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REVIEW

Emerging role of chemokine CC motif 
ligand 4 related mechanisms in diabetes 
mellitus and cardiovascular disease:  
friends or foes?
Ting‑Ting Chang1 and Jaw‑Wen Chen1,2,3,4*

Abstract 

Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor 
are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complex‑
ity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple 
pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 
and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4‑related 
mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis 
cardiovascular diseases.
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Background
Chemokines and their seven-transmembrane, G-protein 
coupled receptors have been recognized as key media-
tors in the pathology of both diabetes mellitus (DM) 
and atherosclerosis cardiovascular diseases. These small 
molecular weight chemo-tactic cytokines recruit and 
physiologically direct cell migration. They can be broadly 
divided into four subfamilies, the CXC, CC, C, and CX3C 
families, according to their N-terminal cysteine -motifs 
[1]. Moreover, chemokines are also defined as “homeo-
static” chemokines and “inflammatory” chemokines 
based on their functions. Homeostatic chemokines are 
constitutively secreted and involved in lymphocyte traf-
fic, while inflammatory chemokines mediate pro-inflam-
matory signals and induce leukocyte recruitment to 
damaged tissue [2].

Diabetes patients have an increased risk of atheroscle-
rosis cardiovascular diseases compared to people with-
out diabetes. Diabetic vascular complications are the 
major cause of morbidity and early mortality in type 2 
DM, suggesting the close link between type 2 DM and 
atherosclerosis cardiovascular disease [3–5]. Both type 
2 DM and atherosclerosis cardiovascular diseases have 
been increasingly recognized as inflammatory related 
diseases. Recently, chemokine CC motif ligand 4 (CCL4), 
also known as macrophage inflammatory protein-1β 
(MIP-1β), a member of the CC chemokine family, was 
suggested to play a potential role in the development 
and/or progression of DM and atherosclerosis disease 
[6]. Besides, other chemokines such as chemerin may 
also related to inflammation and could act as novel bio-
markers of acute coronary syndrome [7]. Therefore, 
inflammatory chemokines such as CCL4 might act as 
a possible node to link the presence of DM and athero-
sclerosis. However, the current CCL4 data are not con-
sistent, especially for the complications of diabetes. This 
review focuses on the emerging evidence for the multiple 
roles of CCL4-related mechanisms, including those of 
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CCL4 and one of its major receptors, fifth CC chemokine 
receptor (CCR5), in both experimental and clinical DM 
and atherosclerosis cardiovascular diseases. It may also 
provide the rationale for the potential role of CCL4-
related mechanisms as therapeutic targets in clinical DM 
and atherosclerosis diseases.

Chemokine CC motif ligand 4 (CCL4, MIP‑1β)
The molecular weight of CCL4 is 7.8  kDa. Its gene is 
located on chromosome 17 [6]. Murine and human CCL4 
proteins are synthesized as 92 amino acid precursors. 
Mature secreted proteins of 69 amino acids are generated 
by peptidases that cleave hydrophobic signal peptides [8, 
9]. The three-dimensional structure of human CCL4 has 
been identified by heteronuclear magnetic resonance. 
CCL4 exists as a symmetrical homodimer. The main sec-
ondary structure elements comprise a triple-stranded 
antiparallel β sheet and an NH2-terminus followed by a 
four-residue helical turn. In general, the CCL4 dimer is 
elongated and cylindrical [10].

CCL4 was first isolated from the culture medium of 
LPS-activated macrophages [11]. LPS can impair mus-
cle glucose uptake by both the direct effects of inflam-
mation on myocytes, as well as by indirect NO-driven 
cardiovascular dysfunction [12]. CCL4 may exhibit che-
moattractive ability towards different cell types, including 
macrophages, natural killer cells, monocytes, immature 
dendritic cells, and coronary endothelial cells [13–17]. In 
addition, CCL4 has been shown to induce calcium mobi-
lization in natural killer cells, monocytes, leukocytes, vas-
cular smooth muscle cells, and progenitor B cells [14–16, 
18, 19]. The upregulation of circulating CCL4 levels was 
also observed in patients with type 2 DM and/or clinical 
atherosclerosis cardiovascular diseases [20–24].

