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ORIGINAL INVESTIGATION

Reduction of CTRP9, a novel anti-platelet 
adipokine, contributes to abnormal platelet 
activity in diabetic animals
Wenqing Wang1, Wayne Bond Lau2, Yajing Wang2, Xinliang Ma2 and Rong Li3*

Abstract 

Platelet hyper-reactivity is a crucial cause of accelerated atherosclerosis increasing risk of thrombotic vascular events 
in diabetic patients. The mechanisms leading to abnormal platelet activity during diabetes are complex and not fully 
defined. The current study attempted to clarify the role of CTRP9, a novel adiponectin paralog, in enhanced platelet 
activity and determined whether CTRP9 may inhibit platelet activity. Adult male C57BL/6 J mice were randomized to 
receive high-fat diet (HFD) or normal diet (ND). 8 weeks after HFD, animals were sacrificed, and both plasma CTRP9 
and platelet aggregation were determined. HFD-fed animals increased weight gain significantly, and became hyper-
glycemic and hyperinsulinemic 8 weeks post-HFD. Compared to ND animals, HFD animals exhibited significantly 
decreased plasma CTRP9 concentration and increased platelet response to ADP, evidenced by augmented aggrega-
tion amplitude, steeper aggregation slope, larger area under the curve, and shorter lag time (P < 0.01). A significant 
negative correlation between plasma CTRP9 concentration and platelet aggregation amplitude was observed. More 
importantly, in vitro pre-treatment with CTRP9 significantly inhibited ADP-stimulated platelet activation in platelet 
samples from both ND and HFD animals. Taken together, our results suggest reduced plasma CTRP9 concentration 
during diabetes plays a causative role in platelet hyper-activity, contributing to platelet-induced cardiovascular dam-
age during this pathologic condition. Enhancing CTRP9 production and/or exogenous supplementation of CTRP9 
may protect against diabetic cardiovascular injury via inhibition of abnormal platelet activity.
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Background
Anti-platelet treatment, such as acetylsalicylic acid and 
aspirin, reduces cardiovascular morbidity and mortality 
[1]. It is well known type 2 diabetic patients are at very 
high cardiovascular risk [2], and should thereby poten-
tially benefit significantly from anti-platelet treatment. 
Unfortunately, recent large clinical trials have demon-
strated acetylsalicylic acid therapy less effectively pre-
vents cardiovascular events in diabetic patients compared 
to normoglycemic individuals [3]. Moreover, concomi-
tant type 2 diabetes increases the risk of high on-aspirin 
platelet reactivity (HPR), defined as inadequate inhibition 

of platelet function [4]. The pathologic mechanisms lead-
ing to enhanced platelet activity and reduced platelet 
response to therapeutic interventions in type 2 diabetes 
are complex and remain incompletely understood.

An adipokine secreted by adipose tissue [5, 6], adi-
ponectin contains a stalk with 22 collagen repeats and a 
highly conserved globular domain. Typically present in 
plasma at concentrations up to 30 µg/ml, adiponectin is 
markedly down-regulated in association with obesity-
linked diseases such as coronary artery disease and type 
2 diabetes [7]. Clinical observations have revealed that 
plasma total adiponectin concentrations are inversely 
correlated with myocardial infarction risk [8, 9]. More-
over, adiponectin has been reported to have potent 
anti-platelet action, reducing vascular injury caused by 
abnormal thrombolysis [10–12]. Adiponectin knockout 
mice have been generated and studied by many groups. 
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When metabolically challenged (e.g., high-fat diet), adi-
ponectin-null mice develop insulin resistance, endothe-
lial dysfunction, and vascular injury [13]. However, in 
the absence of dietary or metabolic stress, these animals 
show a relatively modest phenotype, suggesting potent 
compensatory mechanisms are in place.

