Nantsupawat et al. Cardiovasc Diabetol (2020) 19:198
https://doi.org/10.1186/512933-020-01176-4

Cardiovascular Diabetology

REVIEW Open Access

Effects of metformin on atrial and ventricular

®

Check for
updates

arrhythmias: evidence from cell to patient

Teerapat Nantsupawat'?>

and Nipon Chattipakorn?**

, Wanwarang Wongcharoen'?3, Siriporn C. Chattipakorn®?

Abstract

Metformin has been shown to have various cardiovascular benefits beyond its antihyperglycemic effects, including

a reduction in stroke, heart failure, myocardial infarction, cardiovascular death, and all-cause mortality. However, the
roles of metformin in cardiac arrhythmias are still unclear. It has been shown that metformin was associated with
decreased incidence of atrial fibrillation in diabetic patients with and without myocardial infarction. This could be
due to the effects of metformin on preventing the structural and electrical remodeling of left atrium via attenuating
intracellular reactive oxygen species, activating 5’ adenosine monophosphate-activated protein kinase, improving
calcium homeostasis, attenuating inflammation, increasing connexin-43 gap junction expression, and restoring small
conductance calcium-activated potassium channels current. For ventricular arrhythmias, in vivo reports demon-
strated that activation of 5/ adenosine monophosphate-activated protein kinase and phosphorylated connexin-43
by metformin played a key role in ischemic ventricular arrhythmias reduction. However, metformin failed to show
anti-ventricular arrhythmia benefits in clinical trials. In this review, in vitro and in vivo reports regarding the effects of
metformin on both atrial arrhythmias and ventricular arrhythmias are comprehensively summarized and presented.
Consistent and controversial findings from clinical trials are also summarized and discussed. Due to limited numbers
of reports, further studies are needed to elucidate the mechanisms and effects of metformin on cardiac arrhythmias.
Furthermore, randomized controlled trials are needed to clarify effects of metformin on cardiac arrhythmias in human.
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Introduction

Metformin initially received approval from the U.S. Food
and Drug Administration for type 2 diabetes in 1995 [1].
Since then, an accumulating body of evidence has shown
various benefits of metformin beyond the antihypergly-
cemic effects [2]. In the case of cardiovascular protection,
it has been shown that metformin exerted many benefits
including a reduction in blood pressure, left ventricular
mass [3], stroke [4], heart failure [5, 6], myocardial infarc-
tion (MI), cardiovascular death, and all-cause mortality
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[7-10]. Several mechanisms behind the cardioprotec-
tive effects have been proposed. Metformin is known as
5" adenosine monophosphate-activated protein kinase
(AMPK) activator. Metformin activates AMPK through
tyrosine-protein kinase c-Src/phosphatidylinositol-3-ki-
nase (PI3K) pathway activation [11], and/or increased
AMP:ATP ratios via inhibition of mitochondrial complex
1 [12]. Once activated, AMPK stimulated endothelial
nitric oxide synthase, fatty acid oxidation, glucose trans-
port, glycolysis, cellular calcium handling, ATP-sensitive
potassium channels (K,rp), autophagy, and inhibited
protein synthesis, cell proliferation, endoplasmic reticu-
lum stress, endothelial lipotoxicity, and NF-kB pathway,
which helped conserve/generate ATP, prevent necrosis/
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apoptosis, decrease oxidative stress, decrease inflamma-
tion, and prevent atherosclerosis [11, 13].

During ischemic/reperfusion injury, metformin could
reduce myocardial infarct size by preserving energy
homeostasis via an increase in myocardial adenosine
5" monophosphate-activated protein kinase (AMPK)
activity [14], and stimulating adenosine receptors via
increased intracellular formation of adenosine [15]. Once
the Al, A2A, A2B, and A3 adenosine receptors in myo-
cardial cells were stimulated, they coupled to G proteins
and triggered a range of mostly beneficial responses.
These involved activation of protein kinase C, phosphati-
dylinositol-3-kinase/survival protein kinases (PI3K/Akt),
and mitogen-activated protein kinase (MAPK), which
ultimately targeted mitochondrial ATP-sensitive potas-
sium (K,7p) channels and limited the opening of mito-
chondrial permeability transition pores (mPTP), leading
to protection against necrosis and apoptosis [16—18].

