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Abstract 

Background:  Previous research regarding long-term glucose variability over several years which is an emerging 
indicator of glycemic control in diabetes showed several limitations. We investigated whether variability in long-term 
fasting plasma glucose (FG) can predict the development of stroke, myocardial infarction (MI), and all-cause mortality 
in patients with diabetes.

Methods:  This is a retrospective cohort study using the data provided by the Korean National Health Insurance 
Corporation. A total of 624,237 Koreans ≥ 20 years old with diabetes who had undergone health examinations at least 
twice from 2005 to 2008 and simultaneously more than once from 2009 to 2010 (baseline) without previous histories 
of stroke or MI. As a parameter of variability of FG, variability independent of mean (VIM) was calculated using FG lev-
els measured at least three times during the 5 years until the baseline. Study endpoints were incident stroke, MI, and 
all-cause mortality through December 31, 2017.

Results:  During follow-up, 25,038 cases of stroke, 15,832 cases of MI, and 44,716 deaths were identified. As the 
quartile of FG VIM increased, the risk of clinical outcomes serially increased after adjustment for confounding factors 
including duration and medications of diabetes and the mean FG. Adjusted hazard ratios (95% confidence intervals) 
of FG VIM quartile 4 compared with quartile 1 were 1.20 (1.16–1.24), 1.20 (1.15–1.25), and 1.32 (1.29–1.36) for stroke, 
MI and all-cause mortality, respectively. The impact of FG variability was higher in the elderly and those with a longer 
duration of diabetes and lower FG levels.

Conclusions:  In diabetes, long-term glucose variability showed a dose–response relationship with the risk of stroke, 
MI, and all-cause mortality in this nationwide observational study.
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Background
For individuals with diabetes, maintaining optimal blood 
glucose level is required to prevent complications and 
death [1]. However, as incident cardiovascular disease 
(CVD) and deaths associated with diabetes cannot be 
fully explained by increased HbA1c itself [2–4], more 
attention has been focused on non-traditional risk fac-
tors such as glucose variability (GV). Patients with dia-
betes with similar HbA1c values can have different daily 
glycemic profiles with variations in the duration and 
frequency of glycemic excursions [5]. Short-term GV 
usually means same-day or between-day glycemic oscil-
lations and might be influenced by the individuals’ diet, 
exercise, and treatment modality. Long-term GV repre-
sents the visit-to-visit variability in fasting glucose (FG) 
estimated over months to years; compliance with medi-
cation; and deterioration of insulin secretion and resist-
ance, which can be important issues [6].

During the past decade, detrimental effects of GV on 
patients with diabetes have been proposed for various 
medical conditions [7–13]. GV could not only predict 
diabetic vascular complications [7, 14, 15], heart fail-
ure [9], and postoperative complications of aortic valve 
implantation [11], but also indicate poor prognosis for 
in-patients with acute lung diseases [8] and acute coro-
nary syndrome [13]. Moreover, because GV could mod-
ify the correlation between time in range and estimated 
HbA1c, GV consideration was recommended when set-
ting individualized goals for glycemic control [10].

Although there have been a few attempts to verify if 
GV can be a contributor to CVD or mortality [6, 7, 15–
21], there is no consensus for patients with diabetes. Pre-
vious studies have yielded partial significance according 
to age, study group, or status of glycemic control [6, 7, 
15–21]. In addition, they have several limitations such as 
small sample size and short-term follow-up periods.

In the present study, we used a nationwide population-
based database in Korea to investigate whether long-term 
variability in FG can predict the risk of stroke, myocardial 
infarction (MI), and all-cause mortality during a median 
8  years of follow-up, to specify the population prone 
to the risk of higher GV, and to compare it with single 
measurements of FG.

Methods
Study design and subjects
As shown in Fig.  1, we analyzed the data of patients 
with diabetes who had undergone health examinations 
provided by the National Health Insurance Corporation 
(NHIC) at least twice from 2005 to 2008 and simulta-
neously more than once between January 1, 2009, and 
December 31, 2010 (baseline exam). Among them, we 
excluded individuals aged < 20  years and those with 

histories of stroke or MI, along with those missing data 
in the inclusion criteria. After those exclusions, 624,237 
individuals were included in this study.

The NHIC is the single health insurance system oper-
ated by the Korean government and covers about 97% 
of the Korean population. It has an eligibility profile, 
health examination database (general health examina-
tions and questionnaires on lifestyle), medical treat-
ment information identified by the medical bills 
submitted by healthcare providers, and a medical care 
institution database [22, 23]. Enrollees are advised to 
undergo a standardized medical examination annually 
or biannually. The entire database of the NHIC is now 
open to all researchers.

The presence of diabetes was defined as at least one 
claim per year for the prescription of anti-diabetic 
medications under the International Classification of 
Diseases, Tenth Revision (ICD-10) codes E10–14 or a 
fasting plasma glucose level ≥ 7  mm ol/L. Type 1 dia-
betes (T1DM) was defined as ICD-10 code E10 with at 
least one prescription history of insulin. The remained 
subjects were referred to as type 2 diabetes (T2DM).

