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Background: Cardiovascular disease is the main cause of premature death in patients with type 1 diabetes. Patients with
diabetic kidney disease have an increased risk of heart attack or stroke. Accurate knowledge of the complex inter-
dependencies between the risk factors is critical for pinpointing the best targets for research and treatment. Therefore,
the aim of this study was to describe the association patterns between clinical and biochemical features of diabetic
complications.

Methods: Medical records and serum and urine samples of 4,197 patients with type 1 diabetes were collected from
health care centers in Finland. At baseline, the mean diabetes duration was 22 years, 52% were male, 23% had kidney
disease (urine albumin excretion over 300 mg/24 h or end-stage renal disease) and 8% had a history of macrovascular
events. All-cause mortality was evaluated after an average of 6.5 years of follow-up (25,714 patient years). The dataset
comprised 28 clinical and 25 biochemical variables that were regarded as the nodes of a network to assess their mutual
relationships.

Results: The networks contained cliques that were densely inter-connected (r > 0.6), including cliques for high-density
lipoprotein (HDL) markers, for triglycerides and cholesterol, for urinary excretion and for indices of body mass. The
links between the cliques showed biologically relevant interactions: an inverse relationship between HDL cholesterol and
the triglyceride clique (r < -0.3, P < 10-16), a connection between triglycerides and body mass via C-reactive protein (r >
0.3, P < 10-16) and intermediate-density cholesterol as the connector between lipoprotein metabolism and albuminuria
(r > 0.3, P < 10-16). Aging and macrovascular disease were linked to death via working ability and retinopathy. Diabetic
kidney disease, serum creatinine and potassium, retinopathy and blood pressure were inter-connected. Blood pressure
correlations indicated accelerated vascular aging in individuals with kidney disease (P < 0.001).

Conclusion: The complex pattern of links between diverse characteristics and the lack of a single dominant factor
suggests a need for multifactorial and multidisciplinary paradigms for the research, treatment and prevention of diabetic
complications.
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Background
A significant number of patients with type 1 diabetes suf-
fer from severe microvascular complications such as dia-
betic kidney disease and proliferative retinopathy [1,2].
The pathogenetic mechanisms responsible for the degra-
dation of the vascular system are not yet fully known, but
a complex pattern of interactions between susceptibility
genes and environmental factors is the likely cause. Kid-
ney failure is not the primary cause of death, but these
patients die mostly from cardiovascular complications at
the later stages of the disease [1,3,4]. The risk factors have
been extensively investigated [5-7]; however, only a hand-
ful of studies have focused on the statistical associations
between biochemical and clinical variables from a multi-
variate perspective [8-10]. The biological variation at the
individual level is substantial, which means that the phe-
notype cannot be compressed into a single variable. Albu-
minuria, for instance, is the most important clinical risk
factor, but it alone provides only limited information on
the systemic changes in the body.

Complex network analysis has gained popularity as new
datasets and techniques have become available [11,12].
Recent examples include communication patterns in
social networks [13,14], molecular interactions in pro-
teomics and metabolomics [15,16] and the epidemiology
of contagious diseases [17,18]. Visualization of the net-
work structures helps to understand the complex phe-
nomena and computerized applications are
commonplace in network research [19,20].

This work illustrates the main modules of clinical and bio-
chemical associations in type 1 diabetes. Our aim is to
present the characteristics of diabetic complications as an
inter-connected system, instead of focusing on any single
variable at a time. We also discuss the biological processes
that can be attributed to the observed network structures,
and demonstrate the links between multiple chronic con-
ditions, lifestyle, aging, and metabolic traits in their full
context.

Methods
Type 1 diabetic patients were recruited by the Finnish Dia-
betic Nephropathy Study Group (N = 4,197). The design
was cross-sectional (serum and urine samples), but with
longitudinal records of albuminuria and clinical events
before baseline and with all-cause mortality data available
after an average of 6.5 years of follow-up from baseline
(25,714 patient-years). Type 1 diabetes mellitus was
defined as an age of onset below 35 years and transition
to insulin treatment within a year of onset. Macrovascular
disease (337 cases) was obtained from medical records
and defined as a pooled end-point of coronary heart dis-
ease (224 cases), myocardial infarction (124 cases), stroke
(100 cases), and peripheral vascular disease (91 cases).