In diabetes-related vasculopathy, metformin was shown
to decrease low-density lipoprotein-cholesterol (LDL-C)
which may retard the progression of atherosclerosis [19,
20]. However, it has been shown that metformin may
not reduce LDL-C, and the anti-atherosclerotic effect of
metformin could be independent of lipids-lowering effect
[21] and through the improved endothelial function via
AMPK [22], downregulation of angiotensin II type 1
receptors, increased antioxidant superoxide dismutase-1
[23], increased cholesterol efflux in macrophages, and
decreased plasminogen activator inhibitor type 1 activity,
fibrinogen level, C-reactive proteins protein, and NF-kB
pathway activation in the vascular wall [24-26]. Heart
rate variability, which reflects sympathovagal balance
and risk of cardiovascular death in diabetes [27], was also
improved following metformin treatment [28].

Despite these cardiovascular benefits of metformin, the
roles of metformin on the antiarrhythmic effects are still
unclear. In this review, reports regarding the effects and
mechanisms of metformin on cardiac arrhythmias are
comprehensively summarized and presented. Consist-
ent findings and controversial reports from in vivo and
clinical studies are also presented and discussed. This
information could provide an important foundation for
further work on the benefits of metformin as an antiar-
rhythmic agent in the future.

Effects of metformin on atrial arrhythmias:
evidence from in vitro and in vivo studies

Atrial fibrillation (AF) is the most common arrhythmia
in clinical practice, and has been known for its progres-
sive nature and for heightening the risk of stroke [29].
AF mainly triggered by the pulmonary veins [30] and
is perpetuated by multiple wavelets [31, 32] and rotors
[33, 34] in the left atrium (LA). Specific stressors, such
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as heart failure, diabetes, hypertension, obesity, coro-
nary artery disease, aging, or genetic predisposition,
have been shown to cause atrial dilatation, interstitial
fibrosis, and shortened atrial effective refractory period
(AERP) in the LA [29]. An increased atrial pressure in
heart failure led to atrial dilatation and fibrosis, which
is the structural substrate for AF [35]. It has been dem-
onstrated that insulin resistance and diabetes induced
structural, electrical, electro-mechanical, and auto-
nomic remodeling in atria, which subsequently become
arrhythmogenic substrates for AF [36]. An increased
transforming growth factor-beta (TGF-f), connective
tissue growth factor expression, and diastolic dysfunc-
tion also led to atrial dilation and fibrosis [36, 37]. An
increased L-type calcium current (Ic,;), decreased
connexin-43 (Cx43) expression, and reduced sodium
current could lead to prolonged action potential dura-
tion (APD), increased atrial effective refractory period
(AERP) dispersion, and conduction slowing [36, 37].
The combination of conduction delay and atrial fibrosis
was shown to lead to excitation-contraction uncoupling
[36]. Conversely, AF itself can lead to worsened heart
failure due to irregular ventricular filling, loss of atrial
contraction, rapid ventricular rates, and tachycardia-
induced cardiomyopathy [35]; adverse LA structural
remodeling, including myolysis, glycogen deposition,
and electrical remodeling, resulting in the promoting of
the perpetuation of AF and the setting off of a vicious
cycle known as “AF begets AF” phenomenon [38, 39].

AMPK can be activated by metabolic stress and AF,
and helps maintain L-type calcium channel current
(Icar)s lcay-triggered Ca®" ion transients amplitude,
sarcoplasmic reticulum Ca®" content, and cell contrac-
tility [40]. Chronicity of AF affects AMPK expression in
dogs and humans, with increased AMPK in paroxysmal
AF, while paradoxically decreased AMPK in longstand-
ing persistent AF [40-43]. Nonetheless, metformin
has been shown to further increase AMPK expres-
sion in both situations [41, 42], along with improv-
ing insulin resistance, thus it may help prevent atrial
arrhythmogenesis.