This study was approved by the official review com-
mittee in the NHIC and the Institutional Review Board 
of the Korea University Ansan Hospital (Institutional 
Review Board number 2019AS0158) and was carried 
out in accordance with the Helsinki Declaration of 
1975.

Definition of GV
The variability independent of the mean (VIM) of FG 
was used as a primary variability parameter calculated 
from FG levels measured at least three times during the 
5 years prior to the baseline (Fig. 2). The FG level at base-
line was included in calculation of FG variability. Addi-
tionally, standard deviation (SD), coefficient of variation 
(CV, SD/mean), and average real variability (ARV) of FG 

Fig. 1  Selection of study subjects
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during the same period were calculated using the follow-
ing equation:

where β is derived by nonlinear regression analysis, based 
on the natural logarithm of SD over the natural logarithm 
of the mean [24].

where k ranges from 1 to n-1, and n is the number of FG 
measurements.

Study outcomes
Incidences of stroke, MI, or death until December 
31, 2017, were the endpoints of this study. Stroke was 
defined as the recording of ICD-10 codes I63 or I64 dur-
ing admission with simultaneous claims for brain CT 
or MRI. MI was diagnosed by the recording of ICD-10 
codes I21 or I22 with hospitalization. Deceased cases 
were identified based on nationwide death certificate 
data from the Korea National Statistical Office regardless 
of a previous diagnosis of stroke or MI. The time interval 
between the baseline examination and the date of study 
outcome or December 31, 2017 is defined as the follow-
up period.

Anthropometric and laboratory measurements
We used data from questionnaires regarding demo-
graphic characteristics, lifestyle, medical history, and 
medications during the medical examination. Alcohol 
consumption habit was divided into near abstinence, 
moderate (< 30  g/day), or severe (≥ 30  g/day). Smoking 
history was categorized as never, ex-, and current smok-
ers. Doing regular exercise was defined > 20 min of vigor-
ous-intensity or > 30  min of moderate-intensity exercise 
at least once per week [25]. Body mass index (BMI) was 
estimated by weight in kilograms divided by the square 
of height in meters. Waist circumference was checked at 
the middle point between the iliac crest and the rib cage.

The presence of hypertension was defined as sys-
tolic blood pressure (BP) ≥ 140  mmHg, diastolic 
BP ≥ 90  mmHg, or the presence of at least one 

VIM = 100×
SD

meanβ
,

ARV =
1

N− 1

∑n−1

k=1
×|BPK+1 − BPK|,

prescription of anti-hypertensive medications under 
ICD-10 codes I10–I15 per year. The presence of malig-
nancy was determined by registration in the Korea 
Central Cancer Registry under the International Clas-
sification of Diseases, ICD-10 C00-C96 before baseline 
examination. Low-income status was defined by the low-
est 20%.

Venous blood samples were drawn in the morning after 
an overnight fast of at least 8 hours to measure the levels 
of plasma glucose, total cholesterol, triglycerides, high-
density lipoprotein cholesterol, low-density lipoprotein 
cholesterol (LDL-C), and creatinine.

Dyslipidemia was defined as total cholesterol 
level ≥ 6.21 mmol/L or the presence of at least one claim 
per year for the prescription of anti-hyperlipidemic drugs 
under ICD-10 code E78. The estimated glomerular filtra-
tion rate (eGFR) was estimated by the Modification of 
Diet in Renal Disease formula [26], and eGFR < 60  mL/
min/1.73  m2 was classified as chronic kidney disease 
(CKD) [27]. The number of oral anti-diabetic medication 
among metformin, sulfonylurea, meglitinide, thiazoli-
dinedione, inhibitors of dipeptidyl peptidase 4 (DPP-4 
inhibitors), and acarbose taken in the 12 months prior to 
baseline was identified. The history of heart disease was 
identified by self-report.

Quality control of the laboratory tests was conducted 
in accordance with the Korean Association of Laboratory 
Quality Control.

Statistical analysis
Data are presented as mean ± SD, geometric mean (95% 
confidence intervals [CIs]), or number (%). The baseline 
characteristics were compared using Chi square tests for 
categorical variables and analysis of variance for con-
tinuous variables after dividing the subjects according to 
the FG VIM quartile. Triglyceride levels were log-trans-
formed for analysis.

To assess the risks of stroke, MI, and all-cause mor-
tality, we conducted multivariate-adjusted Cox propor-
tional hazards analyses according to FG VIM quartiles 
and deciles, using quartile 1 or decile 1 as the reference 
group.

We adjusted for confounders at baseline using two 
models. Model 1 was adjusted for age, sex, BMI, alcohol 
drinking, smoking, regular exercise, presence of hyper-
tension and dyslipidemia, CKD, and low-income status. 
Model 2 is the same as model 1, plus further adjustment 
for duration of diabetes over 5  years, the number of 
classes of oral anti-diabetic medication, insulin prescrip-
tion history taken in the 12 months prior to baseline, and 
mean FG during the 5 years preceding the baseline exam.

