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Effects of metformin on atrial and ventricular 
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Abstract 

Metformin has been shown to have various cardiovascular benefits beyond its antihyperglycemic effects, including 
a reduction in stroke, heart failure, myocardial infarction, cardiovascular death, and all-cause mortality. However, the 
roles of metformin in cardiac arrhythmias are still unclear. It has been shown that metformin was associated with 
decreased incidence of atrial fibrillation in diabetic patients with and without myocardial infarction. This could be 
due to the effects of metformin on preventing the structural and electrical remodeling of left atrium via attenuating 
intracellular reactive oxygen species, activating 5′ adenosine monophosphate-activated protein kinase, improving 
calcium homeostasis, attenuating inflammation, increasing connexin-43 gap junction expression, and restoring small 
conductance calcium-activated potassium channels current. For ventricular arrhythmias, in vivo reports demon-
strated that activation of 5′ adenosine monophosphate-activated protein kinase and phosphorylated connexin-43 
by metformin played a key role in ischemic ventricular arrhythmias reduction. However, metformin failed to show 
anti-ventricular arrhythmia benefits in clinical trials. In this review, in vitro and in vivo reports regarding the effects of 
metformin on both atrial arrhythmias and ventricular arrhythmias are comprehensively summarized and presented. 
Consistent and controversial findings from clinical trials are also summarized and discussed. Due to limited numbers 
of reports, further studies are needed to elucidate the mechanisms and effects of metformin on cardiac arrhythmias. 
Furthermore, randomized controlled trials are needed to clarify effects of metformin on cardiac arrhythmias in human.
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Introduction
Metformin initially received approval from the U.S. Food 
and Drug Administration for type 2 diabetes in 1995 [1]. 
Since then, an accumulating body of evidence has shown 
various benefits of metformin beyond the antihypergly-
cemic effects [2]. In the case of cardiovascular protection, 
it has been shown that metformin exerted many benefits 
including a reduction in blood pressure, left ventricular 
mass [3], stroke [4], heart failure [5, 6], myocardial infarc-
tion (MI), cardiovascular death, and all-cause mortality 

[7–10]. Several mechanisms behind the cardioprotec-
tive effects have been proposed. Metformin is known as 
5′ adenosine monophosphate-activated protein kinase 
(AMPK) activator. Metformin activates AMPK through 
tyrosine-protein kinase c-Src/phosphatidylinositol-3-ki-
nase (PI3K) pathway activation [11], and/or increased 
AMP:ATP ratios via inhibition of mitochondrial complex 
1 [12]. Once activated, AMPK stimulated endothelial 
nitric oxide synthase, fatty acid oxidation, glucose trans-
port, glycolysis, cellular calcium handling, ATP-sensitive 
potassium channels (KATP), autophagy, and inhibited 
protein synthesis, cell proliferation, endoplasmic reticu-
lum stress, endothelial lipotoxicity, and NF-kB pathway, 
which helped conserve/generate ATP, prevent necrosis/
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apoptosis, decrease oxidative stress, decrease inflamma-
tion, and prevent atherosclerosis [11, 13].

During ischemic/reperfusion injury, metformin could 
reduce myocardial infarct size by preserving energy 
homeostasis via an increase in myocardial adenosine 
5′ monophosphate-activated protein kinase (AMPK) 
activity [14], and stimulating adenosine receptors via 
increased intracellular formation of adenosine [15]. Once 
the A1, A2A, A2B, and A3 adenosine receptors in myo-
cardial cells were stimulated, they coupled to G proteins 
and triggered a range of mostly beneficial responses. 
These involved activation of protein kinase C, phosphati-
dylinositol-3-kinase/survival protein kinases (PI3K/Akt), 
and mitogen-activated protein kinase (MAPK), which 
ultimately targeted mitochondrial ATP-sensitive potas-
sium (KATP) channels and limited the opening of mito-
chondrial permeability transition pores (mPTP), leading 
to protection against necrosis and apoptosis [16–18].