Recently, a highly conserved family of adiponectin 
paralogs has been discovered, and designated the C1q 
tumor necrosis factor (TNF) related proteins (CTRPs). 
Exhibiting a similar structure as APN, each CTRP con-
sists of four distinct domains including a N-terminal 
signal peptide, a short variable domain, a collagen-like 
domain, and a C-terminal C1q-like globular domain 
[14, 15]. Of all CTRPs identified to date, CTRP9 shares 
the greatest amino acid overlap with APN in its globular 
C1q domain [16]. We recently demonstrated that CTRP9 
is an endothelium-dependent vasodilator and CTRP9 
treatment attenuates diabetes-induced endothelial dys-
function [17]. Moreover, others and we have recently 
demonstrated CTRP9 protects the heart against acute 
ischemic/reperfusion injury [18, 19]. Most importantly, 
a recent study demonstrated that, distinctly different 
from adiponectin-knockout (which lacks phenotypic 
change under physiologic conditions), CTRP9-knockout 
mice gain more weight with normal diet and develop 
spontaneous insulin resistance and type 2 diabetes [20]. 
In contrast, CTRP9 transgenic mice are protected from 
diet-induced obesity and metabolic dysfunction [21]. 
These results suggest CTRP9 likely possesses more 
important metabolic regulatory function than other adi-
pokines. However, the role of CTRP9 in dysregulated 
platelet hemostasis under diabetic conditions has not 
been previously investigated.

Therefore, the aims of this study were: (1) to deter-
mine the relationship between plasma CTRP9 alteration 
and platelet aggregation in high-fat diet induced diabetic 
animals, and (2) to investigate the effect of CTRP9 upon 
platelet aggregation.

Methods
High‑fat diet induced diabetes
We utilized a previously established high-fat diet 
induced type 2 diabetes model to mimic Western diet-
induced obesity/diabetes in human [22]. In brief, adult 
(8-week old) male C57BL/6  J mice were randomized to 
receive high-fat diet (HFD, 60  % kcal, Research Diets 
Inc. D12492i) or normal diet (ND, 10  % kcal control, 
D12450Bi) containing the same protein content as HFD. 
All experiments in this study were performed in adher-
ence with the National Institutes of Health Guidelines 
on the Use of Laboratory Animals, and were approved 
by the Fourth Military Medical University Committee on 
Animal Care.

Metabolic characterization
Mice were fasted overnight by removal to a clean cage 
without food at the end of their dark (feeding) cycle, 
approximately 6 p.m.. Mice were weighed at 8 a.m. the next 
morning. 30  µl blood was obtained via tail clip to assess 
plasma glucose (Accu-Chek Active Blood Glucose Monitor-
ing System, Roche Diagnostics, Indianapolis, IN), plasma 
insulin (ELISA, Linco, Billerica, MA) and plasma CTRP9 
(ELISA, Aviscera Bioscience, Santa Clara, CA). Weight and 
plasma measurements were recorded initially and every 
other week thereafter. The Homeostatic Model Assessment-
Insulin Resistance (HOMA-IR), a surrogate measure of 
insulin resistance, was calculated initially and weekly there-
after, via HOMA calculator v2.3 (University of Oxford).

Platelet preparation
Blood was obtained by intracardiac puncture from 
HFD or ND mice. Blood was drawn into polypropylene 
syringes containing one-tenth volume of 0.11 M sodium 
citrate, and centrifuged at 80 g for 10 min to obtain the 
platelet rich plasma (PRP), or 2400 g for 20 min to obtain 
platelet poor plasma (PPP).

Platelet aggregation assay
500  µl of reference (PPP) or samples (PRP) was added 
to P/N 312 cuvettes (Chronolog Corp. Havertown, PA), 
and inserted into aggregometer wells (Chronolog Corp). 
10 µM ADP reagent (Chronolog Corp) was added to the 
samples to induce platelet aggregation. To determine 
the effect of CTRP9 on platelet aggregation, recombi-
nant murine CTRP9 (4 µg/ml, Aviscera Bioscience, Santa 
Clara, CA) was added in PRP for 20 min at 37 °C before 
ADP addition. CTRP9 is highly conserved throughout 
evolution. Mouse CTRP9 and its corresponding human 
ortholog share 100, 85, and 89  % amino acid identity 
in their short N-terminal variable regions, collagen 
domains, and C-terminal globular domains, respectively 
[16]. The amplitude, slope, area under the curve, and lag 
time of platelet aggregation was calculated automatically 
by manufacturer-provided software (Chronolog Corp).