The classification of renal status was made centrally
according to urinary albumin excretion rate (AER) in at
least two out of three consecutive overnight or 24 h-urine
samples. Absence of diabetic kidney disease (DKD) was
defined as AER within the normal range (AER <20 μg/min
or <30 mg/24 h) and at least 15 years of type 1 diabetes.
This kidney disease negative subset is denoted by
'KDNEG'. Macroalbuminuria or overt kidney disease was
defined as AER ≥ 200 μg/min or ≥ 300 mg/24 h. The inter-
mediary range was defined as microalbuminuria (20 ≥
AER <200 μg/min or 30 ≥ AER <300 mg/24 h). Patients on
renal replacement therapy (dialysis or transplantation)
were classified as having end-stage renal disease (ESRD).
An additional subset, denoted by 'DMDur<15', was
formed from patients with less than 15 years of diabetes
duration, and normal (1,004 individuals) or unknown
AER (135 individuals). A total of 296 patients could not
be classified.

The AER values that were used for the DKD diagnosis were
measured in the local health care centers, but not used for
statistical analyses. Instead, the continuous 24 h albumin
excretion rate was estimated from a single 24 h-urine col-
lection (available for 80% of patients) from which albu-
min was measured by a central laboratory.

Education level, smoking and alcohol dose, working sta-
tus, asthma, rheumatoid arthritis and thyroid disease were
determined by patient questionnaires. Education level
was defined as the expected number of years in the educa-
tional system based on the current occupation, smoking
exposure was calculated as the product of daily cigarettes
and years of smoking, the daily dose of alcohol was esti-
mated from the type and quantity of drinks consumed.
Working status was compressed into a binary trait (disa-
bled vs. employed or unemployed). Serum concentration
of the soluble receptor for advanced glycation end-prod-
ucts (SRAGE) was measured by solid phase ELISA (Tho-
mas et al. submitted). VLDL triglycerides and IDL and LDL
cholesterol were estimated by neural network modeling
[21]. Other details on the data sources, clinical definitions
and patient characteristics have been published previ-
ously [22]. More information on the kidney disease sub-
sets is available in [Additional file 1].

Statistical analysis
Many of the continuous variables had skewed distribu-
tions and it is typical for a large clinical study to have a
small percentage (<5%) of outliers. Therefore, the contin-
uous variables were sorted and converted to scaled ranks
between -1 and 1 to prevent statistical artifacts. Two ver-
sions of the dataset were created: one with men and
women pooled, the other with separate rank transforms
for the sexes.
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The network of continuous variables was based on pair-
wise Spearman's correlation coefficients. Specifically, each
variable is considered a node and the nodes are connected
by links, the weights of which are quantified by the corre-
lation coefficient. The full networks are too dense and
have to be pruned in order to highlight the relevant pat-
terns. There are numerous ways to reduce the network
dimensionality [23], here we chose the spanning trees
since they are computationally efficient and ensure the
connectivity of the pruned network [24].

Direct graph-theoretic investigation of the networks pro-
vides little useful information since many of the variables
are derived or otherwise non-biologically linked with
each other. Therefore, structural considerations were
made via comparisons between the kidney disease subsets
to reduce the distraction from irrelevant connections. Sta-
tistical significance was estimated by random permuta-
tions of the subset labels [Additional file 2]. Although the
individual links are not independent, they may be subject
to multiple testing effects (less than 741 tests). P-values
between 0.01 and 0.0001 are therefore considered sugges-

tive. Topologically relevant links were chosen as follows:
i) the link must belong to at least one of the spanning
trees from difference networks between KDNEG and the
other subsets and ii) the link must be one of the top 10
most significant (and P < 0.01) in its spanning tree. This
procedure was chosen to avoid selecting too many links
for closer inspection, and yet ensuring that as many nodes
as possible would be represented.

Correlation coefficient is not well suited for comparing
binary and continuous variables. For this reason, a com-
putationally intensive regression-correlation measure was
applied to the full dataset to create the visualization
[Additional file 2]. All statistical analyses were performed
with in-house scripts in the Octave programming environ-
ment http://www.gnu.org/software/octave/.

