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Have dipeptidyl peptidase-4 inhibitors 
ameliorated the vascular complications of type 
2 diabetes in large-scale trials? The potential 
confounding effect of stem-cell chemokines
Milton Packer* 

Abstract 

Drugs that inhibit dipeptidyl peptidase-4 (DPP-4) are conventionally regarded as incretin-based agents that signal 
through the glucagon-like peptide-1 (GLP-1) receptor. However, inhibition of DPP-4 also potentiates the stem cell 
chemokine, stromal cell-derived factor-1 (SDF-1), which can promote inflammation, proliferative responses and 
neovascularization. In large-scale cardiovascular outcome trials, enhanced GLP-1 signaling has reduced the risk of 
atherosclerotic ischemic events, potentially because GLP-1 retards the growth and increases the stability of ath-
erosclerotic plaques. However, DPP-4 inhibitors have not reduced the risk of major adverse cardiovascular events, 
possibly because potentiation of SDF-1 enhances plaque growth and instability, activates deleterious neurohormo-
nal mechanisms, and promotes cardiac inflammation and fibrosis. Similarly, trials with GLP-1 agonists and sodium-
glucose cotransporter 2 inhibitors have reported favorable effects on renal function, even after only 3–4 years of 
treatment. In contrast, no benefits on the rate of decline in glomerular filtration rate have been seen in trials of DPP-4 
inhibitors, perhaps because the renal actions of DPP-4 inhibitors are primarily mediated by potentiation of SDF-1, not 
GLP-1. Experimentally, SDF-1 can promote podocyte injury and glomerulosclerosis. Furthermore, the natriuretic action 
of SDF-1 occurs primarily in the distal tubules, where it cannot utilize tubuloglomerular feedback to modulate the 
deleterious effects of glomerular hyperfiltration. Potentiation of SDF-1 in experimental models may also exacerbate 
both retinopathy and neuropathy. Therefore, although DPP-4 inhibitors have attractive clinical features, the benefits 
that might be expected from GLP-1 signaling may be undermined by their actions to enhance SDF-1.
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Background
Drugs that inhibit dipeptidyl peptidase-4 (DPP-4) are 
conventionally regarded as incretin-based agents that 
enhance the actions of endogenous gastrointestinal hor-
mones (glucose-like peptide-1 [GLP-1] and glucose-
dependent insulinotropic polypeptide) to promote the 
release of insulin from the pancreas [1, 2]. However, inhi-
bition of DPP-4 also potentiates other substrates that are 
degraded by the enzyme, including several chemokines 
[3], particularly stromal cell-derived factor-1 (SDF-1) [4, 
5]. This chemokine—also referred to as CXCL12 (C-X-C 

motif chemokine 12)—is responsible for the mobiliza-
tion of hematopoietic stem and progenitor cells by sign-
aling through its receptor CXCR4, and it contributes 
importantly to tissue inflammation, vascularity, repair 
and regeneration [6]. This function is defective in type 
2 diabetes [7–9], presumably because DPP-4 activity is 
enhanced in patients with glucose intolerance [9–11].

Potential role of stem‑cell chemokines in type 2 
diabetes
Experimentally, potentiation of SDF-1 can act to promote 
pancreatic β-cell genesis, differentiation and survival, 
and the chemokine may protect β cells from destruction 
as diabetes progresses [12, 13]. This chemokine may also 
play a protective role in the marshaling and recruitment 

Open Access

Cardiovascular Diabetology

*Correspondence:  milton.packer@baylorhealth.edu 
Baylor Heart and Vascular Institute, Baylor University Medical Center, 
621 N. Hall Street, Dallas, TX 75226, USA

http://orcid.org/0000-0003-1828-2387
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12933-017-0648-x&domain=pdf


Page 2 of 8Packer  Cardiovasc Diabetol  (2018) 17:9 

of progenitor cells that could act to ameliorate ischemia, 
especially in peripheral limbs [14–17]. However, the ability 
of SDF-1 to promote repair involves both inflammation, 
angiogenesis and fibrosis, which could theoretically have 
adverse effects on the course of many of the macrovascular 
and microvascular complications of diabetes [18].

The gene for SDF-1 has been identified through 
genome-wide association studies as one of the key loci 
associated with increased susceptibility to coronary 
artery disease [19, 20]. Increased levels of SDF-1 are asso-
ciated with increased severity of coronary artery obstruc-
tions [21], and high levels of the chemokine are seen in 
patients with an acute coronary syndrome and forebode 
a worse prognosis and an increased risk of heart failure 
[22–24]. SDF-1 may also play a critical role in the genesis 
of retinopathy, which starts with damage to small blood 
vessels in the eye but whose progression depends on a 
neovascular response that can be exacerbated by SDF-1 
[18, 25]. Similarly, although SDF-1 may ameliorate kid-
ney injury and promote repair after nondiabetic ischemia 
[26], potentiation of the chemokine can contribute to a 
proliferative response that leads to glomerulosclerosis, 
podocyte loss, and albuminuria [27, 28], thus implicat-
ing SDF-1 in the pathogenesis of diabetic nephropathy. 
Experimental studies have also identified SDF-1 as a 
mediator of pain and neovascularization in diabetic neu-
ropathy [29, 30].

