by 2030 according to the International Diabetes 

Federation. Cardiovascular diseases (CVDs) are the most 
common cause of mortality of diabetic patients [1]. There 
are two different forms of diabetes. Type 1 diabetes mel-
litus (T1DM) is a chronic disease due to lack of insulin 
hormone production from pancreatic β-cells. On the 
other hand, type 2 diabetes (T2DM) is characterized by 
high blood glucose and ineffective insulin response [2, 3].

Abnormal cardiac structure and function in patients 
with DM with no other CVDs i.e. coronary artery dis-
ease (CAD), valvular heart disease, and hypertension, is 
known as diabetic cardiomyopathy (DCM) [4]. DCM is 
associated with myocardial fibrosis and cardiac remod-
eling leading to impaired diastolic and systolic function, 
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and consequently to heart failure (HF). The Framingham 
Heart Study showed the prevalence of HF increase of 
2.4-fold in men and fivefold in women with DM in com-
parison to controls [5]. The development and progression 
of DCM are closely related to abnormal cardiac insulin 
metabolic signaling, increased oxidative stress, impaired 
mitochondrial, cardiomyocyte calcium handling and 
inflammation. Typically DCM has a long subclinical 
period [6, 7].

Since clear diagnostic criteria are still lacking, the diag-
nosis of DCM remains a challenge [8, 9]. Currently, there 
is a lack of specific histological property, biomarker, or 
clinical manifestation for the definitive diagnosis of DCM 
[8, 10]. The earliest changes observed in patients relate 
to myocardial fibrosis and left ventricular hypertrophy 
with subsequent systolic dysfunction, which develop in 
the early stages of diabetes [11, 12]. Although there are 
dedicated guidelines for the management of DM and HF 
as isolated conditions, there is insufficient guidance on 
caring for patients with both DM and HF [9, 13]. Cur-
rently, the most widely used test for DCM diagnosis is 
echocardiography. This approach allows the simultane-
ous detection of structural and functional changes in the 
myocardium and the exclusion of other potential causes 
of the disorder [11, 12, 14, 15]. On the other hand, the 
routine use of echocardiography for screening purposes 
appears to be uneconomical. Therefore, the situation 
requires the development of new blood-based diagnos-
tic tools that will allow identification of patients with 
increased risk of DCM.

The current strategy for treating DCM is adequate con-
trol of DM, improvement of cardiovascular risk factors, 
including treatment of obesity and hypertension, and 
standard treatment of HF when required. Unfortunately, 
although DM has been known as an independent predic-
tor of HF for many years, there is currently no individu-
alized therapy to prevent HF and reduce the economic 
costs associated with treating these patients [16].

Inflammation is a complex response of an organism 
to different stimuli, which has two phases—acute and 
chronic. In the acute phase granulocytes, cytokines and 
acute-phase proteins (APPs) play a role in removing the 
inflammatory stimuli. Continuous inflammatory stimu-
lation or impaired reaction to self-molecules leads to a 
chronic phase, in which an immune response can cause 
tissue damage and fibrosis. Chronic inflammation is con-
sidered to contribute to numerous diseases such as cer-
ebrovascular diseases, atherosclerosis, cardiomyopathy, 
and DM [17]. There is increasing evidence that chronic 
inflammation is one of the main factors implicated in 
DM pathophysiology [18, 19].

Oxidative stress is an imbalance in the generation and 
elimination of reactive oxygen species (ROS) [20, 21]. 

ROS are highly unstable free radicals, produced mostly 
within mitochondria and endoplasmic reticulum. At 
normal levels, ROS take part in biological processes like 
immune response or cellular components maturation. 
On the other hand, high levels of free radicals can cause 
cell damage [22]. Oxidative stress plays a crucial role 
in the pathophysiology of numerous diseases including 
DM, in which glucose overload in mitochondria causes 
excessive ROS generation and mitochondrial dysfunc-
tion [23].

There are many well-known markers of inflammatory 
processes such as cytokines or APPs—CRP, amyloid 
A (AA) and amyloid P (AP), complement compounds, 
ceruloplasmin, or α2M [17]. However, novel and more 
precise biomarkers that will allow the early diagnosis of 
DCM are needed [15].

Pathophysiological mechanisms leading to DCM may 
also include impairment in microRNA (miRNA, miR) 
and long non-coding RNA (lncRNA) regulatory net-
works [6, 7, 24]. MiRNAs are a class of small, endog-
enous, non-coding RNA (ncRNA) molecules. They play 
a role in numerous biological processes like cell pro-
liferation, differentiation, apoptosis, and metabolism, 
through the suppression or activation of gene expres-
sion. MiRNAs are stable and abundant in different body 
fluids, which makes them useful as potential novel bio-
markers for DM and its complications [25–27]. LncR-
NAs are cell and tissue-specific transcripts consisting 
of more than 200 nucleotides (nt) that are not trans-
lated into proteins. LncRNAs are predicted to have 
many functions including transcript regulation, nuclear 
domains organization, and regulation of proteins or 
RNA molecules like miRNA. LncRNA through base-
pairing interactions influence miRNAs abundance and 
activity [7, 28].

Recent reports indicate participation of ncRNAs in 
the pathogenesis of oxidative stress and inflamma-
tion related to several human disorders including DM 
complications [29, 30]. Also, it was shown that ncRNA 
may act as a promising tool to facilitate the develop-
ment of therapeutic strategies and clinical management 
of patients with cardiomyopathy [31]. Obesity often 
accompanies DM. Independently of other cardiometa-
bolic risk factors, it dysregulates inflammation-related 
ncRNAs. It was demonstrated that therapeutic manipu-
lations of inflammation-related ncRNAs expression can 
potentially treat obesity-induced vascular complication 
[32, 33].

This review aims to provide a comprehensive over-
view of the current knowledge of diagnostic, prognos-
tic, and treatment value of miRNA and lncRNA in the 
pathophysiological processes of DCM.
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The essential role of miRNAs in the regulation 
of DCM pathogenic processes
MiRNAs regulate protein synthesis, mostly through inhi-
bition of mRNA. Synthesis of those molecules can be 
influenced by high glucose (HG) levels, thus miRNAs 
play a role in DM-related pathophysiological processes 
in the myocardium [34, 35]. Based on previous studies it 
was found that more than 300 different miRNAs are dys-
regulated in DCM. MiRNAs can modulate the oxidative 
stress response, influence the inflammatory processes 
and cardiomyocytes survival. Hence, they might be use-
ful to treat and monitor DCM [36–38].

The synthesis of miRNAs can be altered on different levels 
in the diabetic model
The previous study used the insulin2 mutant (Ins2+/−) 
Akita, a genetic mice model of T1DM to investigate the 
role of Dicer, a crucial enzyme for miRNA maturation 
and several miRNAs in DCM. The study showed that 
Dicer, numerous miRNAs and inflammatory cytokines 
(TNFα and cardiac IL-10) are associated with diabetes-
induced HF. Dicer is an RNase III endonuclease plays 
role on pre-miRNAs maturation. The study found the 
upregulation of mRNA and protein levels of Dicer in dia-
betic mouse hearts compared to wild type [39]. Besides, 
many miRNAs, such as Let-7a, miR-345-3p, miR-433 and 
miR-455 were downregulated, while the only upregu-
lated miRNA was miR-295. It is important to note that 
the study used only microarray analysis with no qRT-
PCR validation. MiR-295 is typical for the embryonic 
stage, thus its upregulation in diabetic myocardium may 
indicate adaptive mechanisms to pathological condi-
tions. Let-7a was also found downregulated in diabetic 
nephropathy by targeting PI3K/Akt signaling, an impor-
tant pathway in the pathogenesis of insulin resistance 
and DCM development [40]. Moreover, miR-345 family 
was identified as an important regulator in children with 
the recent onset of T1DM. Importantly, in silico pathway 
analysis based on inferred miRNA target genes showed 
that PI3K/Akt, MAPK, and Wnt signaling pathways are 
related to T1DM [41]. Moreover, miR-433 was identi-
fied as a novel regulator of doxorubicin-induced cardiac 
fibrosis both in an animal model and in cardiac tissue 
from patients with dilated cardiomyopathy. Therefore 
further analyzes are needed to clarify its importance in 
DCM [42].