Statistical analysis
All values in the text and figures are presented as the 
mean ± SEM of n independent experiments. Data were 
analyzed by unpaired t test with GraphPad Prism 6 sta-
tistic software (La Jolla, CA). P values less than or equal 
to 0.05 (2-sided) were considered statistically significant.

Results
Plasma CTRP9 levels were significantly reduced in HFD 
induced type‑2 diabetic mice
To confirm establishment of type 2 diabetes by HFD, 
body weight, plasma glucose, and insulin concentration 
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were determined. HFD mice had greater body weight 
increase compared to normal diet (ND) (Fig.  1). After 
2  weeks, fasting plasma glucose increased steadily in 
HFD mice. 8 weeks post-HFD, fasting plasma insulin was 
significantly increased (Fig. 2a) and plasma CTRP9 con-
centration was significantly reduced (Fig. 2b).

Platelet aggregation is significantly increased in diabetic 
animals and negatively correlated with plasma CTRP9
No significant difference was observed in total platelet 
counts between the two groups (987 ±  36 ×  103/µl vs. 
966 ±  41 ×  103/µl). As illustrated in Fig.  3a and sum-
marized in Fig.  3b, ADP-stimulated platelet aggrega-
tion was significantly increased in HFD mice samples. 
Importantly, a statistically significant negative correla-
tion (P  <  0.01) between plasma CTRP9 concentration 
and platelet aggregation was observed (Fig. 3c). To gain 
more insight into platelet activity alteration during dia-
betes, platelet aggregation slope, area under the curve, 
and lag time (reaction time after ADP addition) were 

determined. In HFD platelet samples, platelet aggrega-
tion slope and area under the curve were significantly 
increased, whereas the lag time was significantly reduced, 
compared to ND (Fig.  4), suggesting reduced plasma 
CTRP9 levels may contribute to abnormal platelet activ-
ity in diabetic animals.
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Fig. 1 High fat diet (HFD) caused significantly greater weight gain (a) 
and hyperglycemia (b). N = 15 group. *P < 0.05, **P < 0.01 vs. normal 
diet (ND)
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Fig. 2 HFD significantly increased plasma insulin concentration 
(a) and HOMA-IR (b), and reduced plasma CTRP9 concentration (c). 
N = 15 group. *P < 0.05, **P < 0.01 vs. ND
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Recombinant CTRP9 significantly inhibited diabetic 
platelet aggregation
To gain more direct evidence that CTRP9 may inhibit 
platelet function, the effect of in  vitro CTRP9 pre-
treatment upon ADP-induced platelet aggregation was 
determined. CTRP9 pre-treatment significantly reduced 
platelet function as evidenced by reduced platelet aggre-
gation amplitude, decreased platelet aggregation slope, 
smaller area under the curve, and increased lag time in 
response to ADP (Fig. 5).

Discussion
The current study made several significant observa-
tions. First, we demonstrated that plasma concentra-
tion of CTRP9, a novel cardioprotective adipokine, is 
significantly reduced in HFD-induced obesity/diabetic 
animals. This finding is consistent from a recent study 
reported by Peterson et  al. [21]. Second, we provided 

the first evidence that platelet aggregation is negatively 
associated with plasma CTRP9 concentration. Third, we 
demonstrated for the first time that CTRP9 is a potent 
anti-platelet adipokine.

The role of platelets in thrombus formation is well 
known. Previous studies have reported an association 
between platelet activation and the degree of insulin 
resistance reflected by HOMA-IR [23]. Platelet hyper-
reactivity is one of the most important causes of accel-
erated atherosclerosis and increased thrombotic risk 
in diabetic patients [24], contributing to a 2- to 4-fold 
increased coronary artery disease risk. During platelet 
activation, arachidonic acid is released from membrane 
phospholipids, which is oxygenated into thrombox-
ane A2, a potent pro-aggregatory and vaso-constricting 
compound. Moreover, a previous study has shown that 
increased platelet aggregation is already detectable in 
diabetic patients without apparent vascular complica-
tions [25], indicating abnormal platelet reactivity may 
play a causative role in diabetic vascular morbidity and 