The role of CCL4 in type 1 and type 2 diabetes mellitus
Serial chemokines have been shown to be associated 
with the progression of both type 1 and type 2 DM. 
While macrophages may be implicated in the destruc-
tion of islet cells with the increase in blood glucose and 
the progression of both type1 and type 2 DM, CCL4 is 
one of the major macrophage attractants [25, 26]. While 
resulting in β-cell death and early islet graft loss, inflam-
matory stimuli with a CD40-CD40L interaction could 
induce the secretion of CCL4 through the Raf/MEK/ERK 
and NF-κB pathways in pancreatic islets [27]. CCL4 may 
also be produced by human islet ductal cells, which could 
be suppressed by sirolimus, an inhibitor of cell prolifera-
tion [28]. Clinically, the circulating CCL4 concentrations 
may be increased not only in the multiple islet autoanti-
body-positive group type 1 diabetes patients but also in 
prediabetic patients [20]. High-risk individuals that later 
developed type 1 DM had the increased secretion of the 

pro-inflammatory chemokine CCL4 [22]. In addition, cir-
culating concentrations of CCL4 may be similar between 
type 1 and type 2 DM patients, suggesting the universal 
involvement of CCL4 in different stages and types of DM 
[29].

However, one study reported that CCL4 was signifi-
cantly lower in patients with type 1 DM than in con-
trols [30]. It was also shown that release of CCL4 from 
monocytes was dose-dependently induced by adiponec-
tin [31]. Interestingly, in type 2 diabetic patients, insulin 
infusion could significantly suppress the expression of 
CCL4 in mononuclear cells. These findings are relevant 
because insulin is anti-inflammatory [32, 33]. Insulin also 
suppresses RANTES, which is atherogenic, and eotaxin, 
which is allergogenic [34]. Both of them bind to CCR5 
as their receptor. Besides, the deletion of insulin recep-
tor in endothelial cells leads to atherosclerosis [35]. The 
administration of insulin to apo E-deleted animals could 
also inhibit atherogenesis, suggesting the potential anti-
atherosclerosis effects of insulin [36].

Taken together, in most clinical diabetes patients, cir-
culating CCL4 levels may be increased early with the 
dysfunction of β-cells, even before they are extensively 
damaged. Further, exogenous insulin supplementation 
may eventually reduce CCL4 expression, likely by unload-
ing the β-cells, as circulating CCL4 levels were inversely 
associated with proinsulin levels [37]. Thus, CCL4 might 
be produced by, rather than induce, the initial inflamma-
tory damage on islet β-cells.

Indeed, the in vivo pathogenesis role of CCL4 in exper-
imental diabetes may be obscured. A protective rather 
than aggravated role was suggested in animal studies, 
mainly in nonobese diabetic (NOD) mouse models. NOD 
mice can spontaneously develop a form of type 1 diabe-
tes that shares some features of the human disease [38]. It 
was previously shown in the NOD mouse model that Th1 
MNCs could enter and/or accumulate in the pancreas 
more rapidly than Th2 MNCs and induce immune-asso-
ciated diabetes. However, both subsets induce adhesion 
receptors on vascular endothelium coincident with their 
infiltration. In  vitro, Th1 cells were also distinguished 
from Th2 cells by the capacity to synthesize several 
chemokines, including lymphotactin, monocyte chem-
oattractant protein-1, and CCL3 (MIP-1α), whereas both 
subsets produced CCL4 (MIP-1β) [39]. Although the 
Th1/Th2 paradigm provided a conceptual framework for 
diseases, the opposite results of Th2-skewing agents indi-
cate that the Th1/Th2 paradigm is too simple to explain 
DM pathogenesis [40–43], possibly because Th1/Th2 
cytokines have pleiotropic functions beyond T helper 
cell phenotype modulation [44]. These studies indicate 
that Th1/Th2 modulation alone is insufficient for DM 
treatment. In addition, a recent study indicated the Treg 
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control immune homeostasis via the CCL4/CCR5 path-
way, suggesting a potential relationship between CCL4/
CCR5 and Th17/Treg [45]. In another NOD mouse 
model, an elevated ratio of CCL3 to CCL4 in the pancreas 
was correlated with destructive insulitis and progression 
to diabetes [38]. Moreover, a decreased intra-pancreatic 
CCL3 to CCL4 ratio was also observed in nonobese dia-
betes-resistant mice. NOD.CCL3-/- mice but not NOD.
CCL4-/- mice exhibited reduced destructive insulitis 
and were protected from type 1 DM. In NOD.Scid mice, 
which do not have functional T or B cells, CCL4 expres-
sion was undetectable in the pancreas, suggesting that 
the intra-pancreatic expression of CCL4 may depend on 
the presence of infiltrated MNCs. In NOD.Scid recipi-
ents, the neutralization of CCL3 with specific antibod-
ies following transfer of diabetogenic T cells delayed the 
onset of diabetes, while the injection with anti-CCL4 
mAb did not [46]. Furthermore, in Lewis rats, in  vivo 
neutralization of the activity of CCL4 exacerbated the 
disease [47]. Blockade of IL-16 in vivo protected against 
type 1 DM in NOD mice by interfering with recruitment 
of T-cells to the pancreas, and this protection required 
the activity of CCL4 [48, 49]. Another study also showed 
that the protection from type 1 diabetes elicited by insu-
lin-like growth factor (IGF)-I/IGF-binding protein-3 was 
mediated by the upregulation of CCL4 gene expression 
in pancreatic-draining lymph nodes, activation of the 
phosphatidylinositol 3-kinase and Akt/protein kinase B 
signaling pathway of β-cells, reduced β-cell apoptosis, 
and stimulation of β-cell replication [50]. It was further 
shown that exogenous CCL4 supplementation could 
suppress rather than accelerate inflammatory responses 
targeting islet β-cells [51]. Thus, the role of CCL4 is still 
undefined in DM.