In diabetes-related vasculopathy, metformin was shown 
to decrease low-density lipoprotein-cholesterol (LDL-C) 
which may retard the progression of atherosclerosis [19, 
20]. However, it has been shown that metformin may 
not reduce LDL-C, and the anti-atherosclerotic effect of 
metformin could be independent of lipids-lowering effect 
[21] and through the improved endothelial function via 
AMPK [22], downregulation of angiotensin II type 1 
receptors, increased antioxidant superoxide dismutase-1 
[23], increased cholesterol efflux in macrophages, and 
decreased plasminogen activator inhibitor type 1 activity, 
fibrinogen level, C-reactive proteins protein, and NF-kB 
pathway activation in the vascular wall [24–26]. Heart 
rate variability, which reflects sympathovagal balance 
and risk of cardiovascular death in diabetes [27], was also 
improved following metformin treatment [28].

Despite these cardiovascular benefits of metformin, the 
roles of metformin on the antiarrhythmic effects are still 
unclear. In this review, reports regarding the effects and 
mechanisms of metformin on cardiac arrhythmias are 
comprehensively summarized and presented. Consist-
ent findings and controversial reports from in  vivo and 
clinical studies are also presented and discussed. This 
information could provide an important foundation for 
further work on the benefits of metformin as an antiar-
rhythmic agent in the future.

Effects of metformin on atrial arrhythmias: 
evidence from in vitro and in vivo studies
Atrial fibrillation (AF) is the most common arrhythmia 
in clinical practice, and has been known for its progres-
sive nature and for heightening the risk of stroke [29]. 
AF mainly triggered by the pulmonary veins [30] and 
is perpetuated by multiple wavelets [31, 32] and rotors 
[33, 34] in the left atrium (LA). Specific stressors, such 

as heart failure, diabetes, hypertension, obesity, coro-
nary artery disease, aging, or genetic predisposition, 
have been shown to cause atrial dilatation, interstitial 
fibrosis, and shortened atrial effective refractory period 
(AERP) in the LA [29]. An increased atrial pressure in 
heart failure led to atrial dilatation and fibrosis, which 
is the structural substrate for AF [35]. It has been dem-
onstrated that insulin resistance and diabetes induced 
structural, electrical, electro-mechanical, and auto-
nomic remodeling in atria, which subsequently become 
arrhythmogenic substrates for AF [36]. An increased 
transforming growth factor-beta (TGF-β), connective 
tissue growth factor expression, and diastolic dysfunc-
tion also led to atrial dilation and fibrosis [36, 37]. An 
increased L-type calcium current (ICa,L), decreased 
connexin-43 (Cx43) expression, and reduced sodium 
current could lead to prolonged action potential dura-
tion (APD), increased atrial effective refractory period 
(AERP) dispersion, and conduction slowing [36, 37]. 
The combination of conduction delay and atrial fibrosis 
was shown to lead to excitation-contraction uncoupling 
[36]. Conversely, AF itself can lead to worsened heart 
failure due to irregular ventricular filling, loss of atrial 
contraction, rapid ventricular rates, and tachycardia-
induced cardiomyopathy [35]; adverse LA structural 
remodeling, including myolysis, glycogen deposition, 
and electrical remodeling, resulting in the promoting of 
the perpetuation of AF and the setting off of a vicious 
cycle known as “AF begets AF” phenomenon [38, 39].

AMPK can be activated by metabolic stress and AF, 
and helps maintain L-type calcium channel current 
(ICa,L), ICa,L-triggered Ca2+ ion transients amplitude, 
sarcoplasmic reticulum Ca2+ content, and cell contrac-
tility [40]. Chronicity of AF affects AMPK expression in 
dogs and humans, with increased AMPK in paroxysmal 
AF, while paradoxically decreased AMPK in longstand-
ing persistent AF [40–43]. Nonetheless, metformin 
has been shown to further increase AMPK expres-
sion in both situations [41, 42], along with improv-
ing insulin resistance, thus it may help prevent atrial 
arrhythmogenesis.