Another study pointed out the importance of miR-373 
related to the MAPK signaling pathway. MiR-373 was sig-
nificantly downregulated in diabetic mice cardiac tissue. 
In  vitro analysis in rat cardiomyocytes exposed to HG 
and transfected by miR-373 showed that overexpression 
of miR-373 decreased MEF2C and hypertrophy. MEF2C, 

a transcription factor commonly found in heart tissue, 
seems to be a target gene for miR-373. Moreover, gene 
ontology analysis revealed the MAPK signaling pathway 
is the one most associated with dysregulated miRNAs 
in the diabetic mouse heart. Further in  vitro inhibition 
of p38 MAPK reduced miR-373 expression, which sug-
gests that miR-373 transcription may be regulated by 
p38 MAPK. Thus, p38 MAPK/miR-373/MEF2C was sug-
gested to be a regulatory pathway in glucose-dependent 
cardiomyocyte hypertrophy [43].

Upregulation of miR-19b, miR-27a, miR-34a, miR-
125b, miR-146a, miR-155, miR-210, miR-221 and the 
downregulation of miR-1 in DCM by in  vitro/in vivo 
analysis was demonstrated [44]. An interesting study per-
formed by Costantino et al. [44] on a DM mouse myocar-
dium, indicates the existence of hyperglycaemic memory, 
which means that even after normalization of glucose 
levels, the negative effects of hyperglycemia can persist. 
MiRNA profiling in heart samples revealed that despite 
intensive glycaemic control, miRNA signatures in dia-
betic myocardium were only partially reversible. Bioinfor-
matic analysis showed that among dysregulated miRNAs, 
miR-221, miR-146a, miR-34a, miR-210, miR-19b, miR-
125b, miR-27a, and miR-155 were associated with oxida-
tive stress. Among them, miR-221 was upregulated in the 
diabetic myocardium suggesting a key role of miR-221 
in the progression of diabetic myocardial damage after 
obtaining normoglycemia. The study results also suggest 
that miR-34a may be a mediator linking DM and cardiac 
aging [44]. Moreover, glycaemic control failed to restore 
the underexpressed antifibrotic miRNAs, including miR-
1, which is known to play an important role in cardiac 
dysfunction under hyperglycemia [44, 45]. Additionally, 
it was previously shown that the expression of miR-210 is 
induced in diabetic ischaemic HF patients [46]. The exist-
ence of metabolic memory has been proposed previously, 
although its mechanisms were not clearly explained [47]. 
MiRNAs help to determine why the diabetic cardiovas-
cular complications progression is not halted by the nor-
malization of glucose levels. The results of the study done 
by Costantino et al. suggest oxidative stress-related miR-
NAs as potential novel therapeutic targets. Inhibition of 
those miRNAs (miR-221, miR-146a, miR-34a, miR-210, 
miR-19b, miR-125b, miR-27a, miR-155) may lead to the 
reduction of adverse effects of hyperglycaemic memory 
in the heart [44] (Table 1).

In conclusion, HG conditions can influence the syn-
thesis of all miRNAs via the modulation of dicer. The 
function of this enzyme depends on the myocardial 
impairment stage. Additionally, changes in gene expres-
sion can be reversed only partially. These findings make 
miRNA-genes interactions even more complex and indi-
cate the great importance of identifying novel therapeutic 
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approaches that could potentially prevent the develop-
ment of DCM.

MiRNAs can modulate macrophages function 
and phenotypes
Macrophages play an important role in the regulation of 
inflammatory processes. Classically, activated M1 cells 
can produce pro-inflammatory cytokines, while alterna-
tively activated M2 cells are important for the resolution 
of inflammation [48]. In inflammatory disorders miR-
155 is known to be upregulated and the administration 
of antagomiR-155 (miR-155 inhibitor) was observed to 
decrease the cardiac infiltration by inflammatory media-
tors, reduce myocardial damage, and improve cardiac 
function [49]. Estrogen deficiency increased inflamma-
tion in DCM mice due to the over-infiltration by M1 
macrophages (pro-inflammatory type) [50]. However, the 
aggravation of DCM caused by estrogen deficiency was 
prevented by treatment with gold nanoparticle-conju-
gated antagomiR-155, which induced M2 macrophages 
infiltration and ameliorated the structure and function of 
the heart. It is suggested that miR-155 inhibition therapy 
could serve as a promising approach to improve cardiac 
function in DCM [50].

Efferocytosis, phagocytic clearance of the apoptotic 
cells, is impaired in macrophages of DCM patients. 
MiR-126 was found to modify macrophage-mediated 
phagocytosis of apoptotic myocytes [51]. Under hyper-
glycemic conditions, the expression of miR-126 in mac-
rophages was downregulated, which was accompanied by 
increased expression of its target gene, ADAM9. ADAMs 
are membrane-anchored enzymes that are involved 
in a variety of biological processes including cytokine 
and growth factor shedding, cell migration, as well as 
inflammatory response [52]. Similarly, overexpression 
of miR-126 diminishes efferocytosis impairment. Thus, 
enhancing this pathway by pharmacological treatment 
that will induce the expression of miR-126, has a poten-
tial to improve cardiac muscle function after injury and 
under inflammatory conditions accompanying DM [51] 
(Fig. 1) (Table 1).

The importance of NF‐κB induced inflammation and TNFα 
mediated processes in the development of DCM
NF‐κB is a family of transcription factors that regulate 
multiple biological processes, including, inflammatory 
response, cell survival and cell cycle progression [53, 54]. 
PI3K/Akt pathway can activate NF‐κB induced inflam-
mation [55]. PI3K/Akt signaling also represents a pivotal 
pathway in the pathogenesis of insulin resistance and 
DCM development. It regulates multiple biological pro-
cesses, including apoptosis, cell growth, and proliferation 
of cardiomyocytes [56]. PI3KT/Akt activates platelets in 

response to multiple stimuli and subsequently may aggra-
vate fibrosis of the heart muscle as activated platelets can 
have profibrotic action by releasing TGF-β1 and inducing 
platelet-fibroblast conjugation. TGF-β1 plays a key role 
in cardiac fibrosis and platelets can contain high con-
centrations of TGF-β1. Importantly, studies showed that 
platelet-derived TGF-β1 promoted ventricular fibrosis in 
a mouse model and atrial fibrosis in cell culture [57, 58].

Yang et al. [59] aimed to evaluate the role of miR-203 
and PI3KT/Akt pathway in the progression of DCM in a 
rodent model. It was found that miR-203, which is down-
regulated in diabetic mice, directly targets PIK3CA and 
can downstream PI3KT/Akt pathway. In cardiomyocytes, 
miR-203-mediated inhibition of PI3K/Akt was found to 
be related to reduced cardiac hypertrophy, fibrosis, and 
myocardial apoptosis. Interestingly, the upregulation of 
miR-203 reduced the levels of oxidative stress biomark-
ers, such as MDA and ROS, in cardiomyocytes. The study 
suggests that the upregulation of miR-203 might be a 
promising treatment strategy for inhibiting the progres-
sion of DCM via PI3KT/Akt cascade [59].