Results
Figure 1 depicts the correlation structure of the gender-
adjusted dataset. The network is characterized by strong
links between methodologically and biochemically
dependent variables: markers of body mass (weight, BMI,

Correlation network of continuous dataFigure 1
Correlation network of continuous data. A pruned visualization of the correlation structure within a set of patients with 
type 1 diabetes. Prior to the analysis, the data were adjusted for gender. Each variable is presented with a symbol; those quan-
tities that were measured directly are filled with ink and the open circles denote derived variables. The width and color of the 
links indicate the correlation magnitude and type, as shown in the legend. The r denotes Spearman correlation and SRAGE is 
abbreviation for soluble receptor for advanced glycation end-products. Visualized with the Himmeli software [47].
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WHR, etc.), 24 h-urine excretion (potassium, urea,
sodium and creatinine), HDL-related biochemistry (HDL
cholesterol, apolipoprotein A-I and A-II) and other lipo-
protein quantities (triglycerides, total cholesterol, apoli-
poprotein B-100) form positively correlated cliques.

There are strong inverse associations between the HDL-
clique and IDL cholesterol. Other connections include the
links between triglycerides and body mass via C-reactive
protein, and the central role of 24 h-urine albumin as the
connector of triglycerides, IDL cholesterol, hemoglobin
A1c, blood pressure and serum creatinine. Adiponectin
links HDL metabolism with 24 h-urine metabolites and
SRAGE is located between serum creatinine and body
mass. Smoking and alcohol intake are correlated; alcohol
consumption is also reflected in apolipoprotein A-I and A-
II concentrations, and smoking dose is linked with lower
education and - by definition - to higher age. Weight-
adjusted insulin dose is inversely associated with aging in
this dataset.

Network topology and diabetic kidney disease
The dataset was divided according to AER and diabetes
duration (see Methods) and the subset networks were
compared to detect relevant topological features. Table 1
shows the statistical significance of difference networks
(based on the sets of pair-wise correlation coefficients)
between the patient groups. The correlation structure for
the KDNEG subset with 15 years or more duration is sig-
nificantly different from the macroalbuminuria subset (P
= 2.2 × 10-16) and from the patients with short duration (P
= 4.0 × 10-32). On the other hand, the DMDur<15 subset
is different from the macroalbuminuria subset (P = 1.2 ×
10-29).

Table 2 lists the (selected) significant changes in link
weights with respect to the KDNEG subset. Age and blood
pressure show a mixed trend: diastolic blood pressure has
a negligible age-dependence in the KDNEG subset, but an
inverse correlation in the macroalbuminuria subset (r =
0.02 vs. -0.20, P = 2.5 × 10-5), whereas systolic blood pres-

sure shows stronger dependence in the KDNEG subset (r
= 0.43 vs. 0.28, P = 4.0 × 10-4). Adiponectin is also age-
dependent in the KDNEG subset, but uncorrelated in the
macroalbuminuria subset (r = 0.32 vs. 0.08, P = 8.5 × 10-

7).

Serum creatinine is connected to adiponectin (r = 0.05 vs.
0.29, P = 6.3 × 10-8) and SRAGE (r = 0.03 vs. 0.33, P = 1.5
× 10-10) in the macroalbuminuria, but not in the KDNEG
subset. The associations between albumin excretion and
other variables are also negligible in the KDNEG subset.
On the other hand, 24 h-urine albumin is significantly
correlated with total cholesterol (r = 0.02 vs. 0.23, P = 3.0
× 10-6), IDL cholesterol (r = 0.06 vs. 0.30, P = 3.0 × 10-8)
and triglycerides (r = 0.08 vs. 0.23, P = 3.0 × 10-4) in the
macroalbuminuria subset.

Node strength measures the overall connectivity of a
node: it is the sum of the correlation magnitudes that link
the node to the rest of the network. A high strength indi-
cates a structurally significant variable, although the value
itself is less important and therefore not reported here.
The strengths were not different between the microalbu-
minuria and KDNEG subsets (data not shown). Within
the macroalbuminuria subset, the connections surround-
ing serum creatinine (P = 5.1 × 10-5), 24 h-urine albumin
excretion (P = 0.0010), SRAGE (P = 0.0024) and apolipo-
protein B-100 (P = 0.0046) were significantly changed.
The ESRD group showed a similar structure: serum creati-
nine, 24 h-urine albumin and SRAGE were significantly
different (P < 0.00050). There were statistically significant
differences also in the connectivity of adiponectin (P = 8.1
× 10-6), age (P = 8.3 × 10-5), 24 h-urine urea (P = 0.00032),
BMI (P = 0.0021), insulin dose (P = 0.0034) and apolipo-
protein A-I (P = 0.0099) when compared with the KDNEG
subset.