After rapid atrial pacing in non-diabetic HL-1 atrial 
cells, metformin was shown to prevent adverse cellular 
remodeling by attenuating tachy-induced myolysis and 
reducing intracellular reactive oxygen species (ROS) [44]. 
In neonatal rat cardiomyocytes, metformin attenuated 
rapid pacing-induced shortened field potential dura-
tion (FPD) by increasing Cx43 gap junction and zonula 
occluddens-1 (ZO-1) expression via AMPK activation 
[42]. Not only the direct effects on atrial cells, met-
formin could improve calcium homeostasis in HL-1 cells 
by attenuating inflammation of the co-cultured adipo-
cytes via an increased peroxisome proliferator-activated 



Page 3 of 14Nantsupawat et al. Cardiovasc Diabetol          (2020) 19:198 	

receptor gamma (PPARγ)/adiponectin (APN) and sup-
pressed tumor necrosis factor-alpha (TNFα) [45].

Metformin concentration used in the cell experiments 
were mostly supra-pharmacological doses. Maximal 
metformin approved daily dose of 2.5 g results in plasma 
level of 0.01–0.04 mmol/L [46], while metformin concen-
tration used in the cell experiments ranged from 0.5 to 
4 mmol/L [42, 44, 45]. Although low and high metformin 
concentration can both activate AMPK, the high concen-
tration (> 0.25  mmol/L) also exerted its effects through 
non-AMPK dependent pathways [46]. Therefore, one 
should be cognizant when attempting to imply mecha-
nisms and effects of metformin from in vitro reports to 
clinical studies.

In non-diabetic dogs, rapid atrial pacing (AF model) 
increased lipid deposition in the left atrial appendages 
which was associated with AERP shortening and dis-
persion [41]. These structural and electrical changes are 
substrates for AF. Administration of metformin for two 
weeks prior to rapid atrial pacing improved fatty acid 
β-oxidation via the AMPK/PPAR-α/very long-chain spe-
cific acyl-CoA dehydrogenase (VLCAD) signaling path-
way, resulting in decreased lipid deposition in the left 
atrial appendages, and therefore prevented AERP short-
ening/dispersion. Another study with rapid atrial pacing 
in dogs showed similar metformin benefits in attenuat-
ing shortened AERP, AERP dispersion, and AF reduction 
via AMPK/Cx43 pathway [42]. Cx43 is the predominant 
gap junction protein in the heart. AF caused a reduction 
in atrial Cx43 protein in pigs [47, 48]. Cx43 gene trans-
fer restored atrial Cx43 protein content, improved atrial 
conduction, and prevented AF [47, 48]. AMPK activation 
promoted KATP opening and surface expression, leading 
to inhibition of gap junction permeability, increase Cx43 
expression, and subsequently attenuate atrial arrhythmia 
[49].

Obesity and diabetes were independently associated 
with increased risk of new-onset AF. This is partly due 
to an expansion of epicardial adipose tissue (EAT) under 
these conditions [50]. EAT is in direct contact with atrial 
tissues. EAT infiltration and adipokines secreted by EAT 
could cause atrial inflammation, structural and electrical 
remodeling, and subsequent AF [51]. Chronic metformin 
for 6 weeks reduced EAT, inhibited reactive oxygen 
species (ROS)/NF-kB, decreased pro-inflammatory 
adipokines (IL-6, TNF-α, and TGF-β1), upregulated adi-
ponectin in LA/EAT, reduced atrial fibrosis, and AF [45].

Small conductance calcium-activated potassium (SK) 
channels affect cardiac action potential duration dur-
ing the late-phase repolarization [52]. SK channels are 
activated by calcium, therefore integrate intracellular 
calcium changes with membrane potential. SK channels 
express more in atrial than ventricular myocytes [52]. 