We conducted several subgroup analyses to evalu-
ate the effects of age; sex; BMI; smoking; income status; Fig. 2  Assessment of glucose variability and follow-up period
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presence of hypertension, dyslipidemia, and malignancy; 
duration of diabetes; baseline FG level; subtype of dia-
betes; and anti-diabetic medication. The hazard ratios 
(HRs) and 95% CIs for stroke, MI, and all-cause death in 
FG VIM quartile 4 versus quartiles 1–3, with adjustments 
for confounders, were estimated.

To compare with the predictive value of a single FG 
level, we performed the above-mentioned Cox analysis 
according to baseline FG level, with FG levels of 100-
119  mg/dL being the reference group. The mean of FG 
was excluded as a confounder in this analysis. Addition-
ally, we repeated this analysis after stratifying the sub-
jects according to prescription history of anti-diabetic 
medication.

We checked a variable inflation factor for all covariates 
of less than 2.0 and found no relevant multicollinearity in 
covariates. SAS version 9.3 (SAS Institute Inc., Cary, NC, 
USA) was used for statistical analysis. A p value of < 0.05 
was considered to be statistically significant.

Results
FG VIM quartile 4 had more males and current smokers 
and showed higher FG and triglyceride levels compared 
with quartile 1 (Table 1). On the other hand, this group 
was younger, had a lower BP and LDL-C level, and had 
lower proportions of hypertension, dyslipidemia, and 
heart disease versus quartile 1. About 46% of the high-
est VIM quartile was not treated with any anti-hypergly-
cemic agents. However, a higher proportion of them was 
treated with insulin for the preceding 12  months than 
other tertiles.

During the median (interquartile range) follow-up 
period of 8.0 (7.3–8.4) years, 25,038 cases of stroke, 
15,832 cases of MI, and 44,716 cases of death were identi-
fied. As shown in Table 2, the HRs for stroke, MI, and all-
cause mortality serially increased as the FG VIM quartile 
increased. Subjects in FG VIM quartile 4 had a 20% 
higher risk for stroke and MI, and a 32% higher risk for 
all-cause mortality, versus those in quartile 1, even after 
adjustment for several risk factors and mean FG. We also 
tested the following GV calculation methods: SD, CV, 
and ARV. A similar relationship was obtained in FG SD, 
CV, and ARV quartiles instead of VIM (Additional file 1: 
Table S1).

When we divided individuals into FG VIM deciles, the 
risks of stroke, MI, and all-cause death showed a posi-
tive dose–response association with the FG VIM decile 
(Fig. 3 and Additional file 1: Table S2).

In the subgroup analyses, FG VIM quartile 4 showed 
a consistently increased risk for all-cause mortal-
ity (Tables  3 and 4) except in young individuals aged 
20-39. A similar finding was observed for stroke and 
MI, with exceptions in younger individuals and those 

with malignancy, shorter diabetes duration, baseline 
FG ≥ 126 mg/dL, T1DM, and treatment with thiazolidin-
edione and insulin.

On the other hand, the relationship between FG sta-
tus and the risk of clinical outcomes showed a U-shaped 
association (Fig. 4 and Additional file 1: Table S3). Com-
pared to individuals whose FG levels were in the range 
100-119 mg/dL, those with FG < 100 mg/dL or ≥ 160 mg/
dL had significantly higher HRs. This relationship was 
consistent after dividing the subjects by prescription of 
anti-diabetic medications (Additional file 1: Table S4).

Discussion
This nationwide population-based study in diabetes 
revealed that long-term GV for 5 years predicted future 
development of stroke, MI, and all-cause death, inde-
pendent of anti-diabetic medication, metabolic risk fac-
tors, and mean fasting glucose. This association showed 
a linear fashion, compared to the U-shaped association 
between FG and outcomes. In the subgroup analysis, the 
impact of GV was higher in the elderly and those with a 
longer duration of diabetes and lower FG levels.

Long‑term glucose variability and clinical outcomes
Several medium-sized cohort studies have reported 
the impact of long-term GV [6, 15, 17–21]. Variability 
in FG is an independent predictor of all-cause mortal-
ity, and the highest tertile group in 1400 type 2 diabe-
tes patients included in the VERONA study had a 67% 
higher risk [17, 21]. In the sub-analysis of the Action in 
Diabetes and Vascular Disease: Preterax and Diamicron 
MR Controlled Evaluation (ADVANCE) trial, variability 
in FG was associated with an increased risk of death from 
cardiovascular causes, nonfatal MI, or nonfatal stroke 
[15]. Furthermore, GV might reflect better the impact of 
glycemic control on diabetic complications than HbA1c, 
or at least, GV can complement the power of HbA1c in 
risk prediction [7, 14, 15]. In the ADVANCE trial, HRs 
(95% CIs) estimated for each 10-percentile point increase 
in SD of FG and HbA1c were 1.12 (1.08–1.16) and 1.05 
(1.01–1.09), respectively [15].