Despite their potential to potentiate SDF-1 and thereby 
exacerbate the vascular complications of type 2 diabe-
tes, DPP-4 inhibitors have emerged as a popular choice 
for the treatment of the disease because of their ease of 
use, tolerability and ability to produce predictable and 
sustained lowering of blood glucose. Unlike older anti-
diabetic drugs [31–33], these drugs lower blood pressure 
and do not cause weight gain [34]; clinicians might expect 
such attributes to enhance the ability of these drugs to 
favorably modulate the risk of macrovascular and micro-
vascular events [35, 36]. Furthermore, unlike long-acting 
GLP-1 analogs that also signal through the incretin path-
way, DPP-4 inhibitors do not require parenteral adminis-
tration, and their long-term use is associated with a low 
risk of gastrointestinal adverse effects and no meaning-
ful increases in heart rate [37–40]. Use of these drugs is 
associated with a lower risk of hypoglycemia, when com-
pared to insulin, sulfonylureas and thiazolidinediones 
[41, 42]. Additionally, unlike sodium-glucose transporter 
2 (SGLT2) inhibitors, DPP-4 inhibitors do not adversely 
affect lipid metabolism or increase the risk of genitouri-
nary infections [43]. The addition of DPP-4 inhibitors to 
patients already treated with metformin may seem par-
ticularly attractive, since both drugs may act to enhance 
circulating levels of GLP-1 and thus, may have synergistic 
effects on incretin receptor signaling [44–46].

However, the purpose of treating type 2 diabetes is not 
merely to lower levels of glycated hemoglobin, but to 
reduce the risk of the macrovascular and microvascular 
complications of the disease. Long-term outcomes trials 
with several different DPP-4 inhibitors have been per-
formed, and their results are worth examining in order 
to understand both the mechanisms of action as well as 
the appropriate place of this class of drugs in diabetes 
care.

Effect of DPP‑4 inhibitors on macrovascular events 
in landmark trials
Four large-scale prospectively-designed cardiovascular 
outcomes trials have been carried out with DPP-4 inhibi-
tors. A trial of alogliptin (EXAMINE) was performed 
in 5380 patients with an acute coronary syndrome; the 
median duration of follow-up was 1.5 years [47]. A trial 
of sitagliptin (TECOS) enrolled 14,735 patients who had 
clinically stable type 2 diabetes; the median duration of 
follow-up in the study was 3.0 years [48]. A trial of saxa-
gliptin (SAVOR-TIMI53) studied 16,492 patients with 
diabetes who were followed for a median of 2.1 years [49]. 
A trial of omarigliptin evaluated 4202 diabetic patients 
without acute ischemic disease, who were followed for a 
median of 1.8 years, before early termination of the trial 
[50]. In all four trials, treatment with the DPP-4 inhibitor 
produced meaningful decreases in glycated hemoglobin.

Despite a sustained benefit on glycemic control, treat-
ment with the four different DPP-4 inhibitors did not 
reduce the risk of major adverse cardiovascular events. In 
all four major trials, despite substantial statistical power 
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Fig. 1 Effects of dipeptidyl peptidase-4 inhibition are mediated by 
potentiation of both stromal cell-derived factor-1 and glucagon-like 
peptide-1. Dipeptidyl peptidase-4 (DPP-4) inhibitors potentiate the 
actions of both stromal cell-derived factor-1 (SDF-1) and glucagon-
like peptide-1 (GLP-1). These two peptides appear to exert opposing 
effects on atherosclerotic plaque growth and stability as well as on 
podocyte injury and glomerulosclerosis in the diabetic kidney. The 
effects of DPP-4 inhibitors on natriuresis as well as on cardiac inflam-
mation, fibrosis and remodeling are primarily mediated by SDF-1
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to detect a clinically meaningful treatment effect, the 
administration of sitagliptin, saxagliptin, alogliptin and 
omarigliptin did not reduce the combined risk of car-
diovascular death, non-fatal myocardial infarction and 
non-fatal stroke [47–50]. This lack of benefit stands in 
contrast with the significant or nearly-significant reduc-
tion in macrovascular risk reported with liraglutide, 
semaglutide and exenatide [51–53], which also enhance 
signaling through the GLP-1 receptor [54]. The findings 
with DPP-4 inhibitors also differ from the responses 
reported with SGLT2 inhibitors, which (in two trials) 
were reported to reduce major adverse cardiovascular 
events, especially the risk of new-onset heart failure [55, 
56]. By comparison, the DPP-4 inhibitors, saxagliptin and 
alogliptin, carry a regulatory warning about the finding 
of an increased risk of hospitalization for heart failure in 
treated patients enrolled in large-scale trials carried out 
with these drugs [57].