Regression-correlation network
Figure 2 depicts the network based on regression mode-
ling of both the continuous and binary variables. The data
were not adjusted for gender effects, since gender was

Table 1: Comparison of diabetic kidney disease networks

Microalbuminuria
n = 508

Macroalbuminuria
n = 586

ESRD
n = 289

DMDUR<15
n = 1,139

KDNEG n = 1,379 0.0056 2.2 × 10-16 4.6 × 10-27 4.0 × 10-32

Microalbuminuria 7.1 × 10-6 7.3 × 10-18 7.8 × 10-20

Macroalbuminuria 6.2 × 10-9 1.2 × 10-29

ESRD 8.3 × 10-31

Statistical significance estimates (P-values) from permutation analysis of difference networks. The networks were formed from pair-wise Spearman 
correlation coefficients of 39 continuous clinical and biochemical variables.
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Table 2: Correlations within diabetic kidney disease groups

KDNEG r Microalbuminuria r Macroalbuminuria r ESRD r

Age -- Diastolic blood pressure 0.02 -0.15* -0.20** -0.29**

Age -- Systolic blood pressure 0.43 0.35 0.28* 0.06**

Adiponectin -- Age 0.32 0.30 0.08** -0.01**

Adiponectin -- HDL cholesterol 0.45 0.36 0.21** 0.10**

ApoA-II -- HDL2 cholesterol 0.13 0.17 0.34** 0.33*

ApoA-II -- Waist 0.16 -0.02* 0.02* 0.05

Total cholesterol -- Education -0.03 -0.18* -0.08 -0.01

Serum creatinine -- Adiponectin 0.05 0.03 0.29** 0.18

Serum creatinine -- Diabetes duration 0.07 0.22* 0.17 -0.06

Serum creatinine -- Insulin dose -0.01 -0.17* -0.15* -0.13

Serum creatinine -- SRAGE 0.03 0.05 0.33** 0.40**

Serum creatinine -- 24 h-uAlb 0.06 0.07 0.15 0.44†

CRP -- Age -0.10 0.09* 0.05* -0.01

CRP -- Serum potassium -0.05 0.12* -0.01 -0.02

CRP -- Waist-hip ratio 0.18 0.34* 0.23 0.22

IDL cholesterol -- LDL cholesterol 0.72 0.63* 0.53** 0.53**

LDL cholesterol -- Education -0.01 -0.17* -0.07 0.01

MBL -- 24 h-urine urea 0.08 -0.10* -0.05 -0.02†

Serum potassium -- Diabetes duration 0.27 0.26 -0.02** -0.02**

VLDL triglycerides -- 24 h-uAlb 0.07 0.12 0.22* 0.51†

24 h-uAlb -- ApoB 0.07 0.19 0.27** 0.31†

24 h-uAlb -- Total cholesterol 0.02 0.17* 0.23** 0.16†

24 h-uAlb -- HDL cholesterol -0.06 -0.04 -0.12 -0.46†

24 h-uAlb -- IDL cholesterol 0.06 0.16 0.30** 0.50†
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24 h-uAlb -- Triglycerides 0.08 0.13 0.23* 0.50†

24 h-uAlb -- 24 h-urine creatinine 0.11 -0.05* 0.02 -0.36†

24 h-uAlb -- 24 h-urine urea 0.04 -0.06 -0.06 -0.41†

Comparison of the KDNEG subset network against the micro-, macroalbuminuria and ESRD networks. The links were chosen by an automatic 
network topology algorithm (see Methods for details). The Spearman correlation coefficient (denoted by r) of continuous clinical and biochemical 
variables was used as the measure of association between the variables. Urine samples were not available from most patients with ESRD (72% 
missing); the r values presented were obtained from the imputed dataset. The links are sorted alphabetically. *P < 0.01, **P < 0.0001, comparison 
with KDNEG; † imputed.