However, these studies have limitations such as short 
follow-up period [15] and a relatively small popula-
tion size, and the impact of GV was only shown in some 
subgroups, but not the entire population [18]. In the 
present study, we computed long-term GV over 5 years 
and assessed risk for a median of 8 years of follow-up. In 
addition, this dataset includes almost all Korean diabetic 
patients. In this respect, the worst outcome in the highest 
GV quartile even after adjustment for mean FG provides 
a clear indication that GV can be considered as a new 
risk factor for stroke, MI, and all-cause mortality.
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Table 1  Baseline characteristics of the study subjects according to quartiles of fasting glucose variability

Q1:0–7.4; Q2:7.4–11.9; Q3:11.9–17.8; Q4:17.8–87.7. Data are presented as mean ± standard deviation, geometric mean (95% confidence interval), or number (%). One-
way analysis of variance and Chi squared tests were used to compare the characteristics of the study subjects at baseline. Post-hoc multiple comparison analysis was 
performed with Bonferroni correction, and triglyceride levels were log-transformed for analysis. ARV, average real variability; BMI, body mass index; BP, blood pressure; 
CKD, chronic kidney disease; CV, coefficient of variation; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; SD, standard 
deviation; VIM, variability independent of mean; WC, waist circumference

Characteristics VIM Q1 (n = 156061) VIM Q2 (n = 156058) VIM Q3 (n = 156060) VIM Q4 (n = 156058) P value

Age (years) 58.6 ± 10.6 57.4 ± 11.0 56.5 ± 11.7 54.7 ± 13.1 < 0.001

Sex, male (%) 98563 (63.2) 101947 (65.3) 103675 (66.4) 106869 (68.5) < 0.001

BMI (kg/m2) 24.9 ± 3.0 25.0 ± 3.1 25.1 ± 3.2 24.9 ± 3.4 < 0.001

WC (cm) 85.2 ± 8.0 85.5 ± 8.0 85.6 ± 8.2 85.1 ± 8.6 < 0.001

Systolic BP (mmHg) 128.6 ± 15.2 128.8 ± 15.0 128.6 ± 15.0 127.8 ± 15.0 < 0.001

Fasting glucose (mg/dL) 143.8 ± 40.5 142.0 ± 38.0 142.4 ± 41.1 146.2 ± 50.7 < 0.001

Triglyceride (mg/dL) 141.9 (141.5–142.3) 146.7 (146.3–147.1) 149.7 (149.3–150.1) 148.8 (148.3–149.2) < 0.001

HDL-C (mg/dL) 52.0 ± 21.8 51.8 ± 21.2 51.6 ± 21.1 51.7 ± 20.9 < 0.001

LDL-C (mg/dL) 111.6 ± 45.0 111.9 ± 44.4 111.4 ± 44.7 110.3 ± 46.5 < 0.001

GLU_SD (mg/dL) 12.4 ± 9.8 22.7 ± 14.1 32.3 ± 18.7 47.1 ± 25.3 < 0.001

GLU_CV (%) 8.1 ± 4.0 15.5 ± 5.0 22.9 ± 6.9 35.5 ± 11.9 < 0.001

GLU_VIM (%) 4.1 ± 1.8 9.6 ± 1.3 14.6 ± 1.7 24.3 ± 5.7 < 0.001

GLU_ARV (mg/dL) 15.2 ± 12.9 27.0 ± 18. 8 37.8 ± 25.2 52.4 ± 33.7 < 0.001

Current smoker (%) 33185 (21.3) 37301 (23.9) 42135 (27) 48736 (31.2) < 0.001

Heavy drinking (%) 14997 (9.6) 15563 (10.0) 15755 (10.1) 14992 (9.6) < 0.001

Regular exercise (%) 40718 (26.0) 38546 (24.7) 36142 (23.2) 32955 (21.1) < 0.001

Comorbidities

 Hypertension (%) 89659 (57.5) 87808 (56.3) 84796 (54.3) 78148 (50.1) < 0.001

 Dyslipidemia (%) 60077 (38.5) 58915 (37.8) 56500 (36.2) 50461 (32.3) < 0.001

 CKD (%) 15740 (10.1) 15962 (10.2) 16598 (10.7) 17320 (11.1) < 0.001

 Heart disease (%) 6265 (4.6) 5786 (4.3) 5189 (4.0) 4564 (3.7) < 0.001

 Any malignancy (%) 4125 (2.6) 3930 (2.5) 3772 (2.4) 3892 (2.5) 0.001

Income (lower 20%, %) 34507 (22.1) 35412 (22.7) 37482 (24.0) 39595 (25.4) < 0.001