After rapid atrial pacing in non-diabetic HL-1 atrial
cells, metformin was shown to prevent adverse cellular
remodeling by attenuating tachy-induced myolysis and
reducing intracellular reactive oxygen species (ROS) [44].
In neonatal rat cardiomyocytes, metformin attenuated
rapid pacing-induced shortened field potential dura-
tion (FPD) by increasing Cx43 gap junction and zonula
occluddens-1 (ZO-1) expression via AMPK activation
[42]. Not only the direct effects on atrial cells, met-
formin could improve calcium homeostasis in HL-1 cells
by attenuating inflammation of the co-cultured adipo-
cytes via an increased peroxisome proliferator-activated
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receptor gamma (PPARy)/adiponectin (APN) and sup-
pressed tumor necrosis factor-alpha (TNFa) [45].

Metformin concentration used in the cell experiments
were mostly supra-pharmacological doses. Maximal
metformin approved daily dose of 2.5 g results in plasma
level of 0.01-0.04 mmol/L [46], while metformin concen-
tration used in the cell experiments ranged from 0.5 to
4 mmol/L [42, 44, 45]. Although low and high metformin
concentration can both activate AMPK, the high concen-
tration (>0.25 mmol/L) also exerted its effects through
non-AMPK dependent pathways [46]. Therefore, one
should be cognizant when attempting to imply mecha-
nisms and effects of metformin from in vitro reports to
clinical studies.

In non-diabetic dogs, rapid atrial pacing (AF model)
increased lipid deposition in the left atrial appendages
which was associated with AERP shortening and dis-
persion [41]. These structural and electrical changes are
substrates for AF. Administration of metformin for two
weeks prior to rapid atrial pacing improved fatty acid
[B-oxidation via the AMPK/PPAR-a/very long-chain spe-
cific acyl-CoA dehydrogenase (VLCAD) signaling path-
way, resulting in decreased lipid deposition in the left
atrial appendages, and therefore prevented AERP short-
ening/dispersion. Another study with rapid atrial pacing
in dogs showed similar metformin benefits in attenuat-
ing shortened AERP, AERP dispersion, and AF reduction
via AMPK/Cx43 pathway [42]. Cx43 is the predominant
gap junction protein in the heart. AF caused a reduction
in atrial Cx43 protein in pigs [47, 48]. Cx43 gene trans-
fer restored atrial Cx43 protein content, improved atrial
conduction, and prevented AF [47, 48]. AMPK activation
promoted K,1p opening and surface expression, leading
to inhibition of gap junction permeability, increase Cx43
expression, and subsequently attenuate atrial arrhythmia
[49].

Obesity and diabetes were independently associated
with increased risk of new-onset AF. This is partly due
to an expansion of epicardial adipose tissue (EAT) under
these conditions [50]. EAT is in direct contact with atrial
tissues. EAT infiltration and adipokines secreted by EAT
could cause atrial inflammation, structural and electrical
remodeling, and subsequent AF [51]. Chronic metformin
for 6 weeks reduced EAT, inhibited reactive oxygen
species (ROS)/NF-kB, decreased pro-inflammatory
adipokines (IL-6, TNF-a, and TGF-p1), upregulated adi-
ponectin in LA/EAT, reduced atrial fibrosis, and AF [45].