Table 2: Correlations within diabetic kidney disease groups (Continued)
Page 6 of 10
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Regression-correlation network of continuous and binary dataFigure 2
Regression-correlation network of continuous and binary data. A pruned visualization of the correlation network 
from regression modeling. Unlike in Figure 1, the data were not adjusted for gender prior to the analysis. Each variable was 
converted to a surrogate linear predictor before computations. The symbols in the figure correspond to the source of infor-
mation: directly observed variables are filled, whereas derived variables are denoted by open symbols. A circle is used for con-
tinuous quantities, and a diamond for binary traits. The width and color of the links indicate the association magnitude and 
type, as shown in the legend. The r denotes the correlation of the linear predictors and is not comparable with Figure 1. 
Abbreviations: history of macrovascular disease (MVD), systolic (SBP) and diastolic (DBP) blood pressure, anti-hypertensive 
treatment (AHT) and soluble receptor for advanced glycation end-products (SRAGE). Visualized with the Himmeli software 
[47].
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included as a clinical trait. The network is characterized by
a high level of connectivity between DKD (with high 24 h-
urine albumin and serum creatinine), high blood pressure
(and anti-hypertensive treatment), diabetic retinopathy
and death. There is a strong link via diabetic retinopathy
to old age, long diabetes duration and macrovascular dis-
ease, and the same pattern is also reflected by reduced
working ability.

Urine metabolites (urea and creatinine) are connected to
the complications via adiponectin, and the clique is
located next to the body mass indicators (height and
weight). Male gender is connected to body mass, as
expected, but there are also weak inverse associations with
asthma, thyroid disease and rheumatoid arthritis.

The metabolic syndrome is - by definition - a connector
between body mass (waist circumference), HDL-metabo-
lism, and triglycerides. The HDL clique is linked to C-pep-
tide an further to age and diabetes duration. On the other
hand, age connects to triglycerides via insulin dose and
hemoglobin A1c. Finally, the estimated IDL cholesterol is
the connector between the triglyceride and cholesterol
cliques, and albuminuria.

Discussion
The network analysis showed identifiable cliques of inter-
connected variables that were mostly driven by methodo-
logical factors and basic biology. That said, there were bio-
logically relevant links between the cliques: body mass
and triglycerides were connected by C-reactive protein in
the gender-adjusted analysis, IDL cholesterol was the key
quantity between albuminuria, triglycerides, cholesterol,
HDL-metabolism and hemoglobin A1c, and the close
relationship with working ability and microvascular dis-
eases indicated the debilitating effects of diabetic compli-
cations. The lack of correlation between age and systolic
blood pressure in the kidney disease patients - but inverse
correlation with diastolic - reflected the effects of kidney
disease on vascular aging.

Macrovascular disease was not, as could have been
expected, the closest to the diabetic kidney disease and
blood pressure clique, but the node was located near age
and diabetes duration. Nevertheless, the connections to
microvascular complications and mortality were evident
via retinopathy and reduced working ability. The available
data and definitions may also have favored the stronger
links with aging: the vascular events were determined
from (past) medical records, not at the time of the study
visit. There may also be a survival effect: those patients
that reach the late stages of kidney disease may have more
resilience against cardiovascular disease by having higher
HDL cholesterol, for instance [22,25].

Mortality and kidney disease were not connected directly,
although part of the same node group. Instead, laser-
treated retinopathy and anti-hypertensive treatment had a
direct link with death, and there was also a strong inverse
connection to working ability (Figure 2). Macroalbu-
minuria is a powerful risk marker, but these results may
indicate the later stages when the patient's health deterio-
rates to the point were normal life is severely interrupted
(loss of sight and working ability) and death ensues. There
were twice as many patients without ESRD in the kidney
disease group (586 vs. 289). Furthermore, patients with
ESRD suffer from secondary effects of kidney failure that
disturb the metabolic patterns. This means that the DKD
node in the regression-correlation network may be a more
accurate estimate for persistent albuminuria (before kid-
ney failure) than for ESRD and death.

The DCCT Study has established the beneficial effects of
tight glycemic control on diabetic complications [26,27].
Here, hemoglobin A1c was not among the most structur-
ally significant nodes, although it was suggestively posi-
tioned between insulin dose and triglycerides in Figure 1.
This does not mean that better insulin treatment is use-
less; it most likely reflects the biological variability of the
A1c measure in our observational data [28]. Advanced
glycation end-products in general have been implicated in
diabetic tissue damage [29]. The soluble receptor
(SRAGE) was connected to complications (kidney func-
tion) in this study, although the result can also be
explained by reduced clearance.