Antidiabetic medication

 Metformin 84747 (54.3) 77947 (50.0) 72119 (46.2) 62185 (39.9) < 0.001

 Sulfonylurea 81607 (52.3) 77767 (49.8) 74710 (47.9) 66155 (42.4) < 0.001

 Meglitinide 4246 (2.7) 4050 (2.6) 3850 (2.5) 3785 (2.4) < 0.001

 Thiazolidinedione 14054 (9.0) 13354 (8.6) 12355 (7.9) 10933 (7.0) <0.001

 DPP-4 inhibitor 13802 (8.8) 12730 (8.2) 11766 (7.5) 9535 (6.1) < 0.001

 a-Glucosidase inhibitor 21803 (14.0) 20564 (13.2) 20055 (12.9) 18458 (11.8) <  0.001

 Insulin 10064 (6.5) 9936 (6.4) 10655 (6.8) 13320 (8.5) < 0.001

Number of oral anti-diabetic medications < 0.001

 0 42298 (27.1) 51240 (32.8) 58967 (37.8) 72375 (46.4)

 1 38976 (25.0) 33797 (21.7) 29285 (18.8) 23217 (14.9)

 2 48766 (31.3) 45997 (29.5) 43216 (27.7) 38441 (24.6)

 ≥ 3 26021 (16.7) 25024 (16.0) 24592 (15.8) 22025 (14.1)

Duration of diabetes ≥5 years (%) 62489 (40.0) 55604 (35.6) 50193 (32.2) 43641 (28.0) < 0.001

Type 1 diabetes (%) 3104 (2.0) 3214 (2.1) 3745 (2.4) 5548 (3.6) < 0.001

Number of exams < 0.001

 3 126421 (81.0) 113451 (72.7) 108293 (69.4) 104468 (66.9)

 4 14692 (9.4) 19227 (12.3) 21858 (14.0) 24324 (15.6)

 5 14948 (9.6) 23380 (15.0) 25909 (16.6) 27266 (17.5)

Time interval between adjacent exams 
(years)

1.8 ± 0.3 1.7 ± 0.3 1.7 ± 0.3 1.7 ± 0.3 <0.001
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Interpretation of the impact of glucose variability
A few mechanisms might be involved in the relation-
ship between FG variability and clinical outcomes. Tran-
sient high glucose spikes have been shown to impair 
endothelial function [28, 29], increase oxidative stress 
more than sustained chronic hyperglycemia [30, 31], and 
induce β-cell dysfunction [12]. Furthermore, higher GV 
was strongly associated with increased lipid level and 
decreased fibrous content with a larger plaque burden 
[32].

In subgroup analysis of this study, the impact of GV 
was greater in the elderly and those with a longer dura-
tion of diabetes and FG level < 126 mg/dL. These findings 
were partially in accordance with previous publications 
[18, 20]. In the Verona Diabetes Study, the positive asso-
ciation between GV and mortality risk was confined to 
patients older than 65 years [18]. The elderly are known 
to be more susceptible to oxidative stress than younger 
individuals because their defense mechanisms are less 
efficient [19]. The limited significance seen in current 
smokers could be explained by the higher proportion of 
young subjects in the current smoker group. In the same 
notion, patients with a longer diabetes duration and 

lower FG might reflect a population that is more vulner-
able to GV. It is interesting that contrary to other stud-
ies [15, 19, 20], GV had a greater impact among lower 
FG patients than in higher FG patients, which may be 
due to an ethnic difference, but the reason is difficult to 
ascertain from this study. As we also showed that lower 
FG level was significantly associated with more CVD and 
death events, the higher GV in the lower FG group aug-
mented the risk for future CVD and death, indicating the 
target population for reducing these outcomes.

In addition to this pathophysiologic interpretation, 
elevated GV might be an indicator of irregular compli-
ance to therapy, comorbidity, poor health, or diabetic 
complications resulting in the increase of mortality [17]. 
However, contrary to other studies [14, 17, 20], our study 
population with higher GV had a shorter duration of dia-
betes, had fewer comorbidities, and about half of them 
were not treated with anti-diabetic medication. Although 
there was a greater proportion of insulin users, the con-
tribution of insulin users to the outcome was small since 
less than 10% of the study population was treated with 
insulin. We speculate that, compared to other hospital-
based studies, this study included more low-risk diabetic 

Table 2  Hazard ratios (HRs) and 95% confidence intervals (CIs) for the incidence of stroke, myocardial infarction, and all-
cause mortality by quartile of fasting glucose variability

Q1:0–7.4; Q2:7.4–11.9; Q3:11.9–17.8; Q4:17.8–87.7. Model 1 is adjusted for age, sex, body mass index, alcohol drinking, smoking, regular exercise, presence of 
hypertension, dyslipidemia, chronic kidney disease, and lower 20% income. Model 2 is the same as model 1, plus further adjustment for duration of diabetes over 
5 years, the number of classes of oral anti-diabetic medication taken in the 12 months prior to baseline, presence of prescription history of insulin, and mean of fasting 
glucose. VIM, variability independent of mean

Events (n) Follow-up duration 
(person-years)

Incidence rate (per 
1000 person-years)

Age- and sex- 
Adjusted HR (95% 
CI)

Multivariate-adjusted HR (95% 
CI)

Model 1 Model 2

Stroke

 VIM Q1 (n = 156061) 6350 1185704.0 5.36 1 (Ref.) 1 (Ref.) 1 (Ref.)