There are three subtypes, SK1 (KCa2.1), SK2 (KCa2.2), and 
SK3 (KCa2.3), which are encoded by KCNN1, KCNN2, 
and KCNN3, respectively [52]. Fu et  al. reported an 
association of SK channels and atrial arrhythmias in dia-
betic rats [53]. They demonstrated that decreased SK2, 
increased SK3 expression, distorted current-voltage rela-
tionship, and overall SK current reduction in diabetic rats 
led to prolonged APD and subsequent atrial arrhythmias. 
Chronic metformin treatment for 3 months reduced 
atrial arrhythmias by normalizing the APD via an 
increased SK2, decreased SK3, increased overall SK cur-
rent, and restored normal current-voltage relationship 
[53]. Specifically, overexpression of SK3 has been shown 
to be associated with heart block and atrial arrhythmias 
[53, 54]. Moreover, the role of SK channels in human AF 
was reported in genome-wide association analysis, dem-
onstrating an association between single-nucleotide pol-
ymorphism in KCNN3 gene with lone AF [52].

In conclusion, rapid atrial pacing induced AF via struc-
tural (increased ROS, myolysis, lipid deposition, left 
atrial fibrosis) and electrical (shortened AERP, increased 
AERP dispersion) remodeling. Metformin was shown to 
attenuate this adverse remodeling and break in the “AF 
begets AF” process. Despite limited in vitro and in vivo 
reports as summarized in Tables  1 and 2, these in vitro 
and in vivo studies consistently supported the beneficial 
effects of metformin on atrial arrhythmias via protection 
against atrial structural and electrophysiological remod-
eling in both diabetic and non-diabetic settings. Figure 1 
summarized mechanisms behind the protective effects of 
metformin on atrial arrhythmias.

Effects of metformin on atrial arrhythmias: 
evidence from clinical trials
Observational studies demonstrated that metformin was 
associated with a reduction in AF incidence, when com-
pared to other anti-diabetic medications, among patients 
who had diabetes or presented with acute MI [44, 55, 
56]. However, the anti-atrial arrhythmias effects seem-
ingly vanished in patients of older age (> 65  years old) 
or had more advanced diabetes [44, 55, 57]. One study 
has shown an association between longer DM dura-
tion and more advanced atrial remodeling [58]. Older 
age is known to be associated with more comorbidities 
(e.g. coronary artery disease, congestive heart failure, 
hypertension), more fibrous tissue interspersed between 
myocytes, and electrophysiologic changes of LA [59, 
60]. These factors could contribute to the fewer anti-AF 
effects of metformin seen in these populations. Due to 
the limitations as an observational cohort, the dose and 
duration of metformin used in these studies varied and 
were not reported in detail, thus limiting the analysis of 
adequacy of dosage and treatment duration.
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AF following cardiac surgery occurs not uncommonly 
with an incidence ranged from 5–64%, and it is associated 
with prolonged hospital stay, extra cost of care, greater 
in-hospital mortality, and worse long-term survival [61]. 
Several mechanisms have been proposed to be account-
able for post cardiac surgery AF, including perioperative 
inflammation, pericarditis, electrical remodeling, auto-
nomic imbalance, atrial incision, perioperative ischemia, 
and increased oxidative stress [61, 62]. Since metformin 
has been shown to exert benefits on reducing oxida-
tive stress and inflammation  [23, 26, 44, 63–67], it was 
expected that it might reduce AF in these circumstances. 

Unfortunately, a randomized controlled trial of 3-day 
metformin treatment before surgery did not decrease 
troponin I level or incidence of post cardiac surgery AF 
in patients without diabetes as compared to placebo [68]. 
Consistent with this report, metformin was also not asso-
ciated with decreased post cardiac surgery AF in a retro-
spective cohort of matched DM patients [69]. Although 
no in  vitro or in  vivo studies had directly looked at the 
performance of metformin on atrial arrhythmias under 
post cardiac surgery circumstances, these results may 
imply an ineffectiveness of metformin in preventing AF 
in post cardiac surgery in the case of both diabetic and 

Fig. 1  Effects of metformin on atrial arrhythmias. Atrial fibrillation, obesity, insulin resistance, and diabetes mellitus can cause atrial structural, 
electrical, electromechanical, and autonomic adverse remodeling. These remodelings become arrhythmogenic substrates and set out a vicious 
cycle known as “AF begets AF”. Metformin exerts protective effects through various mechanisms. Red arrow shows adverse effects from atrial 
fibrillation, obesity, insulin resistance, and diabetes. Green rectangle shows pathway that metformin blocked. Solid green arrow shows protective 
mechanisms of metformin directly demonstrated from the studies in Tables 1 and 2. Dotted green arrow indicates protective mechanism of 
metformin from other studies in the text
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non-diabetic patients. All of these reports are summa-
rized in Table 3.