Currently, almost all CCL4-related type 1 DM effects 
have been observed in the NOD mouse model. Ideally, 
more than one animal model should be investigated due 
to the complexity of DM [52]. Interventions in the NOD 
mouse studies have been reported [53]. First, the agent 
efficacy frequently varied when mice were treated at dif-
ferent ages. For example, early treatment with TNF-α 
exacerbated the disease but later treatment protected 
from disease [54]. These data suggested that the differ-
ent modulations during disease progression might result 
in opposite effects. Second, different efficacies were 
observed in animal models. NOD mice and BB rats are 
both spontaneous autoimmune models of type 1 DM. 
However, nicotinamide and oral insulin showed protec-
tion in prediabetic NOD mice, but not in BB rats [55–58]. 
Commonly, it is easy to prevent type 1 DM onset in NOD 
mice if treatment is initiated early, but more difficult later 
in disease. As many type 1 DM patients are identified 
at diabetes onset, agents for DM treatment rather than 

prevention are urgently needed. Interestingly, previous 
data showed that the intra-pancreatic CCL4 concentra-
tion was relatively lower than that of CCL3 in NOD mice 
[50]. However, clinical data revealed that CCL4 levels 
were higher than CCL3 levels [21]. On the other hand, 
concentrations of CCL4 did not differ between groups, 
but CCL3 was higher in patients with latent autoimmune 
diabetes and type 1 diabetes than in those with type 2 
diabetes and control subjects [29]. Taken together, these 
data imply that CCL4 levels might be different because of 
the different stage of DM development or the complexity 
of DM. As a result, although anti-CCL4 showed protec-
tive effects when the CCL4 level was relatively lower in 
pre-diabetic NOD mice, the effects of anti-CCL4 should 
also be tested when the CCL4 level is higher, as in late 
DM and/or in other animal models of DM.

In summary, while CCL3 contributes to the develop-
ment of type 1 DM, CCL4 might play a protective role in 
some experimental diabetes, especially the NOD type 1 
DM model. However, the role of CCL4 is much less clear 
in type 2 DM and might be varied in different animal 
models of experimental diabetes. Future studies should 
be required to clarify the mechanistic insights and to 
evaluate the clinical impact of CCL4 in the development 
of either type 1 or type 2 DM in humans.

The role of CCL4 in atherosclerosis cardiovascular diseases
Previous studies showed that the inflammatory micro-
environment influences cell recruitment and activation, 
opening new investigative fields for pathophysiologi-
cal studies in cardiovascular diseases. In  vitro, CCL4 
was able to induce reactive oxygen species production 
and adhesion of THP-1 cells to human umbilical vein 
endothelial cells. CCL4 directly induced cell adhesion to 
endothelial cells through oxidative stress via PI3k–Rac1 
cascades [23]. Also, macrophages under high glucose 
conditions released more CCL4. CCL4 secreted from 
macrophages under high glucose conditions is capable of 
inducing the endothelial expression of adhesion molecule 
such as E-selectin in an in vitro study [59]. Several stud-
ies have demonstrated that the E-selectin plasma level 
could be increased in patients with hypertension, type 2 
DM, and atherosclerosis, and regard it as one of the risk 
factors for atherogenesis [60–63]. Furthermore, LPS-
induced CCL4 production from human monocytes was 
significantly and positively correlated with the total and 
LDL cholesterol concentration [64].