Small conductance calcium-activated potassium (SK)
channels affect cardiac action potential duration dur-
ing the late-phase repolarization [52]. SK channels are
activated by calcium, therefore integrate intracellular
calcium changes with membrane potential. SK channels
express more in atrial than ventricular myocytes [52].
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There are three subtypes, SK1 (K¢,2.1), SK2 (K,2.2), and
SK3 (Kc,2.3), which are encoded by KCNN1, KCNN2,
and KCNNS3, respectively [52]. Fu et al. reported an
association of SK channels and atrial arrhythmias in dia-
betic rats [53]. They demonstrated that decreased SK2,
increased SK3 expression, distorted current-voltage rela-
tionship, and overall SK current reduction in diabetic rats
led to prolonged APD and subsequent atrial arrhythmias.
Chronic metformin treatment for 3 months reduced
atrial arrhythmias by normalizing the APD via an
increased SK2, decreased SK3, increased overall SK cur-
rent, and restored normal current-voltage relationship
[53]. Specifically, overexpression of SK3 has been shown
to be associated with heart block and atrial arrhythmias
[53, 54]. Moreover, the role of SK channels in human AF
was reported in genome-wide association analysis, dem-
onstrating an association between single-nucleotide pol-
ymorphism in KCNN3 gene with lone AF [52].

In conclusion, rapid atrial pacing induced AF via struc-
tural (increased ROS, myolysis, lipid deposition, left
atrial fibrosis) and electrical (shortened AERP, increased
AERP dispersion) remodeling. Metformin was shown to
attenuate this adverse remodeling and break in the “AF
begets AF” process. Despite limited in vitro and in vivo
reports as summarized in Tables 1 and 2, these in vitro
and in vivo studies consistently supported the beneficial
effects of metformin on atrial arrhythmias via protection
against atrial structural and electrophysiological remod-
eling in both diabetic and non-diabetic settings. Figure 1
summarized mechanisms behind the protective effects of
metformin on atrial arrhythmias.

Effects of metformin on atrial arrhythmias:
evidence from clinical trials

Observational studies demonstrated that metformin was
associated with a reduction in AF incidence, when com-
pared to other anti-diabetic medications, among patients
who had diabetes or presented with acute MI [44, 55,
56]. However, the anti-atrial arrhythmias effects seem-
ingly vanished in patients of older age (>65 years old)
or had more advanced diabetes [44, 55, 57]. One study
has shown an association between longer DM dura-
tion and more advanced atrial remodeling [58]. Older
age is known to be associated with more comorbidities
(e.g. coronary artery disease, congestive heart failure,
hypertension), more fibrous tissue interspersed between
myocytes, and electrophysiologic changes of LA [59,
60]. These factors could contribute to the fewer anti-AF
effects of metformin seen in these populations. Due to
the limitations as an observational cohort, the dose and
duration of metformin used in these studies varied and
were not reported in detail, thus limiting the analysis of
adequacy of dosage and treatment duration.
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AF following cardiac surgery occurs not uncommonly
with an incidence ranged from 5-64%, and it is associated
with prolonged hospital stay, extra cost of care, greater
in-hospital mortality, and worse long-term survival [61].
Several mechanisms have been proposed to be account-
able for post cardiac surgery AF, including perioperative
inflammation, pericarditis, electrical remodeling, auto-
nomic imbalance, atrial incision, perioperative ischemia,
and increased oxidative stress [61, 62]. Since metformin
has been shown to exert benefits on reducing oxida-
tive stress and inflammation [23, 26, 44, 63—67], it was
expected that it might reduce AF in these circumstances.

Unfortunately, a randomized controlled trial of 3-day
metformin treatment before surgery did not decrease
troponin I level or incidence of post cardiac surgery AF
in patients without diabetes as compared to placebo [68].
Consistent with this report, metformin was also not asso-
ciated with decreased post cardiac surgery AF in a retro-
spective cohort of matched DM patients [69]. Although
no in vitro or in vivo studies had directly looked at the
performance of metformin on atrial arrhythmias under
post cardiac surgery circumstances, these results may
imply an ineffectiveness of metformin in preventing AF
in post cardiac surgery in the case of both diabetic and



Nantsupawat et al. Cardiovasc Diabetol (2020) 19:198

non-diabetic patients. All of these reports are summa-
rized in Table 3.