In HG conditions cardiac fibroblasts exhibit markedly 
increased IL‐1β production and NF‐κB activity. This is 
accompanied by a significantly upregulated expression 
of miR-150-5p and downregulation of its target gene 
expression—Smad7 [60]. Smad7 is a shear-stress induced 
gene, the expression of which can be enhanced via NF‐κB 
signaling pathway. Smad7 suppresses TGF‐β1 signaling, 
which results in the suppression of its anti-inflammatory 
actions [61]. The inhibition of miR-150-5p attenuates 
cardiac muscle fibrosis and inflammation mediated by 
NF‐κB signaling TGF‐β1/Smad pathways. HG-treated 
cardiac fibroblasts manifest also significantly elevated 
fibrotic markers and extracellular matrix (ECM) proteins: 
CTGF, FN, α‐SMA, Col‐I, Col‐III [60]. Importantly, it was 
previously shown that miR‐150‐5p plays a crucial role in 
nonclassical monocyte generation, development of B and 
T lymphocytes, inflammatory cytokine production, and 
vascular remodeling and fibrosis [62–65]. In lympho-
cytes, a direct target of miR-150-5p—c-myb is responsi-
ble for the regulation of hematopoietic stem cells. It was 
also found that c-myb is involved in miR-150-mediated 
ROS-induced cardiomyocytes apoptosis and injury [65]. 
It was shown that cardiac remodeling may be reversed 
by miR-150-5p knockdown and aggravated by its over-
expression, thus inhibition of miR-150-5p may become a 
promising target for DCM treatment [60].

Moreover, miR-142-3p was found to be a direct regu-
lator of TGF-β1, a mediator essential for endothelial-
to-mesenchymal transition (EMT) process, which 
plays an important role in myocardial fibrosis. The 
expression of miR-142-3p in human aortic endothelial 
cells (HAECs) exposed to HG levels was declining in 
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Fig. 1 The possible therapeutic mechanism of miRNAs‑contributed to the oxidative stress, inflammation and cardiomyocytes function process in 
diabetic cardiomyopathy. Bcl-2 B‑cell lymphoma 2, CASP Caspase, Col4α1 collagen type IV alpha 1, CPDT 5,6 Dihydrocyclopenta‑1,2‑dithiole‑3‑thi
one, DCM diabetic cardiomyopathy, ELAVL1 ELAV like protein 1, FGF1 fibroblast growth factor 1, ERK1/2 extracellular signal‑regulated kinases 1 and 
2, FOXO3a Forkhead box O3, HOTAIR HOX transcript antisense intergenic RNA, IL interleukin, IRAK1 interleukin‑1 receptor‑associated kinase 1, LAZ3 
lymphoma‑associated zinc finger 3, LncRNA long non‑coding RNA, MDA malondialdehyde, MiR MicroRNA, MMP-9 matrix metalloproteinase 9, NF-κB 
nuclear factor kappa‑light‑chain‑enhancer of activated B cells, Nrf2: nuclear factor erythroid 2‑related factor 2, PI3K/Akt phosphoinositide 3‑kinase 
and protein kinase B, PPARα peroxisome proliferator‑activated receptor‑alpha, ROS reactive oxygen species, SIRT-1 Sirtuin 1, SMAD7 SMAD family 
member 7, SOD superoxide dismutase, TGF-β1 transforming growth factor β1, TNFα tumor necrosis factor‑alpha, TRAF6 TNF receptor associated 
factor 6
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a dose- and time-dependent manner. Further evalua-
tion showed that miR-142-3p inhibits EMT induced 
by HG levels through blocking of TGF-β1/Smad path-
way. MiR-142-3p/TGFβ1/Smad axis was suggested to 
become a possible target in DCM therapy [66]. Simi-
larly, miR-700 was found to modulate cardiac fibrosis 
by interacting with TGF-β3 and Col1α1 in the heart 
[67]. Previously, Shen et  al. demonstrated the upregu-
lation of miR-700 in diabetes-induced cardiac hyper-
trophy by using microarray analysis in an STZ-induced 
T1DM animal model. Importantly, the study used a 
bioinformatic tool and found 28 putative target genes 
for miR-700. However, further analysis with qRT-PCR 
validations is needed to confirm the upregulation of 
this promising miRNA in DCM [43, 68].

MiR-146a has a regulatory relationship with compo-
nents of the NF-κB signaling pathway, which acts as a 
key mediator in hyperglycemia and inflammation [69, 
70]. Several studies have indicated the important role of 
miR-146a in the pathogenesis of myocardial injury and 
DCM [44, 71–73]. Importantly, miR-146a was suggested 
as a predictive biomarker of HF [73]. Myocardial injury 
increases the expression of several pro-inflammatory 
mediators (IL-6, MCP-1, TNFα), contributing to the 
progression of cardiac muscle remodeling, which leads 
to its irreversible dysfunction and in consequence to HF 
[74, 75]. Impaired miR-146a expression was found asso-
ciated with subclinical inflammation and insulin resist-
ance in T2DM patients [76]. Downregulated miR-146a 
levels were also found in the hearts of diabetic mice [71]. 
Interestingly, endothelial cells (ECs) were the main cell 
type that exhibited decreased miR-146a levels, while car-
diomyocytes remained unaltered [71]. Along with dimin-
ished miR-146a expression, the level of cardiac functional 
abnormalities, including defective cardiac contractil-
ity as well as inflammatory markers and ECM proteins 
(IL-6, TNFα, IL-1β, MCP-1, NF-κB, Col1α1, Col4α1) 
were increased in the hearts of DM wild type mice. 
However, these changes were not observed in the dia-
betic transgenic mice with overexpression of miR-146a. 
In vitro studies with isolated human cardiac ECs revealed 
glucose-induced upregulation of IRAK1 and TRAF6, 
which are specific NF-κB regulators and targets of miR-
146a [71]. An increased level of miR-146a transcripts is 
accompanied by a decreased level of c-Fos mRNA and 
diminished activity of AP-1, a c-Fos-containing tran-
scription factor complex. Downregulation of the c-Fos/
AP-1 signaling by miR-146a inhibits MMP-9 activity, 
which is involved in cardiac remodeling. Thus, the over-
expression of miR-146a appears to play a protective role 
against cardiomyocytes injury and may be a novel thera-
peutic approach for the prevention of CVD, however fur-
ther studies are needed [71, 72].

MiR-223, which is downregulated in DM, is associ-
ated with inflammatory response [39, 77]. MiR-223 tar-
gets Mef2c and, what follows, inhibits the proliferation of 
myeloid progenitor cells, suppresses granulocytes differ-
entiation and activation. Thus, the miR-223 downregu-
lation leads to an excessive inflammatory response [78]. 
The suppression of miR-223 could result from attenu-
ated IL-10 transcription. Moreover, due to insufficient 
inhibitory function of IL-10, elevated levels of TNFα 
can be observed [39]. Upregulation of TNFα may lead to 
enhancing TNFα-induced tissue factor pro-coagulation 
activity in ECs [77]. Importantly, in left ventricular biop-
sies of patients with T2DM miR-223 was found to medi-
ate cardiac function by regulating the Glut4 expression 
and cardiomyocyte glucose metabolism [79]. Moreover, 
miR-223 was found significantly downregulated in left 
ventricular cardiac biopsies in diabetic ischaemic HF 
patients [46] (Fig. 1) (Table 1).