Effects of metformin on ventricular arrhythmias: 
evidence from in vivo studies
Ventricular arrhythmias, which include ventricular 
tachycardia and ventricular fibrillation (VT/VF), can 
occur from ischemic and reperfusion (I/R) injury, post-
myocardial infarction scar-related reentry, cardiac chan-
nelopathy, medication-induced long QT syndrome, or 
idiopathic [70]. Increased QT interval and QT dispersion 
reflects prolonged repolarization and inhomogeneity of 
repolarization, respectively [71]. In diabetes, there are 
increased corrected QT (QTc) interval and QT disper-
sion possibly due to alterations in voltage-gated potas-
sium channels [72, 73] and L-type calcium channels [74], 
and these were associated with a higher risk of sudden 
cardiac death [75–77]. In animal models, metformin was 
shown to decrease QT dispersion, and reduce APD and 
QT interval by inhibiting ICa,L  [78, 79]. Post-myocardial 
infarction ventricular arrhythmias occur from reentry 
around the scarred and slow-conduction myocardial tis-
sues [70]. Administration of metformin for 2 weeks prior 
to MI induction in mice could reduce cardiac conduction 
delay (prolonged PR, QT interval, APD, and conduction 
velocity), rescue inwardly rectifying potassium channel 
2.1 (Kir2.1), and increased Cx43 expression by regulating 
microRNA-1 overexpression [80]. I/R injury performed 
in animal studies can largely be divided into 2 models, 
one with partial occlusion of coronary flow or a non-ST 
elevation myocardial infarction (NSTEMI) I/R model, 
and another one with total occlusion of coronary flow or 
ST elevation myocardial infarction (STEMI) I/R model.

In the STEMI I/R rat model, chronic metformin treat-
ment for 3 weeks has been shown to improve cardiac 
mitochondrial function, intracellular calcium handling, 
left ventricular pressure rise (LV dP/dt), and heart rate 
variability [63]. It also reduced markers for oxidative 
stress (Malondialdehyde- MDA) and infarct size. How-
ever, chronic metformin treatment alone was not able 
to reduce arrhythmia score or mortality rate [63]. Only 
when chronic metformin treatment was combined with 
vildagliptin, could the combination increase phosphoryl-
ated Connexin43 (pCX43), and consequently delay time 
to first VT/VF onset, and reduce arrhythmia score, and 
mortality rate [63]. In addition, there was no difference of 
plasma glucose level between the control and the treat-
ment groups, suggesting a direct anti-arrhythmic effect 
of metformin/vildagliptin beyond an anti-hyperglyce-
mia [63]. These findings are consistent with other stud-
ies that showed the importance of the role of pCX43 in 
the pathogenesis of VT/VF in STEMI models [81–85]. 
Although studies have been performed in STEMI I/R 

rodent models which showed the beneficial effects of 
acute metformin administration (18 h to 2 days prior to 
ischemia), in reducing infarct size and improving LVEF, 
arrhythmic outcomes were not measured [14, 86, 87].

In a NSTEMI I/R pig model, acute injection of met-
formin 3 h prior to ischemia did not provide any benefits 
regarding AMPK activation, LV dP/dt, electrophysiologi-
cal changes, and most importantly VT/VF incidence [88]. 
Unlike acute metformin treatment, chronic metformin 
treatment for 2–3 weeks in a partial coronary artery 
occlusion model was shown to reduce VT/VF incidence 
by preventing monophasic action potential shortening 
and reducing the dispersion of action potential dura-
tion between the ischemic/infarct area and normal 
myocardium via AMPK activation, leading to preserva-
tion of myocardial ATP [88]. The anti-VT/VF effect of 
metformin was not related to a reduction in blood glu-
cose because it was continuously maintained during the 
experiments at 4.5 ± 0.5 mmol/L with 10% dextrose solu-
tion in both control and treatment groups [88].