Effects of metformin on ventricular arrhythmias:
evidence from in vivo studies
Ventricular arrhythmias, which include ventricular
tachycardia and ventricular fibrillation (VT/VF), can
occur from ischemic and reperfusion (I/R) injury, post-
myocardial infarction scar-related reentry, cardiac chan-
nelopathy, medication-induced long QT syndrome, or
idiopathic [70]. Increased QT interval and QT dispersion
reflects prolonged repolarization and inhomogeneity of
repolarization, respectively [71]. In diabetes, there are
increased corrected QT (QTc) interval and QT disper-
sion possibly due to alterations in voltage-gated potas-
sium channels [72, 73] and L-type calcium channels [74],
and these were associated with a higher risk of sudden
cardiac death [75-77]. In animal models, metformin was
shown to decrease QT dispersion, and reduce APD and
QT interval by inhibiting I, [78, 79]. Post-myocardial
infarction ventricular arrhythmias occur from reentry
around the scarred and slow-conduction myocardial tis-
sues [70]. Administration of metformin for 2 weeks prior
to MI induction in mice could reduce cardiac conduction
delay (prolonged PR, QT interval, APD, and conduction
velocity), rescue inwardly rectifying potassium channel
2.1 (Kir2.1), and increased Cx43 expression by regulating
microRNA-1 overexpression [80]. I/R injury performed
in animal studies can largely be divided into 2 models,
one with partial occlusion of coronary flow or a non-ST
elevation myocardial infarction (NSTEMI) I/R model,
and another one with total occlusion of coronary flow or
ST elevation myocardial infarction (STEMI) I/R model.
In the STEMI I/R rat model, chronic metformin treat-
ment for 3 weeks has been shown to improve cardiac
mitochondrial function, intracellular calcium handling,
left ventricular pressure rise (LV dP/dt), and heart rate
variability [63]. It also reduced markers for oxidative
stress (Malondialdehyde- MDA) and infarct size. How-
ever, chronic metformin treatment alone was not able
to reduce arrhythmia score or mortality rate [63]. Only
when chronic metformin treatment was combined with
vildagliptin, could the combination increase phosphoryl-
ated Connexin43 (pCX43), and consequently delay time
to first VI/VF onset, and reduce arrhythmia score, and
mortality rate [63]. In addition, there was no difference of
plasma glucose level between the control and the treat-
ment groups, suggesting a direct anti-arrhythmic effect
of metformin/vildagliptin beyond an anti-hyperglyce-
mia [63]. These findings are consistent with other stud-
ies that showed the importance of the role of pCX43 in
the pathogenesis of VI/VF in STEMI models [81-85].
Although studies have been performed in STEMI I/R
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rodent models which showed the beneficial effects of
acute metformin administration (18 h to 2 days prior to
ischemia), in reducing infarct size and improving LVEF,
arrhythmic outcomes were not measured [14, 86, 87].

In a NSTEMI I/R pig model, acute injection of met-
formin 3 h prior to ischemia did not provide any benefits
regarding AMPK activation, LV dP/dt, electrophysiologi-
cal changes, and most importantly VT/VF incidence [88].
Unlike acute metformin treatment, chronic metformin
treatment for 2-3 weeks in a partial coronary artery
occlusion model was shown to reduce VI/VF incidence
by preventing monophasic action potential shortening
and reducing the dispersion of action potential dura-
tion between the ischemic/infarct area and normal
myocardium via AMPK activation, leading to preserva-
tion of myocardial ATP [88]. The anti-VT/VF effect of
metformin was not related to a reduction in blood glu-
cose because it was continuously maintained during the
experiments at 4.5+ 0.5 mmol/L with 10% dextrose solu-
tion in both control and treatment groups [88].