 VIM Q2 (n = 156058) 6162 1191326.6 5.17 1.03 (0.99–1.07) 1.03 (0.99–1.06) 1.06 (1.02–1.09)

 VIM Q3 (n = 156060) 6214 1193013.0 5.21 1.08 (1.04–1.12) 1.05 (1.02–1.09) 1.10 (1.06–1.14)

 VIM Q4 (n = 156058) 6312 1191670.8 5.30 1.17 (1.13–1.21) 1.10 (1.07–1.14) 1.20 (1.16–1.24)

  P for trend < 0.001 < 0.001 < 0.001

Myocardial infarction

 VIM Q1 (n = 156061) 3859 1194006.5 3.23 1 (Ref.) 1 (Ref.) 1 (Ref.)

 VIM Q2 (n = 156058) 3899 1199121.6 3.25 1.06 (1.01–1.11) 1.05 (1.00–1.10) 1.07 (1.02–1.12)

 VIM Q3 (n = 156060) 3978 1200620.1 3.31 1.11 (1.07–1.16) 1.09 (1.04–1.13) 1.12 (1.07–1.17)

 VIM Q4 (n = 156058) 4096 1199009.4 3.42 1.21 (1.16–1.27) 1.14 (1.09–1.20) 1.20 (1.15–1.25)

  P for trend < 0.001 < 0.001 < 0.001

All-cause mortality

 VIM Q1 (n = 156061) 10506 1205853.5 8.71 1 (Ref.) 1 (Ref.) 1 (Ref.)

 VIM Q2 (n = 156058) 10608 1211059.8 8.76 1.09 (1.06–1.119) 1.08 (1.05–1.11) 1.10 (1.07–1.13)

 VIM Q3 (n = 156060) 11181 1212864.1 9.22 1.19 (1.16–1.22) 1.15 (1.12–1.18) 1.17 (1.14–1.20)

 VIM Q4 (n = 156058) 12421 1211473.9 10.25 1.40 (1.36–1.44) 1.29 (1.26–1.33) 1.32 (1.29–1.36)

  P for trend < 0.001 < 0.001 < 0.001
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patients since diagnosis of diabetes was based on not 
only health insurance claims data, but also general health 
screening exams, which resulted in detection of undiag-
nosed mild diabetic cases. Therefore, we can evaluate the 
impact of GV itself, rather than combined poor health 
status and comorbidities as in other studies.

In subgroup analysis according to anti-diabetic 
medications, interaction analysis did not find any sig-
nificance, contrary to previous studies which showed 
sulfonylurea increases glucose fluctuation and risk of 
hypoglycemia [33], and DPP-4 inhibitors and the novel 
insulin analogue degludec reduced GV [34–36]. Given 
that actual drug exposure could not be determined 
because of the retrospective study design, a future well-
designed, randomized controlled trial is expected to 
resolve this concern.

Assessment of glycemic variability
There are no standard indices for quantification of long-
term glycemic variability [37], so each value has distinct 
characteristics. The SD reflects dispersion of measure-
ments around the mean and is sensitive to low sampling 
frequency, while CV is a standardized variation providing 
direct comparison among study groups. The ARV index, 
which averages the absolute differences between succes-
sive measurements, might be a reliable index for time 
series variability [38, 39]. However, SD, CV, and ASV are 
partially dependent on the mean and its changes over 
time, and this may not be resolved even if adjusted for 
mean value [40]. On the other hand, VIM is a measure of 
variability designed not to correlate with mean level [24, 
41] but is sample-specific [42, 43]. Therefore, we used 
VIM as the main measurement of FG variability, and 
similar results to other estimates of glycemic variation 
support the robustness of our study (Additional file  1: 
Table S1).

Limitations of this study
This is the first large-scale epidemiologic study demon-
strating the impact of long-term variability in FG on CVD 
outcomes separately and all-cause death with a long-
term follow-up of 8.0 (7.3–8.4) years. However, we are 
aware of several limitations of this study. First, given that 
HbA1c or postprandial glucose level was not measured in 
this study, incident diabetes might be underestimated. To 
enhance the accuracy of diabetes diagnosis, we combined 

Fig. 3  Hazard ratios (HRs) and incidence rates of (a) stroke, (b) 
myocardial infarction, and (c) all-cause mortality by deciles of fasting 
glucose variability, assessed by variability independent of mean
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ICD-10 codes and patient prescription histories in addi-
tion to fasting glucose level. Second, possible selection 
bias due to extracting patients based on the number of 
health check-ups is one of the limitations. To overcome 
it, we conducted various subgroup analyses. Finally, clas-
sification of T1DM based on the presence of ICD-10 E10 
with at least one prescription of insulin might not be 
accurate. Because ICD-10 code is based on claims data, 

but autoantibody, insulin, or c-peptide level was not 
measured, the prevalence of T1DM could be overesti-
mated. However, we performed subgroup analysis after 
stratifying the subjects according to subtype of diabetes. 
There was a significance in all-cause mortality in T1DM. 
The absence of significance in stroke and MI was thought 
to be related to the small number of population.