MiRNAs can modulate cell response to oxidative stress 
acting through PPARα and Nrf2 transcription factors
There is a growing evidence that oxidative stress plays an 
important role in the progression of myocardial dysfunc-
tion in DM [34, 80]. Therefore, it is essential to search for 
mechanisms underpinning the association between oxi-
dative stress and cardiac function. Nrf2 is an increasingly 
interesting transcriptional factor acting as a key regulator 
of oxidative stress genes. In DM models, the activation of 
Nrf2 is enhanced due to excessive production of oxidiz-
ing agents [81]. Fatty acids activated transcriptional fac-
tors such as PPARs can demonstrate anti-inflammatory 
activity and are confirmed to downregulate the expres-
sion of proinflammatory genes through transrepressive 
mechanisms [82]. Both Nrf2 and PPARs play a key role 
in establishing cellular antioxidative defense systems. 
Moreover, several studies strongly suggest the existence 
of reciprocal regulation of Nrf2 and PPARs signaling 
pathways, which mutually reinforces their expression [83, 
84]. Activation of PPARα pathway may result in second-
ary changes in the oxidative stress state, which may lead 
to Nrf2 activation via PGC-1α [85].

Recent data indicate that miR-30c may be involved 
in transcriptional activity of PPARα [80]. Interestingly, 
in T1DM diabetic model, miR-30c levels were down-
regulated leading to the higher expression of its direct 
target—PGC-1β, which by acting on PPARα causes meta-
bolic disturbances, lipotoxicity in the heart, and excessive 
ROS production [80]. Importantly, miR-30c expression 
was found reduced in cardiac tissue and plasma collected 
from DCM patients [86–88] Another study showed that 
forced overexpression of miR-30c in HG-induced cardio-
myocytes was correlated with downregulation of prohy-
pertrophic genes—Cdc42 and Pak1 and attenuation of 
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cardiomyocyte hypertrophy, while anti-miR-30c treat-
ment had the opposite effect [86]. Moreover, miR-30c 
may act synergistically with miR-181a in the modulation 
of the p53-p21 pathway important for cardiomyocyte 
apoptosis and hypertrophy in DCM. HG-induced cardio-
myocytes transfection by miR-30c and miR-181a caused 
a decrease of p53 and p21 expression, ANP protein lev-
els, and significantly attenuated hypertrophy. The effect 
was more potent when both miRNAs were overexpressed 
than for miR-30c or miR-181 alone [87]. Additionally, 
transfection of recombinant adeno-associated virus 9 
(rAAV9)-mediated miR-30c in DCM mice resulted in 
cardiomyocyte miR-30c overexpression in DCM model 
resulted in the increased left ventricular ejection fraction, 
reduced left ventricle mass, and fractional shortening in 
comparison controls [88]. MiR-30c seems to be a multi-
directional player in DCM. Therefore, the overexpression 
of miR-30c is hypothesized to attenuate cardiac dysfunc-
tion and appears to be a promising therapeutic target in 
DCM [80].

Another pathway regulating PPARα and Nrf2 activa-
tion is related to LAZ3, which is a protein-encoding 
gene that acts as a transcriptional repressor and regu-
lates inflammation by interfering with NF-κB signaling 
[37, 89]. LAZ3 was found decreased in diabetic mouse 
hearts and cardiomyocytes of rats [37]. Upregulation 
of LAZ3 inhibits the miR-21 expression, which targets 
PPARα. Silencing of LAZ3 leads to the increased expres-
sion of miR-21 and subsequently to the decreased PPARα 
and Nrf2 activation, resulting in an impaired response 
to the oxidative stress. Thus, the downregulation of the 
PPARα-Nrf2 signaling pathway by the overexpression of 
miR-21 results in the impaired cardiomyocytes function. 
Therefore, treatment targeting miR-21 inhibition may 
be beneficial for DCM management [37]. In line with 
these observations, a cardiac release of miR-21 has been 
recently reported in an unselected cohort of patients with 
non-ischemic cardiomyopathy, including DCM [90].

Downregulated miR-144 was found in diabetic car-
diomyocytes in the regulation of oxidative stress. 
MiR-144 can directly target Nrf2 [34]. Interestingly, 
although miR-144 levels were reduced in T1DM dia-
betic mice model and in HG conditions in cultured 
cardiomyocytes, the administration of miR-144 mimic 
reduced the expression of Nrf2 proteins and augmented 
ROS formation, whereas miR-144 inhibitor enhanced 
Nrf2 expression and decreased ROS generation. This 
effect was not observed in normal glucose conditions. 
Thus, blocking miR-144 as a therapeutic intervention 
may decrease oxidative stress in HG condition [34]. 
On the other hand, Tao et al. [91] have found conflict-
ing results. Plasma miR-144 decreased markedly in 
diabetic patients with cardiac dysfunction Although 

miR-144 was found also decreased in HG-induced car-
diomyocytes and in an STZ-induced diabetic model, 
the overexpression of miR-144 was shown to protect 
the heart from the hyperglycemia-induced injury. To 
clarify the role of miR-144 in DCM, it may be neces-
sary to generate mice with cardiomyocyte-specific miR-
144 knockout or overexpression, at different stages of 
hyperglycemic cardiac injury [91].

The upregulation of miR-503 may be related to the 
increased diabetic cardiac dysfunction and Nrf2 acti-
vation can be enhanced through the phase II enzyme 
inducer –CPDT, an enzyme complex, which initiates the 
expression of antioxidative enzymes and plays a crucial 
role in the protection against oxidative stress [92, 93]. It 
has been hypothesized that CPDT may lead to a similar 
effect in diabetic heart dysfunction and that the down-
regulation of miR-503 can decrease the DCM develop-
ment. For these purposes, Miao et al. [93] used CPDT as 
an intervention agent to investigate its correlation with 
miR-503 in DCM. CPTD treated diabetic rats presented 
with decreased expression of miR-503 and increased 
levels of its target—Nrf2 as well as other detoxification 
enzymes such as MDA and HO-1, when compared to a 
non-treated diabetic group. The data suggest that CPTD 
has a protective effect because of its ability to inhibit 
miR-503 expression and, as a result, to increase Nrf2 
expression, which can result in the diminished myocar-
dial cell apoptosis and reduced development of cardio-
myopathy [93].

Cardioprotective role is postulated regarding down-
regulation of miR-22 which is also directly linked with 
oxidative stress [94]. Excessive oxidative stress leads to 
the production of ROS, such as superoxide or hydrogen 
peroxide, which can cause DNA mutation, consequently 
resulting in cell injuries. On the other hand, superox-
ide dismutase (SOD) is an enzyme and can be effective 
as a potent antioxidant [95, 96]. MiR-22, the levels of 
which are decreased in diabetic myocardium in T1DM 
STZ-induced diabetes model, was found to target SIRT1 
leading to the upregulation of SIRT1 protein expression 
[94]. It was shown that the overexpression of miR-22 can 
decrease the levels of ROS, MDA, and increase SOD, 
indicating its cytoprotective properties. Administration 
of miR-22 had a positive effect on blood glucose levels, 
ejection fraction, left ventricular end-diastolic pressure, 
and cardiac tissue apoptosis in a diabetic animal model. 
Moreover, miR-22 was unable to inhibit the oxidative 
stress injury when SIRT1 was knocked down, suggesting 
its protective effect being mediated by SIRT1 expression. 
Overall, this study shows that miR-22 administration can 
decrease oxidative stress injury by upregulation of SIRT1, 
thus miR-22 can be a potential therapeutic target for dia-
betic patients with cardiac insufficiency [94].
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Altogether, in DM the modulation of levels of differ-
ent miRNAs in the myocardium can be observed. Down-
regulated expressions of miR-30c, miR-22 and miR-144 
and upregulated expressions of miR-503 were observed 
in in  vivo and in  vitro models of DCM. Those miRNAs 
influence the antioxidative action of Nrf2 transcription 
factor and impair its ability to prevent the adverse effects 
of oxidative stress due to ROS, which are synthesized in 
excessive amounts in DM (Fig. 1) (Table 1).