Evidence from these in vivo reports suggested that
chronic treatment with metformin alone might reduce
VT/VEFE incidence in the NSTEMI model, whereas the
combination of chronic metformin and vildagliptin was
required in order to reduce VT/VF in the STEMI model.
In contrast, acute metformin treatment did not have any
effect on VT/VF events in the NSTEMI model. However,
acute metformin treatment was not tested in the STEMI
model. All of these reports are summarized in Table 4.
Figure 2 summarized mechanisms behind the protective
effects of metformin on ventricular arrhythmias.

Effects of metformin on ventricular arrhythmias:
evidence from clinical trials

Patients presented with VT/VF who had diabetes portend
worse long-term all-cause mortality at 2 years as com-
pared to patients without diabetes [89]. Hyperglycemia
was associated with prolonged QT interval, increased QT
dispersion, and higher risk of developing VT in acute MI
patients [90, 91]. Whether hyperglycemia is the cause of
ventricular arrhythmias, or merely a marker of increased
sympathetic activity remains uncertain [92]. Although
metformin was associated with a decrease in QTc in dia-
betic patients [93], there was no available data regarding
the relationship between achieving acute hyperglycemic
control with metformin/anti-diabetic medications and
ventricular arrhythmic outcomes.

There were only two clinical trials that directly stud-
ied the effects of metformin on ventricular arrhythmias
[56, 94]. In a randomized crossover trial, 19 diabetic
patients with coronary artery disease (CAD) were ran-
domized to receive either metformin 500 mg twice
daily for 2 weeks or placebo. The primary outcomes
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were number of premature ventricular contractions/
non-sustained VT (PVC/NSVT) beats measured by
24-h Holter monitor [94]. Metformin failed to reduce
PVC/NSVT in diabetic CAD patients compared to
placebo [94]. However, the results should be inter-
preted with caution due to the small sample size and
a lower-than-average dosage (1000 mg per day) [94]
as compared to other studies with cardiovascular ben-
efits (1700-2000 mg per day) [8]. Also, this particular
study was not performed under ischemic/reperfusion
circumstances, which may explain why metformin did
not reveal its anti-ventricular arrhythmia benefits as
opposed to the positive findings reported in an animal
I/R injury model [88]. Therefore, the PVC/NSVT may
be associated with mechanisms other than ischemia,
such as automaticity or triggered activity, and might
not indicate a poor prognosis.

The second study was a retrospective cohort of hos-
pitalized diabetic patients who presented with acute MI
[56]. Unfortunately, metformin was not associated with
decreased VT/VF incidence within 28-days post MI [56].
Similar to the first report mentioned above, this report
has several limitations, including no data regarding
type of ML, unreported metformin dosage and duration,
and underutilized beta blocker (23%) and thrombolytic

reperfusion therapy (21%). All of these reports are sum-
marized in Table 5.

Ongoing trials and future research

Two ongoing studies are being carried out regarding the
effects of metformin on AF. The first study is a phase 4
randomized open-label study aiming to see whether
metformin as compared to placebo could reduce AF
burden in patients with paroxysmal or persistent AF
who have cardiovascular implantable electronic devices
(NCT03603912, TRIM-AF study) [95]. The second study
was a phase 2 randomized clinical trial which aimed
to see whether metformin could help AF patients stay
within a normal sinus rhythm after catheter ablation.
This second study had an early termination due to unmet
enrollment expectations (NCT02931253) [96]. Unfortu-
nately, there is no ongoing clinical trial of the effects of
metformin on ventricular arrhythmias (Table 6).

To progress from the in vivo AF studies, it might be
helpful to examine the role of metformin in AF trigger.
Since the available reports only assessed AF inducibility
and duration after rapid atrial pacing [42, 45], or spon-
taneous AF detected by surface electrocardiogram [53],
this information is not sufficient to determine whether
metformin reduced AF by suppressing pulmonary vein
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Table 5 Effects of metformin on ventricular arrhythmias: reports from clinical trials