Fig. 3 ADP-stimulated platelet aggregation is significantly increased 
in HFD animals. a Typical platelet aggregation tracing. b Bar graph 
summarizing data from 15 animals/group. c Significant negative cor-
relation between plasma CTRP9 concentration and platelet aggrega-
tion was observed. *P < 0.05, **P < 0.01 vs. ND

Fig. 4 Both the platelet aggregation slope (a) and area under the 
curve (b) were significantly increased, but the lag time (c) was 
significantly reduced in platelet samples isolated from HFD animals. 
**P < 0.01 vs. ND
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mortality. Therefore, identifying the molecular mecha-
nisms responsible for abnormal platelet activity during 
diabetes may have great translational benefit.

Adiponectin is the most extensively investigated cardio-
protective adipokine [26–29]. Hypoadiponectinemia corre-
lates with increased AMI risk [30–32], and poorer cardiac 
functional recovery after MI with reperfusion [33, 34]. 
Exogenous APN supplementation significantly protects the 
heart against ischemic injury [35, 36]. However, the car-
dioprotective effects of APN are significantly attenuated in 
diabetic animals [22]. Moreover, complete APN abrogation 
results in only mild phenotypic change, unless pathologi-
cally challenged (e.g., by high-fat diet or ischemia), suggest-
ing existent overlapping regulators. Efforts to identify such 
regulators have led to the discovery of a family of APN par-
alogs, designated the C1q/TNF-related proteins (CTRP1–
CTRP15) [14, 37–40]. Although the CTRP family member 
roster has rapidly grown since their initial discovery 9 years 
ago, the biological functions of CTRPs have only been 
realized in recent years [41–44]. Thus far, most published 
studies focus upon the beneficial metabolic-regulatory 

functions of CTRPs [15, 16, 45]. Among these studies, 
CTRP12 is an insulin-sensitizing, anti-inflammatory adi-
pokine, downregulated by obesity [46].

In the current study, we demonstrated plasma CTRP9 
concentration is negatively correlated with ADP-induced 
platelet aggregation. Moreover, we demonstrated that 
in  vitro CTRP9 pre-treatment significantly inhibited 
platelet activity. It should be indicated that in  vitro 
CTRP9 concentration utilized in this study to inhibit 
ADP-induced platelet aggregation is much higher than 
in  vivo physiological concentration. This concentration 
was selected because in  vitro platelet aggregation was 
induced by high concentration of ADP which causes 
much stronger platelet aggregation than that seen in vivo. 
As such, higher concentration of CTRP9 is required 
to achieve a significant inhibition. More importantly, 
CTRP9 is the closest paralog of adiponectin which cir-
culates in plasma at concentration greater than 10 µg/ml. 
As adiponectin concentration is significantly reduced in 
diabetic individuals but biological response to exogenous 
adiponectin is significantly impaired, supplementation 

Fig. 5 In vitro CTRP9 pre-treatment significantly reduced platelet function as evidenced by reduced platelet aggregation amplitude (a), decreased 
platelet aggregation slope (b), smaller area under the curve (c), and increased lag time in response to ADP (d). *P < 0.05, **P < 0.01 vs. respective 
control (without CTRP9 treatment)
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of CTRP9 at super-pharmacological concentration, such 
as that used in our in  vitro platelet inhibition experi-
ment, may represent an effective therapeutic intervention 
against diabetic pathology.

Taken together, our results suggest that reduced plasma 
CTRP9 concentration during diabetes plays a causative 
role in platelet hyper-activity, contributing to platelet-
induced cardiovascular damage. Enhancing CTRP9 pro-
duction and/or exogenous supplementation of CTRP9 
may protect against diabetic cardiovascular injury via 
inhibition of abnormal platelet activity.

Conclusion
Our results show that diabetes induces reduced plasma 
CTRP9 concentration, which plays a causative role in 
platelet hyper-activity and subsequent platelet-induced 
cardiovascular damage during this pathologic condition. 
Supplementation of exogenous CTRP9 may provide a 
protection against diabetes induced cardiovascular injury 
via inhibition of platelet hyper-reactivity.
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