The reasons for the lack of benefit of DPP-4 inhibitors 
on major cardiovascular outcomes could theoretically be 
related to the relatively short duration of follow-up in the 
landmark trials. However, this possibility seems unlikely, 
because over comparable periods of time, treatment with 
GLP-1 receptor agonists (which also enhance signaling 
through the GLP-1 pathway) reduced the risk of athero-
sclerotic ischemic events [51, 52]. Similarly, when given 
for treatment periods less than 4 years, SGLT2 inhibitors 
have had favorable effects on the risk of cardiovascular 
death, heart failure and nephropathy [55, 56, 58].

How then can these contrasting results be reconciled? 
In experimental studies, augmentation of the actions of 
GLP-1 retards the growth and increases the stability of 
atherosclerotic plaques, thus minimizing the likelihood 
of plaque rupture [59, 60]. Such an effect is mediated by 
an action of GLP-1 signaling to reduce the inflamma-
tory response to vascular injury [59–62]. However, such 
a benefit might not be seen with DPP-4 inhibitors, since 
these drugs primarily potentiate levels of GLP-1 in the 
gastrointestinal tract and have modest effects on GLP-1 
receptors in the systemic circulation [4]. Furthermore, 
DPP-4 inhibitors potentiate the actions of SDF-1 [5, 63], 
which acts as a proinflammatory chemokine to promote 
plaque growth and instability [2, 64–66]. The poten-
tiation of endogenous SDF-1 by DPP-4 inhibitors could 
negate the benefits on atherosclerotic ischemic events 
that might be expected from enhanced GLP-1 signaling 
[59, 60] (Fig. 1).

Interestingly, SDF-1 can increase the number of circu-
lating progenitor cells and direct the homing of stem cells 
to the heart in experimental myocardial injury [16, 17, 
67–69]. However, in the absence of acute injury, SDF-1 
signaling may impair cardiac contractility [70, 71]. Circu-
lating levels of SDF-1 and the expression of receptors for 

SDF-1 are already increased in patients with heart fail-
ure, in the absence of DPP-4 inhibition [72, 73]. Further 
potentiation of SDF-1 could activate deleterious neuro-
hormonal systems [74, 75], interact unfavorably with con-
currently administered beta-adrenergic receptor blockers 
[71, 76], and promote progenitor cell infiltration, cardiac 
inflammation and adverse cardiac remodeling [77–79]. 
Is it possible that SDF-1 potentiation might explain the 
increased risk of heart failure reported in trials of DPP-4 
inhibitors? [80, 81].

Effect of DPP‑4 inhibitors on microvascular events 
in landmark trials
An adequate assessment of the effect of antidiabetic 
drugs on the risk of microvascular events requires trials 
that evaluate durations of glucose-lowering treatments 
administered for a decade or longer. Interventions that 
lower blood glucose for 10  years have been shown to 
reduce the risk of retinopathy and nephropathy [82, 83]; 
changes in course of neuropathy may require more pro-
longed therapy. DPP-4 inhibitors have not been tested for 
such extended periods of time, and large-scale cardiovas-
cular outcomes trials have not been designed to evaluate 
the effects of treatment with these drugs on microvascu-
lar risk.

Nevertheless, many of the large-scale cardiovascular 
trials have reported the effects of DPP-4 inhibitors on 
aspects of diabetic nephropathy, specifically changes in 
urinary protein excretion, in glomerular function over 
time, and in the risk of progression to end-stage renal 
disease [47, 48, 84]. In its large-scale trial, saxagliptin 
produced a sustained but modest effect on albuminu-
ria [84]. Such an effect was not unexpected; hyperglyce-
mia acts directly on glomerular podocytes to increase 
their permeability to albumin [85, 86], and its correc-
tion should reduce urinary protein excretion. However, a 
favorable effects of DPP-4 inhibitors on albuminuria has 
not been a consistent finding in clinical trials [87], pos-
sibly because potentiation of SDF-1 in podocytes may 
aggravate proteinuria, and thus, may oppose the benefits 
expected from glycemic control [28].