Model Type of study/No. Metformin (dose/ Key results and major  Interpretation References
of patients/FU duration) findings
DM patients with CAD Randomized crossover Metformin 500 mg BID - <-> PVC/NSVT per Metformin did not reduce [94]
monitored via 24-h design/19 patients/2 for 2 weeks minute of ischemia PVC/NSVT in diabetic
Holter monitor weeks CAD patients
(mean age 55)
Hospitalized DM patients  Retrospective cohort/40  Various doses - <-> 28-days VT/VF Metformin alone orin [56]

with AMI
(mean age 56)

Metformin alone and
705 others/28-day post
AMI

combination with other
anti-DM drugs was

not associated with
decreased 28-day post
AMIVT/VF incidence

incidence

AMI acute myocardial infarction, CAD coronary artery disease, DM diabetes mellitus, PVC/NSVT premature ventricular contraction/non-sustained ventricular

tachycardia, VT/VF ventricular tachycardia/ventricular fibrillation

Table 6 Effect of metformin on arrhythmias: ongoing clinical trials

Model Status Type of study/No. of patients/FU Intervention Primary outcome References
Patients with Recruiting  Phase 4 Randomized clinical trial/270 patients/2 years - Metformin ~ Change in %AF burden at 1 year [95]
paroxysmal or 750 mg
persistent AF twice daily
with CIED X 2 years
- Lifestyle/
risk factor
modifica-
tion

Patients with AF

Terminated Phase 2 Randomized clinical trial/6 patients/6 months - Metformin

Number of patients who main-  [96]

who under- 1000 mg tain sinus rhythm
went AF cath- twice daily
eter ablation

AF atrial fibrillation, CIED cardiovascular implantable electronic device

triggers or modulating reentry substrate. For in vivo  Conclusions

ventricular arrhythmia study, it would be of interest to
see whether metformin alone or in combination with a
dipeptidyl peptidase-4 inhibitor could reduce ventricu-
lar arrhythmias or sudden cardiac death in acute coro-
nary syndrome patients. These hypotheses remain to be
elucidated in the future clinical studies.

Although there are some borderline or contradic-
tory results, ample scientific evidence exists to indicate
that metformin has potential beneficial effects with
regard to atrial and ventricular arrhythmias in human.
Adequately-powered randomized controlled trials are
needed to clarify the actual effects of metformin both
in diabetic and non-diabetic populations. In the case
of a study into atrial arrhythmias, use of continuous
rhythm monitoring devices, such as an implantable
loop recorder, pacemaker, or defibrillator, is strongly
encouraged in order to avoid underdetection of AF.

Basic research has demonstrated the protective effects
of metformin on both atrial and ventricular arrhythmias
via multiple molecular, cellular, electrophysiological, and
structural changes. These findings are mostly translated
into anti-atrial arrhythmic benefits seen in clinical trials.
However, there are exception in some instances, such as
in elderly diabetic or post cardiac surgery patients. Cur-
rently, there are very limited clinical reports on the effects
of metformin on ventricular arrhythmias and the number
of ongoing trials is very small. At this point, proper ran-
domized controlled trials are of the utmost importance
in order to clarify the beneficial effects of metformin on
cardiac arrhythmias.
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ejection fraction; MAPK: Mitogen-activated protein kinase; MDA: Malondialde-
hyde; MI: Myocardial infarction; mPTP: Mitochondrial permeability transition
pores; NSTEMI: Non-ST elevation myocardial infarction; NSVT: Non-sustained
ventricular tachycardia; pCX: Phosphorylated connexin; PI3K/Akt: Phosphati-
dylinositol-3-kinase/survival protein kinases; PPAR: Peroxisome proliferator-
activated receptor; PVC: Premature ventricular contraction; QTc: Corrected QT
interval; ROS: Reactive oxygen species; SK current: Small conductance calcium-
activated potassium current; STEMI: ST elevation myocardial infarction; TGF-3:
Transforming growth factor-beta; TNFa: Tumor necrosis factor alpha; VLCAD:
Very long-chain specific acyl-CoA dehydrogenase; VT/VF: Ventricular tachycar-
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