MiRNAs can modulate the activation of cardiomyocyte 
pyroptosis and apoptosis via different pathways
Pyroptosis is an inflammatory form of programmed cell 
death triggered by CASP-1, which causes cardiac dys-
function due to decreased cell survival and increased 
pro-inflammatory cytokines, such as IL-1ß and IL-18 [97, 
98]. Activation of these both interleukins is controlled by 
miR-30d, which is upregulated in HG conditions directly 
targeting FOXO3a [38]. MiR-30d mediates FOXO3a 
downregulation and results in decreased ARC  and, what 
follows—increased CASP-1 activation and inflammatory 
cytokines (IL-1ß and IL-18) secretion. It subsequently 
leads to the formation of the inflammasome complex, 
which induces the cardiomyocyte pyroptosis. Conversely, 
the miR-30d knock-down by its antisense inhibitor may 
suppress the process. Therefore, it is suggested that treat-
ment targeted at blocking miR-30d expression may prove 
to be advantageous in DCM management [38]. Moreover, 
ARC was reported to protect cardiomyocytes in oxidative 
stress through inhibition of CASP-2-mediated apoptosis 
[99]. ARC also seems to attenuate the ischemia/reperfu-
sion (I/R) injury and drug-induced cardiotoxicity [100, 
101]. Besides that, in a rodent model, miR-30d showed 
also an anti-autophagic effect by regulating the KLF9/
VEGFA pathway. Its knockdown prevented the aggrava-
tion of cardiac dysfunction in diabetic rats. Furthermore, 
SGLT2 treatment was associated with decreased miR-
30d expression and improved cardiac function in DCM 
rats [102].

Another protein that plays an important role in pyrop-
tosis-induced inflammatory processes is ELAVL1, which 
stabilizes TNFα mRNA. An increased concentration of 
CASP-1 proinflammatory enzyme, IL-1β proinflamma-
tory cytokine along with an overexpression of ELAVL1 
was found in human diabetic cardiomyocytes [103]. It 
was shown that ELAVL1 deficiency counteracts TNFα 
induced canonical pyroptosis via NLRP3, IL-1β and 
CASP-1 suppression. Moreover, ELAVL1 is a direct tar-
get of miR-9, the expression of which is significantly 
downregulated under hyperglycaemic conditions in 
human diabetic hearts. Inhibition of miR-9 can lead to 
the upregulation of ELAVL1 and CASP-1. On the other 
hand, overexpression of miR-9 reduces ELAVL1, CASP-1 

and IL-1β expression in human cardiomyocytes and pre-
vents cardiomyocyte pyroptosis. Thus, miR-9 may act as 
a potential target to reduce the DCM progression [103].

Apoptosis is another crucial factor triggering HF. It is a 
programmed self-eliminating process of dead cells occur-
ring also in injured cardiomyocytes under different con-
ditions e.g. ischemia. In T1DM and T2DM models, the 
upregulation of miR-195 has been confirmed to impact 
signaling pathways involved in oxidative stress-induced 
apoptosis. Furthermore, miR-195 was found to target 
BCL2 and SIRT1, the expression of which was observed 
to be decreased in diabetic rat cardiomyocytes. Moreo-
ver, miR-195 levels are elevated in diabetic hearts in ani-
mal models, thus the inhibition of its targets and more 
intense apoptosis of cardiomyocytes can be observed. 
The knockout of miR-195 increased the levels of SIRT1 
and BCL-2 and significantly improved cardiac function 
and coronary circulation but did not reduce myocardial 
fibrosis. Furthermore, inhibition of miR-195 reduced 
ROS production, protein oxidation and CASP-3 activity, 
indicating the role of miR-195 in oxidative stress-related 
cell injury. Moreover, the silencing of miR-195 inhib-
ited TNFα mRNA and protein expression and improved 
insulin sensitivity [104]. Altogether, in HG conditions 
the downregulation of miR-9 and the upregulation of 
miR-30d and miR-195 can be observed. Modulations of 
their levels lead to enhanced pyroptosis and apoptosis 
in diabetic hearts and the progression of DCM (Fig.  1) 
(Table 1).

The role of miR-1, miR-133a and miR-21 in DCM
Over the past decade, miR-1 and miR-21 have been some 
of the most frequently studied miRNAs in the CVD area, 
especially in the CAD, acute coronary syndrome and HF 
field [105, 106]. Evaluations revealed that these molecules 
are confirmed to impact signaling pathways involved in 
atherosclerosis, hypertrophy, myocardial remodeling and 
fibrosis [107]. Additionally, both miR-1 and miR-21 are 
hypothesized to be crucial targets for a new CVD treat-
ment approach [108].

Junctin is a component of the ryanodine recep-
tor Ca2 + release channel complex. It has been proved 
that the overexpression of junctin induces cardiac 
hypertrophy and arrhythmia via adaptive changes in 
Ca2 + handling [109, 110]. MiR-1, which is significantly 
downregulated in diabetic cardiomyocytes in the T1DM 
model of DCM, directly targets junctin and suppresses its 
expression [45]. Decreased levels of miR-1 in HG-condi-
tions result in increased expression of junctin. Thus, the 
study suggests that miR-1 plays an important role in car-
diac dysfunction under hyperglycemia. Indeed, miR-1 has 
been shown to contribute not only to the regulation of 
DCM, but also it was found to play a role in arrhythmias, 
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myocardial infarction, myocardial hypertrophy, cardio-
myocyte differentiation, and cell reprogramming [111]. 
It may be hypothesized that myocardial-specific miRNAs 
significantly contribute to DM-induced cardiomyocytes 
injury, and the intervention with antioxidant treatment 
controls the level of miRNAs including miR-1 and its 
target protein junctin, which can have a cardioprotective 
effect against DM-induced injury [45].

Abundantly expressed in normal cardiac tissue miR-
133a was significantly downregulated in DCM mice. An 
in  vitro study showed that miR-133a inhibited SGK1 
and IGF1R upregulation induced by HG levels leading 
to the depletion of ANP, BNP, and transcription factors 
MEF2A, and MEF2B as well as the attenuation of cardio-
myocyte hypertrophy [112]. Furthermore, overexpressed 
miR-133a decreased mRNAs of fibrosis biomarkers such 
as fibronectin, FGF1, TGF-β, and COL4A1 and may pre-
vent myocardial extracellular matrix (ECM) accumu-
lation, presumably by preventing ERK1/2 and Smad2 
phosphorylation. Thus, the lower expression of miR-133 
associated with hyperglycemia may attenuate cardiac 
fibrosis [113]. In addition, miR-133a participates in car-
diac contractility by targeting and downregulating tyros-
ine aminotransferase, an enzyme catabolizing tyrosine, 
a substrate for norepinephrine synthesis. In DCM rats, 
miR-133a deficiency was associated with decreased heart 
contractility. MiR-133a treatment resulted in increased 
expression of the β-adrenergic receptor, normalization 
of norepinephrine levels, and as a result, contractility 
improvement [114]. In transgenic diabetic mice with car-
diac miR-133a overexpression (Akita/miR-133aTg) myo-
cardial fibrosis, hypertrophy and impaired contractility 
were reduced when compared to standard Akita mice. 
Akita/miR-133aTg also had a normal lipid accumulation 
in heart tissue, whereas standard Akita exhibited lipid 
deposits [115]. Thus, miR-133a may prevent metabolic 
heart remodeling related to DM-induced lipotoxicity. In 
the plasma of DM patients and a mimic model of insu-
lin resistance, increased miR-133a levels were associated 
with higher myocardial steatosis. It was shown that the 
lipid-loaded cardiomyocytes release exosomes rich in 
miR-133a. Therefore, miR-133a was proposed as a diag-
nostic biomarker of subclinical DCM [116].