Evidence from these in  vivo reports suggested that 
chronic treatment with metformin alone might reduce 
VT/VF incidence in the NSTEMI model, whereas the 
combination of chronic metformin and vildagliptin was 
required in order to reduce VT/VF in the STEMI model. 
In contrast, acute metformin treatment did not have any 
effect on VT/VF events in the NSTEMI model. However, 
acute metformin treatment was not tested in the STEMI 
model. All of these reports are summarized in Table  4. 
Figure 2 summarized mechanisms behind the protective 
effects of metformin on ventricular arrhythmias.

Effects of metformin on ventricular arrhythmias: 
evidence from clinical trials
Patients presented with VT/VF who had diabetes portend 
worse long-term all-cause mortality at 2  years as com-
pared to patients without diabetes  [89]. Hyperglycemia 
was associated with prolonged QT interval, increased QT 
dispersion, and higher risk of developing VT in acute MI 
patients [90, 91]. Whether hyperglycemia is the cause of 
ventricular arrhythmias, or merely a marker of increased 
sympathetic activity remains uncertain [92]. Although 
metformin was associated with a decrease in QTc in dia-
betic patients [93], there was no available data regarding 
the relationship between achieving acute hyperglycemic 
control with metformin/anti-diabetic medications and 
ventricular arrhythmic outcomes.

There were only two clinical trials that directly stud-
ied the effects of metformin on ventricular arrhythmias 
[56, 94]. In a randomized crossover trial, 19 diabetic 
patients with coronary artery disease (CAD) were ran-
domized to receive either metformin 500  mg twice 
daily for 2 weeks or placebo. The primary outcomes 
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were number of premature ventricular contractions/
non-sustained VT (PVC/NSVT) beats measured by 
24-h Holter monitor [94]. Metformin failed to reduce 
PVC/NSVT in diabetic CAD patients compared to 
placebo [94]. However, the results should be inter-
preted with caution due to the small sample size and 
a lower-than-average dosage (1000  mg per day) [94] 
as compared to other studies with cardiovascular ben-
efits (1700–2000  mg per day) [8]. Also, this particular 
study was not performed under ischemic/reperfusion 
circumstances, which may explain why metformin did 
not reveal its anti-ventricular arrhythmia benefits as 
opposed to the positive findings reported in an animal 
I/R injury model [88]. Therefore, the PVC/NSVT may 
be associated with mechanisms other than ischemia, 
such as automaticity or triggered activity, and might 
not indicate a poor prognosis.

The second study was a retrospective cohort of hos-
pitalized diabetic patients who presented with acute MI 
[56]. Unfortunately, metformin was not associated with 
decreased VT/VF incidence within 28-days post MI [56]. 
Similar to the first report mentioned above, this report 
has several limitations, including no data regarding 
type of MI, unreported metformin dosage and duration, 
and underutilized beta blocker (23%) and thrombolytic 

reperfusion therapy (21%). All of these reports are sum-
marized in Table 5.

Ongoing trials and future research
Two ongoing studies are being carried out regarding the 
effects of metformin on AF. The first study is a phase 4 
randomized open-label study aiming to see whether 
metformin as compared to placebo could reduce AF 
burden in patients with paroxysmal or persistent AF 
who have cardiovascular implantable electronic devices 
(NCT03603912, TRIM-AF study) [95]. The second study 
was a phase 2 randomized clinical trial which aimed 
to see whether metformin could help AF patients stay 
within a normal sinus rhythm after catheter ablation. 
This second study had an early termination due to unmet 
enrollment expectations (NCT02931253) [96]. Unfortu-
nately, there is no ongoing clinical trial of the effects of 
metformin on ventricular arrhythmias (Table 6).