In the animal model of myocardial infarction, 
chemokine induction in the infarct heart mediates 
recruitment of leukocyte subsets with distinct properties. 
CCL4 and its receptor CCR5 were significantly induced 
in the infarct mouse myocardium [65, 66]. CCL4 was 
also upregulated in vulnerable atherosclerosis plaques 
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and was expressed by T cells in advanced atherosclerotic 
lesions in stroke patients [67, 68]. Further, elevated serum 
CCL4 levels have been shown to be an independent pre-
dictor of stroke and cardiovascular events in an aver-
age follow-up period of 37.2 ± 19.9 months in a cohort 
of hypertensive patients [23]. Patients with the highest 
quartile of CCL4 level showed a higher risk of stroke and 
cardiovascular events [23]. These data support the poten-
tial role of CCL4 in atherosclerosis disease and plaque 
vulnerability. However, the in  vivo evidence indicating 
the direct contribution of CCL4 to vascular and myocar-
dial injury is still lacking.

While similar between the non-diabetic hyperten-
sive patients and the normotensive controls, CCL4 lev-
els were significantly higher in the hypertensive patients 
with type 2 DM than in the controls. Furthermore, in 
these patients, CCL4 concentrations could be decreased 
after treatment with nifedipine, a calcium-channel 
blocker with antihypertensive and vascular protec-
tion effects [69]. It seems that the modulation of CCL4 
in some clinical cardiovascular diseases, such as hyper-
tension, is mainly related to the presence of type 2 DM. 
Although increasing evidence supports the potential role 
of CCL4, the mechanistic insights and clinical impact 
of CCL4-related atherosclerosis cardiovascular disease 
should be further explored.

Chemokine receptor 5 (CCR5)
CCL4 mediates its biological effects by binding to cell 
surface CC chemokine receptors belonging to the G-pro-
tein-coupled receptor super family. The most well-known 
receptor of CCL4 is the fifth CC chemokine recep-
tor (CCR5). CCR5 was cloned in 1996 [70] and shares 
55  % amino acids identity with the first CC chemokine 
receptor [71]. Recent evidence has suggested that CCR5 
is involved in human diseases such as infections and 
inflammatory diseases [72–74]. In this part, we focus on 
the background of CCR5 and its interactions with CCL4 
in DM and cardiovascular diseases.

The role of CCR5 in type 1 and type 2 diabetes mellitus
CCR5 may be linked with DM pathogenesis. In clinical 
studies, CCR5 gene polymorphisms were differentially 
related to the phenotypes of type 1 and type 2 DM [75, 
76]. Patients with type 2 DM exhibit CCR5 over-expres-
sion on their peripheral mononuclear cells, and low-dose 
infusions of insulin can suppress the expression of CCR5 
in mononuclear cells in obese type 2 diabetes patients 
[32].

In an animal model of experiment diabetes, CCR5 
expression in the pancreas was associated with the devel-
opment of insulitis and spontaneous type 1 DM [46]. 
CCR5 is also elevated in the superior cervical ganglion of 

type 2 diabetic rats [77]. Moreover, CCR5 is considered a 
novel link between obesity, adipose tissue inflammation, 
and insulin resistance [78, 79]. However, the data were 
not consistent in different animal models. In two previ-
ous studies, transient blockade of CCR5 with an anti-
CCR5 mAb at 11–13  weeks of age or CCR5 deficiency 
significantly accelerated rather than prevented auto-
immune type 1 diabetes in NOD mice [49, 80]. Further-
more, CCR5 expression at both the mRNA and protein 
levels was significantly increased when HUVECs were 
exposed to chronic high glucose [81].

Accordingly, these findings suggest the diverse roles 
of CCR5 in the progression of diabetes in experimental 
DM with different animal models. It should be further 
clarified if and how modulations of CCR5 could alter the 
development of human type 1 or type 2 DM.

The role of CCR5 in diabetic renal disease
In clinical studies, CCR5 gene polymorphisms are not 
only related to the phenotypes [75, 76] but also to the 
risk of nephropathy in type 1 and type 2 diabetes patients 
[82–86]. During diabetic nephropathy, the production 
of chemokines, such as RANTES, CCL3, and CCL4, by 
glomerular and tubular cells has been reported in hyper-
glycemia [87–89]. It has been reported that CCR5 mRNA 
was upregulated in microdissected glomeruli. In clinical 
diabetic nephropathy, CCR5 mRNA was overexpressed 
in the tubulointerstitial compartment but not expressed 
in microalbuminuria [90]. These chemokines are able 
to recruit kidney monocytes by interacting with the 
chemokine receptor CCR5 [91]. Interestingly, the pres-
ence of CCR5∆32 is associated with better survival in 
type 2 diabetic patients [76].