MiR-21 is recognized as one of the most studied miR-
NAs that control myocardial remodeling [117]. However, 
it should be noted that the role of miR-21 in cardiac dis-
ease appears controversial. It was shown that miR-21 is 
upregulated in failing myocardium in humans and in an 
animal model, while interfering miR-21 expression with 
inhibitors prevents cardiac fibrosis in a mouse model of 
pressure overload [117, 118]. Moreover, upon pressure 
overload, cardiac dysfunction was only prevented in mice 
with miR-21 deficiency in nonmyocyte cardiac cells, but 

not in mice with global or myocyte targeted deletion of 
miR-21 [117]. Additionally, as mentioned above in neo-
natal rat cardiomyocytes incubated in HG conditions, it 
was shown that LAZ3 protects against cardiac remod-
eling by decreasing miR-21 [37]. Additionally, another 
in vitro study showed that HG conditions promoted the 
proliferation and collagen synthesis of rat cardiac fibro-
blasts, which was mediated by increased expression of 
miR-21 [119],

It appears that the effect of miR-21 differs depending 
on cell type and disease condition. In cardiac myocytes 
the overexpression of miR-21 protects against ROS-
induced damage via its target gene PDCD4, whereas 
miR-21 deficiency in fibroblasts protects against car-
diac dysfunction and myocardial fibrosis [117, 120]. 
Also, the effect of miR-21 on ROS production and its 
role on cardiac myocytes in DCM associated diastolic 
dysfunction was studied [121]. Increased levels of car-
diac oxidative stress biomarkers, which were found in 
diabetic mice model cardiomyocytes, were reversed by 
miR-21 treatment and overexpression of phospho-Akt 
and phospho-eNOS. Therefore, miR-21 inhibits cardiac 
hypertrophy via decreasing ROS levels and increasing 
bioavailable nitric oxide via gelsolin and thus may have 
potential therapeutic role [121]. Study conducted by Dai 
et  al. suggested that the overexpression of miR-21 may 
be a promising therapeutic target for treatment of DCM 
[121]. On the other hand, due to the conflicted results, it 
can be concluded that miR-21 may have a different role 
depending on the tissue or cell type and disease condi-
tion, thus further human studies are needed to clear out 
this discrepancy (Table 1).

LncRNAs
LncRNAs are non-protein-coding RNAs, that are at least 
200 nt in length [7]. LncRNAs participate in many bio-
logical processes, such as modulation of various path-
ways linked with the oxidative stress and inflammatory 
processes, which influence DCM development, severity 
of myocardial I/R injury, cardiac hypertrophy, HF or dia-
betic vascular complications [7, 122]. Moreover, lncRNAs 
can act as miRNA sponges, meaning that they prevent 
the regulatory functions of miRNAs by binding to them 
and hindering interactions with their target [122].

LncRNAs mediate cardiomyocytes apoptosis induced 
by high glucose
Cardiomyocyte apoptosis occurs in response to different 
pathological stimuli in DCM. As a consequence, it leads 
to the remodeling and fibrosis of the heart muscle, thus 
impairing its contractile function [123]. Several stud-
ies indicated the role of lncRNAs in pathomechanisms 
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associated with deteriorating heart function in diabetic 
models [124, 125].

LncRNA H19, which plays a role in maintaining car-
diac function and development of DCM, was known 
previously for its involvement in carcinogenesis [126]. 
It was shown that the expression of H19 was markedly 
downregulated in the myocardium of diabetic rats [127]. 
Moreover, transfection with H19 siRNA decreases the 
expression of miR-675. LncRNA H19 and H19-derived 
miR-675 downregulates its target gene VDAC1, which 
influences cardiomyocyte apoptosis and plays a crucial 
role in the progression of cardiac muscle dysfunction. 
Additionally, LV systolic and diastolic functions were 
found to be impaired in diabetic models along with exac-
erbated inflammation and oxidative stress. However, the 
overexpression of H19 reverses this effect [127].

In another study [128], authors sequenced 400 lncR-
NAs associated with ROS generation, which may 
potentially lead to the deterioration of cardiac function 
and apoptosis. In HG-treated primary rat cardiomyo-
cytes ROS production was upregulated along with an 
increased level of apoptotic cardiomyocytes. However, 
among sequenced lncRNA, in further functional studies 
it was only the silencing of lncRNA NON-RATT007560.2 
that decreased the ROS formation and apoptosis [128]. 
Importantly, it was found that NON-RATT007560.2 may 
have binding sites for miR-208a [128] which is known for 
its association with maladaptive cardiac remodelling in 
diabetic myocardium of T2DM patients [129].

Those studies suggest that the modulation of lncRNA 
expression may ameliorate cardiac dysfunction and apop-
tosis-related progression of cardiomyopathy, and may 
be a promising therapeutic strategy for the treatment of 
DCM.

LncRNAs regulate cardiac remodeling via TGF-β-mediated 
NLRP3 pathway
Kcnq1ot1, which is a lncRNA, has been linked with 
pathophysiological mechanisms of multiple disor-
ders associated with cardiac dysfunction [130, 131]. 
The Kcnq1ot1 expression was found to be elevated in 
the blood serum of diabetic patients, cardiac tissue 
of a T1DM STZ-induced diabetes mice model, and 
HG-induced cardiomyocytes along with activation of 
pyroptosis and fibrosis in DCM models [132, 133]. The 
increased expression of Kcnq1ot1 is followed by col-
lagen deposition and induced TGF-β1, p-Smad2 and 
p-Smad3 expression was found. As a consequence, the 
activation of fibrotic formation and cardiac remod-
eling lead to the deterioration of LV function. Moreo-
ver, immunohistochemical analysis of mouse cardiac 
tissue showed that high Kcnq1ot1 levels contribute to 
NLRP3 inflammasome activation as well as significantly 

elevated expression of proinflammatory mediator-IL-1β 
and pro-apoptotic mediators-CASP-1 and GSDMD-N, 
thereby demonstrating the role of Kcnq1ot1 in medi-
ating pyroptosis under HG conditions. On the other 
hand, the silencing of Kcnq1ot1 expression significantly 
improved cardiac function, reduced remodeling and 
pyroptosis via miR-214-3p and CASP-1 axis, and TGF-
β1/Smads pathway [132].

In another study authors obtained replicated results 
[133]. In line with the above-mentioned findings, Kcn-
q1ot1 was enhanced in AC16 human myocardial cells in 
HG conditions, and followed by an increase of NLRP3, 
CASP-1, IL-1β, and IL-18 expression. It was shown 
that Kcnq1ot1 impacted post-acute myocardial infarc-
tion (AMI) I/R myocardial injury by regulating Adipor1. 
Additionally, Kcnq1ot1 knockdown promoted QT inter-
val prolongation via Kcnq1 gene inhibition. Transfection 
with small interfering RNA (siRNA) downregulated the 
level of those pyroptosis markers, reversed DNA frac-
ture, ameliorated vimentin expression, and reduced  Ca2+ 
overload. Silencing Kcnq1ot1 promoted the decrease of 
CASP-1 mRNA and protein expression, as well as the 
increase of miR-214-3p level. What is more, the inhi-
bition of CASP-1 in primary cardiomyocytes resulted 
in reduced  Ca2+ overload and increased miR-214-3p 
expression. In the animal model silencing Kcnq1ot1 and 
CASP-1 produced results consistent with in  vitro out-
come followed by improved cardiac function as amelio-
rated ejection fraction and fractional shortening [133].