Table 3  Subgroup analysis according to  clinically relevant factors in  quartile 4 versus  fasting glucose variability 
of quartiles 1–3

Adjusted for age, sex, body mass index, alcohol drinking, smoking, regular exercise, presence of hypertension, dyslipidemia, chronic kidney disease, and lower 20% 
income, duration of diabetes over 5 years, the number of classes of oral anti-diabetic medication taken in the 12 months prior to baseline, presence of prescription 
history of insulin, and mean of fasting glucose

Stroke Myocardial infarction All-cause mortality

IR per 1000 HR (95% CI) IR per 1000 HR (95% CI) IR per 1000 HR (95% CI)

Age (years)

 20–39 (n = 51687) 0.56 0.78 (0.59–1.03) 0.93 0.89 (0.72–1.09) 1.14 1.01 (0.84–1.22)

 40–64 (n = 413136) 3.43 1.04 (0.99–1.09) 2.50 1.07 (1.01–1.12) 4.82 1.17 (1.13–1.21)

  ≥ 65 (n = 159414) 12.08 1.13 (1.09–1.18) 6.35 1.12 (1.07–1.18) 24.15 1.18 (1.15–1.21)

  P for interaction 0.001 0.056 0.102

Sex

 Male (n = 411054) 5.07 1.05 (1.01–1.09) 3.29 1.06 (1.01–1.11) 10.15 1.17 (1.14–1.20)

 Female (n = 213183) 5.62 1.13 (1.07–1.18) 3.33 1.13 (1.07–1.21) 7.49 1.19 (1.14–1.24)

  P for interaction 0.028 0.071 0.387

BMI

  < 25 kg/m2 (n = 331714) 5.66 1.10 (1.06–1.14) 3.44 1.08 (1.03–1.13) 11.31 1.19 (1.16–1.22)

  ≥ 25 kg/m2 (n = 292523) 4.81 1.05(1.01–1.10) 3.15 1.10 (1.04–1.16) 6.91 1.14 (1.10–1.18)

  P for interaction 0.117 0.477 0.020

Current smoking

 No (n = 462880) 5.33 1.13 (1.09–1.17) 3.23 1.12 (1.07–1.17) 9.11 1.19 (1.16–1.22)

 Yes (n = 161357) 5.06 0.94 (0.89–0.99) 3.53 1.01 (0.95–1.08) 9.59 1.15 (1.10–1.19)

  P for interaction <0.001 0.026 0.089

Hypertension

 No (n = 283826) 3.35 1.02 (0.97–1.08) 2.38 1.01 (0.95–1.08) 6.50 1.17 (1.13–1.21)

 Yes (n = 340411) 6.89 1.11 (1.07–1.14) 4.09 1.13 (1.09–1.19) 11.55 1.19 (1.16–1.22)

  P for interaction 0.011 0.001 0.845

Dyslipidemia

 No (n = 398284) 5.24 1.05 (1.01–1.09) 3.09 1.09 (1.04–1.14) 9.99 1.17 (1.15–1.20)

 Yes (n = 225953) 5.29 1.13 (1.07–1.18) 3.68 1.10 (1.04–1.16) 7.93 1.19 (1.15–1.24)

  P for interaction 0.007 0.397 0.476

Malignancy

 No (n = 608518) 5.25 1.15 (1.11–1.18) 3.39 1.13 (1.09–1.18) 9.75 1.24 (1.21–1.27)

 Yes (n = 15719) 7.22 1.03 (0.88–1.22) 4.68 1.11 (0.90–1.36) 32.14 1.18 (1.09–1.28)

  P for interaction 0.213 0.682 0.702

Income lower 20%

 No (n = 477241) 5.08 1.08 (1.05–1.12) 3.22 1.10 (1.05–1.14) 8.82 1.21 (1.18–1.24)

 Yes (n = 146996) 5.83 1.07 (1.01–1.13) 3.57 1.07 (1.00–1.15) 10.57 1.12 (1.08–1.17)

  P for interaction 0.759 0.618 0.001



Page 9 of 12Lee et al. Cardiovasc Diabetol          (2020) 19:144 	

Table 4  Subgroup analysis according to  the  characteristics of  diabetes in  quartile 4 versus  fasting glucose variability 
of quartiles 1–3

a  Adjusted for age, sex, body mass index, alcohol drinking, smoking, regular exercise, presence of hypertension, dyslipidemia, chronic kidney disease, and lower 20% 
income, duration of diabetes over 5 years, the number of classes of oral anti-diabetic medication taken in the 12 months prior to baseline, presence of prescription 
history of insulin, and mean of fasting glucose
b  Adjusted for age, sex, body mass index, alcohol drinking, smoking, regular exercise, presence of hypertension, dyslipidemia, chronic kidney disease, and lower 20% 
income, duration of diabetes over 5 years, and mean of fasting glucose