CCR5 in atherosclerosis cardiovascular disease
The upregulation of CCR5 may be associated with the 
development of atherosclerosis in type 2 diabetic patients 
[92]. It has been shown that the CCR5∆32 allele could be 
associated with decreased levels of C-reactive protein, 
intima-media thickness, and cardiovascular disease risk 
[93–95]. Reduced early onset of coronary heart disease in 
women is linked with CCR5 [96]. Further, the variation 
at the CCR5 gene was suggested to modulate the age of 
onset of myocardial infarction [97]. The CCR5 expres-
sion in peripheral monocytes was also increased in obese 
women [98]. However, another series of clinical investiga-
tions found no effects of the CCR5∆32 polymorphism on 
coronary artery disease or myocardial infarction in other 
populations [99–102]. Recently, it was shown that no 
chemokine receptor variant was associated with coronary 
artery disease, myocardial infarction or glucometabolic 
traits in large European ancestry cohorts [103]. Given 
the controversy in human studies, several investigations 
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carried out on CCR5 in atherosclerosis mouse models, 
using receptor antagonism or genetic deletion, indicated 
that CCR5 may be important in plaque development [93, 
104–108]. Interestingly, CCR5 was specifically needed for 
CD4 T cell homing to the atherosclerotic plaques [109].

CCR5 was discovered in smooth muscles and ath-
erosclerotic plaques. Increased CCR5 mRNA expres-
sion was discovered in unstable carotid atherosclerotic 
plaques compared with the stable ones [18, 110]. An 
animal study revealed the association between upregu-
lated CCR5 and disease progression in a vascular injury 
model using targeted nanoparticles with PET/CT imag-
ing [111]. CCR5 was also induced in murine myocardial 
infarct [66]. It may mediate vasoconstriction and stimu-
late intimal hyperplasia in human vessels in  vitro [112]. 
In addition, 40 % of the mononuclear cells infiltrating the 
infarct myocardium expressed CCR5 [65]. Furthermore, 
CCR5 inhibition prevents cardiac dysfunction in the SIV/
Macaque Model of HIV [113]. HIV-1 binds to CCR5 as 
a co-receptor to enter cell macrophages and glial cells 
[114]. While HIV-1 infection is atherogenic [115], higher 
monocyte CCR5 expression and plasma IL-6 may be 
associated with atherosclerosis in HIV-infected individu-
als [116]. CCR5 antagonists could retard early ritonavir-
induced atherogenesis and advanced plaque progression 
[117]. These findings support the involvement of CCR5, 
although its function is still not completely known, in the 
mediation of atherosclerosis and cardiovascular diseases. 
In 2002, orally bioavailable, synthetic, small molecule 
antagonists of CCR5 were tested in clinical trials. The 
CCR5 antagonist was shown to inhibit the proinflam-
matory effects of CCR5 ligands related to the pathogen-
esis of inflammatory diseases [118]. It was also reported 
that the annexin A1 fragment Ac2-26 largely diminished 
arterial recruitment of myeloid cells in a FPR2-depend-
ent fashion. However, this effect was not abolished in 
the presence of selective antagonists to CCR5 [119]. The 
potential role of CCR5 in clinical atherosclerosis disease 
awaits further clarification.

Conclusion
Recent findings demonstrated that both CCL4 and its 
receptor CCR5 play diverse roles in the inflammatory 
events underlying DM and cardiovascular diseases. 
Though it may attract macrophages to destroy islet cells, 
CCL4 could play a protective role in some experimental 
diabetes models, especially the NOD type 1 DM model. 
CCL4 might be the product rather than an inducer of 
the initial development of immune-related type 1 dia-
betes. However, given the specific pathological back-
ground in each individual DM disease model, the role of 
CCL4 should be fully investigated to ensure translation 
to clinical trial. On the other hand, CCL4 could also be 

upregulated in atherosclerosis and myocardial infarc-
tion to enhance adhesion molecule expression and accel-
erate the vascular inflammation response. While the 
findings on CCL4 neutralization may be contradictory, 
accumulating evidence showed the potential benefits of 
CCL4 blockade in experimental atherosclerosis disease 
but not in the development of DM. On the other hand, 
although the role of CCR5, a receptor of CCL4, may be 
diverse in different experimental DM models, experi-
mental evidence favored the involvement of CCR5 in the 
progression of atherosclerosis cardiovascular disease. 
Accordingly, future experimental and clinical studies are 
worthwhile to clarify if anti-CCL4 mechanisms, includ-
ing direct blocking of CCL4 and/or of CCR5, could be a 
promising therapeutic approach to retard the develop-
ment of DM, atherosclerosis cardiovascular diseases or 
both.
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