HOTAIR is one of the first identified lncRNAs and it 
has a crucial role in the pathophysiology of CVDs [134]. 
Expression of HOTAIR was found significantly down-
regulated in myocardial tissues and serum of patients 
with DCM in comparison to patients with DM and 
healthy controls [135]. In the diabetic model of T1DM, 
the expression of HOTAIR was also found decreased, 
whereas its target miR-34a was found to be overex-
pressed [125]. On the other hand, the overexpression 
of HOTAIR protected against diabetes‐induced cardiac 
hypertrophy and dysfunction. Furthermore, diminished 
levels of fibrotic markers, such as TGF-β, col-I, col-III 
showed that HOTAIR treatment decreased cardiac fibro-
sis. Importantly, the inhibition of HOTAIR enhanced 
HG‐induced inflammation, oxidative stress, and apop-
tosis, whereas enhancing HOTAIR expression negated 
inflammation of STZ-induced DCM [125]. HOTAIR 
was found to function as a molecular sponge of miR‐34a 
which directly targeted SIRT1, a promising potential tar-
get for the treatment of CVD, and in particular DCM 
[125, 136].

The above-mentioned studies indicate that the influ-
ence of LncRNAs on CASP-1, NLRP3, SIRT1 and TGF-β 
pathways presents as a new significant pathophysiology 
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mechanism of cardiac remodeling in DCM and stands as 
a possible future therapeutic target (Fig. 2) (Table 2).

NF-κB and TNF signaling pathways are involved 
in cardiomyocyte injury mediated by LncRNAs
Myocardial damage resulting from an imbalance in the 
ROS generation and inflammation might be a conse-
quence of DM associated hyperglycemia or hyperlipi-
demia [137]. For example, the excess saturated fatty acids, 
especially palmitic acid (PA), found in patients with DM 
may deposit in cardiomyocytes and cause lipotoxic injury 
[138]. Cardiomyocytes treated with PA were found to 
produce significantly upregulated inflammatory factors 
TNFα and IL-1β, along with MALAT1, which belongs to 
the lncRNA family. Recently MALAT1 has been reported 
to play a crucial role in cardiomyocytes ischemia reper-
fusion damage [139]. On the other hand, the silencing 
of MALAT1 expression decreased the range of myocar-
dial injury by reducing biomarkers of myocardial dam-
age, lactate dehydrogenase (LDH) and CK-MB, as well 
as by increasing sponge-miR-26 expression [124]. What 
is important, miR-26 inhibits TLR4/NF-κB inflammatory 

signaling pathway by binding to its target gene, HMGB1. 
Furthermore, manipulation of MALAT1/miR-26 expres-
sion revealed the potential role of these molecules in 
ameliorating PA-induced cell death via TNFα apoptosis 
pathway. MALAT1 inhibition results in the alleviation 
of SFA-induced myocardial inflammatory injury via the 
miR-26a/HMGB1/TLR4/NF-κB axis [124].

In HG conditions ECs exhibit markedly upregulated 
both MALAT1 expression and SAA3, inflammatory 
ligand, and target of MALAT1 [140]. Those changes are 
followed by the increased expression of inflammatory 
markers, i.e. IL-6 and TNFα. The silencing of MALAT1 
was found to result in the reduction of IL-6 and TNFα 
expression, even in the presence of SAA3, but cytokine 
levels were reversed only partially. It indicates that there 
are other pathways than MALAT1-SAA3 that play a role 
in HG stress regulation [140].

ANRIL is located at locus with the strongest genetic 
susceptibility for CVD in the chromosome 9p21 region 
and was shown to control the expression of CDH5 and 
HBEGF gene involved in vascular permeability, leuko-
cyte transmigration and inflammation [141]. ANRIL 

Fig. 2 The possible therapeutic mechanism of lncRNAs‑contributed to the oxidative stress, inflammation and cardiac function process in diabetic 
cardiomyopathy. CASP-1 Caspase 1, CK-MB creatine kinase myocardial band, GSDMD-N N‑terminal of gasdermin D, HMGB1 high mobility group 
box 1, HOTAIR HOX transcript antisense intergenic RNA, IL interleukin, Kcnq1ot1 KCNQ1 overlapping transcript 1, LDH lactate dehydrogenase, LncRNA 
long non‑coding RNA, MALAT1 metastasis‑associated lung adenocarcinoma 1, miR microRNA, mRNA messenger RNA, NLRP3 nod‑like receptor 
protein 3, NF-κB nuclear factor kappa‑light‑chain‑enhancer of activated B cells, ROS reactive oxygen species, SAA3 serum amyloid antigen 3, SIRT1 
Sirtuin 1, TLR4 toll‑like receptor 4, TNFα transforming growth factor β, VDAC1 voltage‑dependent anion channel 1
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was found to be upregulated along with elevated lev-
els of TNFα in the myocardium of diabetic rats, which 
suggests its association with the development of DCM 
[142]. ANRIL silencing leads to the decreased levels of 
CK-MB and LDH, which indicates that interference of 
ANRIL expression can improve cardiac function index. 
Moreover, plasma levels of TNFα, IL-6 and IL-1β levels 
were found to be significantly elevated in the diabetic 
model, though ANRIL expression interference dimin-
ished the level of these cytokines. Novel ANRIL-based 
therapeutic strategies can offer a promising approach 
to inhibit cardiomyocytes fibrosis, apoptosis and ROS 
generation in DCM treatment [142].

By and large, the downregulation of MALAT-1 
decreases the range of myocardial lipotoxic injury and 
reduces inflammation under HG conditions. Interfer-
ing ANRIL expression with siRNA alleviates myocar-
dial remodeling in diabetic rats, and decreases the 
level of inflammatory cytokines including TNFα. Sub-
sequent studies should answer whether MALAT1 and 
ANRIL can serve as a drug target in chronic diabetic 
complications (Fig. 2) (Table 2).

LncRNAs targeting HMGA1
High-mobility group AT-hook 1 (HMGA1) is a key 
partaker in cardiovascular complications of diabetes, 
both at the vascular and the cardiac level [143, 144]. 
HMGA1 expression is modulated by miRNAs known to 
be involved in cardiovascular disease, such as Let-7 and 
miR-26a [145]. More recently, a number of lncRNAs are 
emerging as regulators of HMGA1. SNHG1, the expres-
sion of which is induced by oxygen deprivation, medi-
ates cardiomyocyte hypertrophy via targeting miR-15a/
HMGA1 [146–148]. HOTTIP has been shown to regulate 
the miR-218/HMGA1 axis [149, 150]. This is particularly 
interesting, as both HMGA1 and miR-218 are involved 
in the development of cardiovascular complications in 
diabetes [24, 151]. LncRNA GACAT3 acts as a compet-
ing endogenous RNA of HMGA1 [152]. The increased 
understanding of the modulation of HMGA1 expression 
might pave the way to both diagnostic and therapeutic 
applications (Fig. 2) (Table 2).

Current perspectives and limitations
Numerous studies have shown that miRNAs and lncR-
NAs could act as potential biomarkers as well as novel 
treatments in DCM. In Fig.  3 miRNAs/lncRNAs as 
potential therapeutics was presented.