Stroke Myocardial infarction All-cause mortality

IR per 1000 HR (95% CI) IR per 1000 HR (95% CI) IR per 1000 HR (95% CI)

Duration of diabetesa

  < 5 years (n = 412310) 4.02 1.01 (0.97–1.06) 2.63 1.03 (0.98–1.08) 7.41 1.16 (1.12–1.19)

  ≥ 5 years (n = 211927) 7.74 1.17 (1.12–1.22) 4.66 1.17 (1.11–1.24) 12.87 1.22 (1.18–1.26)

  P for interaction < 0.001 0.001 0.011

Baseline fasting glucosea

  < 126 mg/dL (n = 188779) 6.30 1.21 (1.15–1.27) 3.94 1.16 (1.09–1.23) 11.64 1.17 (1.13–1.21)

  ≥ 126 mg/dL (n = 435458) 4.81 0.95 (0.92–0.99) 3.03 1.01 (0.96–1.06) 8.20 1.11 (1.08–1.14)

  P for interaction < 0.001 < 0.001 < 0.001

Subtype of diabetesa

 T2DM (n = 608626) 5.02 1.14 (1.11–1.17) 3.26 1.14 (1.10–1.19) 9.70 1.22(1.19–1.25)

 T1DM (n = 15611) 13.49 1.11 (0.99–1.24) 8.01 0.96 (0.84–1.11) 26.23 1.25(1.15–1.35)

  P for interaction 0.267 0.065 0.186

Metforminb

 No (n = 327239) 4.05 1.17 (1.12–1.22) 2.48 1.18 (1.12–1.25) 8.59 1.30 (1.26–1.34)

 Yes (n = 296998) 7.22 1.18 (1.13–1.22) 4.72 1.16 (1.11–1.22) 12.80 1.25 (1.22–1.29)

 P for interaction 0.622 0.976 0.150

Sulfonylureab

 No (n = 323998) 3.56 1.19 (1.13–1.24) 2.48 1.18 (1.12–1.25) 7.42 1.30 (1.26–1.34)

 Yes (n = 300239) 7.72 1.17 (1.13–1.21) 4.72 1.16 (1.11–1.22) 14.16 1.26 (1.23–1.30)

  P for interaction 0.858 0.976 0.380

Meglitinideb

 No (n = 608306) 5.19 1.17 (1.13–1.20) 3.34 1.16 (1.12–1.20) 10.02 1.27 (1.25–1.30)

 Yes (n = 15931) 10.02 1.28 (1.11–1.48) 6.51 1.37(1.15–1.64) 20.14 1.37 (1.24–1.52)

  P for interaction 0.139 0.056 0.080

Thiazolidinedioneb

 No (n = 573541) 5.21 1.17 (1.14–1.21) 3.37 1.17 (1.13–1.22) 10.17 1.28 (1.25–1.31)

 Yes (n = 50696) 6.44 1.17 (1.06–1.29) 3.97 1.13 (0.99–1.28) 11.37 1.25 (1.16–1.34)

 P for interaction 0.969 0.561 0.526

DPP-4 inhibitorb

 No (n = 576404) 5.25 1.17 (1.13–1.20) 3.37 1.17 (1.13–1.21) 10.23 1.27 (1.25–1.30)

 Yes (n = 47833) 6.06 1.21 (1.09–1.35) 4.06 1.18 (1.03–1.35) 10.63 1.35 (1.24–1.46)

  P for interaction 0.287 0.835 0.079

a-Glucosidase inhibitorb

 No (n = 543357) 4.70 1.15 (1.12–1.19) 3.09 1.15 (1.10–1.20) 9.29 1.28 (1.25–1.31)

 Yes (n = 80880) 9.92 1.23 (1.16–1.32) 5.94 1.24 (1.14–1.34) 17.62 1.25 (1.19–1.31)

  P for interaction 0.053 0.157 0.519

Insulinb

 No (n = 580262) 4.75 1.15 (1.11–1.18) 3.05 1.14 (1.10–1.19) 9.02 1.24 (1.22–1.27)

 Yes (n = 43975) 11.68 1.11 (1.03–1.19) 7.68 1.08 (0.99–1.18) 24.31 1.19 (1.13–1.25)

  P for interaction 0.874 0.568 0.492
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Conclusion
This nationwide population-based study with long-
term follow-up showed that GV had a dose–response 
relationship with the risk of stroke, MI, and all-cause 
mortality in diabetes, especially in the elderly and those 
with a longer duration of diabetes and lower FG levels. 
This important health issue will play a role in reducing 
future development of CVD and death attributed to the 
increasing population of diabetes.
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