To progress from the in vivo AF studies, it might be 
helpful to examine the role of metformin in AF trigger. 
Since the available reports only assessed AF inducibility 
and duration after rapid atrial pacing [42, 45], or spon-
taneous AF detected by surface electrocardiogram [53], 
this information is not sufficient to determine whether 
metformin reduced AF by suppressing pulmonary vein 

Fig. 2  Effects of metformin on ventricular arrhythmias. Ischemia causes reduction in myocardial ATP and finally results in ventricular fibrillation. 
Chronic metformin use exerts its energy guardian effects mainly via AMPK activation. Additionally, metformin prevents QT interval prolongation, 
QT dispersion, and conduction velocity delay by regulating microRNA-1 and L-type calcium channels. Only the combination of metformin and 
vildagliptin could increase p-Cx43 and subsequently reduce ventricular fibrillation. Green rectangle and arrow shows protective mechanisms of 
metformin
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triggers or modulating reentry substrate. For in  vivo 
ventricular arrhythmia study, it would be of interest to 
see whether metformin alone or in combination with a 
dipeptidyl peptidase-4 inhibitor could reduce ventricu-
lar arrhythmias or sudden cardiac death in acute coro-
nary syndrome patients. These hypotheses remain to be 
elucidated in the future clinical studies.

Although there are some borderline or contradic-
tory results, ample scientific evidence exists to indicate 
that metformin has potential beneficial effects with 
regard to atrial and ventricular arrhythmias in human. 
Adequately-powered randomized controlled trials are 
needed to clarify the actual effects of metformin both 
in diabetic and non-diabetic populations. In the case 
of a study into atrial arrhythmias, use of continuous 
rhythm monitoring devices, such as an implantable 
loop recorder, pacemaker, or defibrillator, is strongly 
encouraged in order to avoid underdetection of AF.

Conclusions
Basic research has demonstrated the protective effects 
of metformin on both atrial and ventricular arrhythmias 
via multiple molecular, cellular, electrophysiological, and 
structural changes. These findings are mostly translated 
into anti-atrial arrhythmic benefits seen in clinical trials. 
However, there are exception in some instances, such as 
in elderly diabetic or post cardiac surgery patients. Cur-
rently, there are very limited clinical reports on the effects 
of metformin on ventricular arrhythmias and the number 
of ongoing trials is very small. At this point, proper ran-
domized controlled trials are of the utmost importance 
in order to clarify the beneficial effects of metformin on 
cardiac arrhythmias.

Table 5  Effects of metformin on ventricular arrhythmias: reports from clinical trials

AMI acute myocardial infarction, CAD coronary artery disease, DM diabetes mellitus, PVC/NSVT premature ventricular contraction/non-sustained ventricular 
tachycardia, VT/VF ventricular tachycardia/ventricular fibrillation

Model Type of study/No. 
of patients/FU

Metformin (dose/
duration)

Key results and major 
findings

Interpretation References

DM patients with CAD 
monitored via 24-h 
Holter monitor

(mean age 55)

Randomized crossover 
design/19 patients/2 
weeks

Metformin 500 mg BID 
for 2 weeks

- <-> PVC/NSVT per 
minute of ischemia

Metformin did not reduce 
PVC/NSVT in diabetic 
CAD patients

[94]

Hospitalized DM patients 
with AMI

(mean age 56)

Retrospective cohort/40 
Metformin alone and 
705 others/28-day post 
AMI

Various doses - <-> 28-days VT/VF 
incidence

Metformin alone or in 
combination with other 
anti-DM drugs was 
not associated with 
decreased 28-day post 
AMI VT/VF incidence

[56]

Table 6  Effect of metformin on arrhythmias: ongoing clinical trials

AF atrial fibrillation, CIED cardiovascular implantable electronic device

Model Status Type of study/No. of patients/FU Intervention Primary outcome References

Patients with 
paroxysmal or 
persistent AF 
with CIED

Recruiting Phase 4 Randomized clinical trial/270 patients/2 years - Metformin 
750 mg 
twice daily 
× 2 years

- Lifestyle/
risk factor 
modifica-
tion

Change in %AF burden at 1 year [95]

Patients with AF 
who under-
went AF cath-
eter ablation

Terminated Phase 2 Randomized clinical trial/6 patients/6 months - Metformin 
1000 mg 
twice daily

Number of patients who main-
tain sinus rhythm

[96]
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