Fig. 3 MiRNAs and lncRNAs as therapeutics in diabetes‑induced cardiomyopathy. ↑ indicates the mimic‑use as treatment, ↓ indicates inhibitor‑use 
as treatment against diabetic cardiomyopathy. ANRIL antisense non‑coding RNA in the INK4 locus, H19 imprinted maternally expressed transcript, 
HOTAIR HOX transcript antisense intergenic RNA, IL interleukin, Kcnq1ot1 KCNQ1 overlapping transcript 1, lncRNA long non‑coding RNA, MALAT1 
metastasis‑associated lung adenocarcinoma 1, miRNA microRNA, miR; mRNA messenger RNA, TGFβ transforming growth factor β, TNFα tumor 
necrosis factor‑alpha
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To summarize and present the published data of 
miRNAs and lncRNAs involved in pathophysiology of 
DCM, we have generated Fig.  4 regarding ncRNAs and 
their target genes, affecting biological processes. Litera-
ture data (Tables 1 and 2) was transformed into a tabu-
lar network file. Cardiac fibrosis, hypertrophy, oxidative 
stress, inflammation, apoptosis, autophagy, and pyropto-
sis were presented. The miRNA, lncRNA and their tar-
gets are shown as nodes and connections between them 
as edges. Visualization of the network was performed 
using Cytoscape v3.7.2. Additional information regarding 
model organisms and ncRNAs expression changes shown 
in the studies was used for visual mapping of the nodes. 
According to this network (Fig. 4), we can conclude that 
miR-146a and miR-195 appear to be the most promis-
ing miRNAs as regulators in DCM, since those miRNAs 
placed in the center of the network, can target at least six 

different genes and can regulate different biological pro-
cesses involved in DCM, such as inflammation, hyper-
trophy, apoptosis, or oxidative stress (confirmed in the 
literature by experimental analysis). Furthermore, to date 
most of the studies have aimed to analyze the impact of 
lncRNAs MALAT1 and Kcnq1ot1 in DCM. MALAT1 
was found to be associated with inflammation and 
apoptosis processes, whereas Kcnq1ot1 association was 
identified with pyroptosis, cardiac fibrosis, and inflam-
mation. Importantly, as it is presented in Fig.  4 those 
lncRNAs can regulate at least 6 different genes and can 
sponge miRNAs. Important to note that miR-146a and 
those lncRNAs (MALAT1 and Kcnq1ot1) were studied 
not only in the in vitro and in vivo analysis, but were also 
demonstrated in human studies [71, 124, 132, 133].

On the other hand, as it is summarized in Fig. 4, sev-
eral studies have shown that the upregulation of ANRIL 

Fig. 4 Summarizing graph showing information from the studies evaluating miRNAs and lncRNAs as potential biomarkers in diabetic 
cardiomyopathy. The figure was generated using data from the published literature regarding ncRNAs, their targets and affected biological 
processes. Literature data (Figs. 1, 2, Tables 1 and 2) were transformed into a tabular network file. The miRNA, lncRNA and their targets are shown as 
nodes and connections between them as edges. Visualization of the network was performed using Cytoscape v3.7.2. and the Perfuse force layout 
algorithm. Additional information regarding affected biological processes retrieved from publications, model organisms and ncRNAs expression 
changes shown in the studies was used for visual mapping for the nodes
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and downregulation of HOTAIR may have consequences 
in the form of cardiac fibrosis, oxidative stress, apoptosis 
and inflammation processes in DCM. Therefore, future 
studies should focus more on these lncRNAs (HOTAIR 
and ANRIL) as their therapeutic potential may be higher 
than that demonstrated in the current literature.

Measuring their expression in blood components and 
heart tissue may improve the diagnosis and prediction 
of adverse cardiac outcomes. However, the use of lncR-
NAs and miRNAs as biomarkers in clinical practice still 
faces many limitations: (i) a small number of human 
studies describing the role of ncRNAs in the processes 
of oxidative stress and inflammation in DCM; (ii) many 
of the studies described in this review require further 
validation and assessment of their results reproducibil-
ity; (iii) a number of studies that analyzed the importance 
of ncRNAs in DCM used STZ-induced diabetes, which 
resembles T1DM more closely than T2DM. Due to the 
different pathophysiology of T1 and T2 diabetes, further 
research is needed to clarify the differences in expres-
sion pattern of individual miRNAs/lncRNAs related to 
processes underlying DCM in T1DM and T2DM. (iv) 
individual molecules examined in diabetic patients such 
as miR-223 and miR-126 are not specific to this disease 
only; (v) although similar expression of single lncRNAs 
and miRNAs in DCM has been confirmed indepen-
dently by various authors, describing and validation of 
specific biomarker signature patterns in DCM remain 
challenging.

Compared to other types of drugs, ncRNA therapies 
excel in several aspects. Due to the development of bio-
informatics tools including in silico prediction analysis 
and the simple structure of ncRNAs, the mechanism of 
action of these molecules can be predictable. The use of 
miRNAs in therapy allows for the simultaneous targeting 
of several protein-coding genes. Moreover, upregulation 
or downregulation of miRNAs expression to their physi-
ological concentrations allows the restoration of homeo-
stasis [153]. Importantly, ncRNAs are able to target genes 
that are still “undruggable” and unlike regular medica-
tions used today, they have not been found to be affected 
by drug resistance [154].

The use of ncRNA as a therapeutic agent is a promising 
approach with the possibility of treating a wide range of 
human diseases at the molecular level [155]. It is worth 
mentioning that the delivery systems that are successful 
in the in vivo studies differ structurally and chemically. In 
each particular case, special forms of delivery of ncRNAs 
may be necessary to achieve the best efficacy without 
causing harmful side effects. Lipid nanoparticles (LNP) 
seem to be a promising and effective way for ncRNA 
therapy [153]. For example, inclisiran in LNP formula-
tion as a small interfering RNAs (siRNA) against PCSK9 

is used for a gene therapy of primary hyperlipidemias 
[156, 157]. Alternatively, neutral or synthetic polymers 
may be applied for ncRNA therapy. It was shown on an 
animal model that in post-infarcted heart intracoronary 
injection of an antagomiR-92 encapsulated in poly(lactic-
co-glycolic acid) stimulated angiogenesis, improved myo-
cardial function and prevented against adverse infarct 
remodeling [158]. Moreover, the use of exosomes, which 
are extracellular vesicles released by cells, appears to be 
promising as well. It has been shown that due to their 
favorable pharmacokinetic properties, exosomes can 
serve as an attractive carrier of nucleic acids capable of 
penetrating physiological barriers inaccessible to other 
drug carriers [159, 160]. However, much work is still 
needed in this field. Nevertheless, the potential clinical 
impact is undoubtedly worth the investment.

Conclusion
Several studies highlighted the promising role of these 
molecules as potential therapeutic targets in miRNA- 
and lncRNA-based novel treatments. As described 
above, this therapeutic approach may consist in the 
inhibition by means of antagonists or restoration of loss 
of function molecules with mimics that are similar to 
endogenous molecules. Yet, the detailed mechanism of 
action of the described miRNAs and lncRNAs on cardio-
myocytes oxidative stress and inflammation has not been 
fully explained and more studies need to be conducted. 
Importantly, a single miRNA or lncRNA may target mul-
tiple genes, thus understanding the miRNA–lncRNA 
interaction network and functions, as well as creating an 
effective and inexpensive way of delivering therapeutics 
are prerequisites to apply therapy in the future. A subse-
quent comprehensive in silico analysis may provide novel 
information of signaling pathways involved in pathologi-
cal changes in DCM and identify miRNAs and lncRNAs 
that could potentially serve as therapeutic targets [25, 27, 
161].
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