Despite an ability to reduce albuminuria, treatment 
with DPP-4 inhibitors has not been accompanied by ben-
eficial changes in the clinical course of diabetic nephrop-
athy. A meta-analysis of trials with linagliptin reported 
favorable effects on renal outcomes; however, the median 
duration of treatment was less than 6  months, and the 
benefit was driven primarily by a reduction in albuminu-
ria [88]. In large-scale longer-term cardiovascular out-
comes trials [47, 48, 84], long-term DPP-4 inhibition was 
associated with no change or a small decline in glomeru-
lar function that persisted during the entire duration of 
follow-up (up to 4  years). Furthermore, treatment with 
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sitagliptin and saxagliptin did not diminish the risk of 
serious adverse renal events, as measured by a doubling 
of serum creatinine or the need for renal replacement 
therapy. In contrast, treatment with the GLP-1 recep-
tor agonist liraglutide yielded a small improvement in 
kidney function at the end of the follow-up period [89], 
and in two large-scale trials, the use of SGLT2 inhibitors 
was accompanied by a meaningful and durable improve-
ment in glomerular function and a reduction in the risk 
of serious adverse renal events [56, 58]. The advantages 
of SGLT2 inhibitors over DPP-4 inhibitors cannot be 
ascribed to differences in their antihyperglycemic effects, 
since in the large-scale trials, the two classes of drugs 
produced similar decreases in blood glucose during long-
term treatment.

To the extent that hyperglycemia contributes to renal 
injury and nephropathy, the antihyperglycemic effects of 
long-term DPP-4 inhibition might be expected to slow 
the rate of decline of glomerular function, if this benefit 
can be sustained for prolonged periods of time [83, 84]. 
However, in the large-scale cardiovascular outcomes tri-
als, the benefits of GLP-1 receptor agonists and SGLT2 
inhibitors on renal function were seen relatively early in 
treatment, within only 3–4 years [56, 58]. Why did DPP-4 
inhibitors not exert favorable renal effects when adminis-
tered over these relatively short periods of time?

There are two possibilities. First, although the experi-
mental data are conflicting [90], it is possible that poten-
tiation of SDF-1 by DPP-4 inhibitors may enhance the 
inflammatory and proliferative responses to kidney 
injury and may thereby aggravate the course of diabetic 
nephropathy [27, 28]. This adverse effect may negate any 
benefit on renal function that might be achieved through 
GLP-1 receptor signaling [91, 92]. Second, kidney injury 
in diabetes appears to be related to glomerular hyper-
filtration [93, 94], which is likely related to an excessive 
reabsorption of sodium in the proximal tubule, leading 
diminished delivery of sodium to the macula densa, and 
(via tubuloglomerular feedback) to afferent arteriolar 
dilatation [95, 96]. Both GLP-1 receptor agonists and 
SGLT2 inhibitors act directly on the proximal tubule to 
block sodium hyper-reabsorption [97, 98]; this effect, 
which is independent of their action on blood glucose, 
may underlie the early favorable actions on the kidney 
seen with these drugs in large-scale trials. In contrast, 
DPP-4 inhibitors exert a natriuretic effect by acting pri-
marily on distal segments, apparently by enhancing the 
effects of SDF-1 [99] (Fig. 1). However, because this distal 
site of action that cannot utilize tubuloglomerular feed-
back to ameliorate glomerular hyperfiltration [95, 96], 
DPP-4 inhibition does not appear to exert early benefits 
on renal function in type 2 diabetes. If DPP-4 inhibi-
tors exert any effect to inhibit sodium transport in the 

proximal tubule, this action does not appear to be medi-
ated by potentiation of GLP-1 and or by pathways linked 
to the GLP-1 receptor [98–101]. The totality of evidence 
suggests that the effects of DPP-4 inhibitors on the kid-
ney may be primarily mediated through potentiation of 
SDF-1 rather than of GLP-1.

Summary and conclusions
DPP-4 inhibitors represent an attractive therapeutic 
option for the control of hyperglycemia in patients with 
type 2 diabetes due to their ease of use, tolerability and 
safety profile. However, unlike other newer antidiabetic 
drugs, DPP-4 inhibitors do not appear to exert mean-
ingful effects on macrovascular or microvascular risk, 
at least when administered for periods of 3–4  years. 
This lack of early benefit may be related to the fact that 
the clinical profile of DPP-4 inhibitors may be domi-
nated by the potentiation of endogenous peptides other 
than GLP-1 [1]. Many of the effects of DPP-4 inhibitors 
in large-scale clinical trials, including their effects on 
atherosclerotic ischemic events, heart failure, sodium 
excretion, albuminuria and glomerular function may be 
meaningfully influenced by their actions to enhance of 
the endogenous stem-cell chemokine, SDF-1. Only the 
antihyperglycemic effect of these drugs appears to be 
clearly related to the potentiation of incretins (i.e., GLP-1 
and glucose-dependent insulinotropic polypeptide) [102, 
103], possibly because such potentiation is confined to 
the gastrointestinal tract and may not be manifest sys-
temically [63]. Given the complexity of the clinical effects 
exhibited by DPP-4 inhibitors in diabetes, it may not be 
entirely informative to refer to them solely as incretin-
based drugs.
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