The patient material was extensive with detailed clinical
characteristics and biochemical measurements from
serum and urine. On the other hand, the dataset was not
complete and special procedures had to be taken to
impute the missing values. Many of the correlation coeffi-
cients were small (r < 0.3) and cannot be considered clin-
ically significant. This is most likely due to the robust but
less sensitive rank transform, the need to avoid linear arti-
facts in data imputation, and the observational nature of
the study. In particular, 24 h urinary albumin excretion
was weakly correlated with the other variables, which may
be the result of the large biological variation in cross-sec-
tional urine collections. There were only a few cases of
asthma, rheumatoid arthritis or thyroid disease, which
further reduced the power of the regression-correlation
approach. Despite the problems, the negative associations
with male gender were consistent with previous results
[30].

Visual inspection of the networks was validated by addi-
tional analysis with alternate preprocessing and statistical
comparisons of patient subsets. Nevertheless, the figures
produced by the automatic graph drawing software are
always simplifications of the true situation and should
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not be used as a basis of inference without their original
context. The selection and availability of variables is the
critical determinant of the observed network structures,
and should be taken into consideration when interpreting
the results. Also, random fluctuations can change individ-
ual links, but the overall structure of a correlation network
is usually resilient against sampling noise. Statistical sig-
nificance estimates were not available for the regression-
correlation network due to its method of construction.
Nevertheless, the observations from Figure 2 were consist-
ent with the correlation network in Figure 1, which sug-
gests that the illustrations are reliable.

Skewed or highly variable biomarkers such as 24-h urine
albumin and serum creatinine produce a correlation bias
due to non-uniform signal-to-noise ratio in the subset
comparisons. Low values have proportionally higher
measurement errors than higher values, so the results in
Table 2 also reflect changes in absolute concentrations.
This is not necessarily an undesired effect; the network
still reflects biologically relevant phenomena, albeit not
pure associations.

The subset analyses were not matched for age. However,
the association between age and diabetes duration was
comparable between the groups (except within
DMDur<15) and the age variances were similar [Addi-
tional file 1], which suggests that the differences in corre-
lation coefficients were not produced by limited age
ranges. The macroalbuminuria subset had longer dura-
tion than the KDNEG (29 vs. 26 years, P = 7.7 × 10-11) but,
although statistically significant, the modest time gap did
not interfere with the descriptive nature of the network
approach.

Lipid abnormalities have been previously linked with dia-
betic kidney disease [31-33] and low HDL and high IDL
have been implicated in cardiovascular risk [34-36]. In
this study, the estimated IDL cholesterol had the strongest
link with albuminuria, which is concordant with a mor-
tality analysis of the same dataset [21]. The result may be
partly explained by the reduction in the relative measure-
ment noise after combining the three basic lipids (triglyc-
erides, total and HDL cholesterol), but IDL was
nevertheless the most important among the derived lipo-
protein variables.

Low-grade chronic inflammation has emerged as a possi-
ble link between obesity and insulin resistance. For
instance, when adipose tissue expands to accommodate
excess lipids, macrophages therein are exposed to non-
esterified fatty acids and respond by increased release of
inflammatory cytokines [37,38]. The cytokines, in turn,
disrupt the normal insulin signaling and fatty acid metab-
olism in the skeletal muscle. In the gender-adjusted net-

work, C-reactive protein (a marker of inflammation) was
positioned between the body-mass and the triglyceride
cliques (Figure 1), thus reflecting the underlying biologi-
cal mechanisms. In the regression-correlation network, C-
reactive protein was connected with triglycerides only,
probably due to the stronger link between gender and
body mass (Figure 2).

Serum adiponectin is another signaling molecule that can
be traced to adipose tissue - it is decreased in obesity and
insulin resistance [39]. On the other hand, clinical
research indicates that in kidney disease the concentration
is increased [40,41] despite the simultaneous reduction in
insulin sensitivity [22,42]. In this study, adiponectin was
positioned as the connector between death and microvas-
cular complications, and 24 h-urine metabolites (Figure
2), and a similar role in the middle of aging, serum creat-
inine and urine excretion remained in the gender-adjusted
network (Figure 1). The results suggest that kidney func-
tion is a stronger determinant of adiponectin concentra-
tions in these patients than the inverse correlation with
obesity.

Aging and diastolic blood pressure are first positively cor-
related but then become negatively correlated at higher
age. The process is accelerated in type 1 diabetes, most
likely due to arterial stiffening [43,44]. The same phe-
nomenon was also detected here from another perspec-
tive: significantly stronger negative correlations were
observed within the macroalbuminuria and ESRD groups,
which can indicate that the vascular aging is ahead of the
KDNEG subset, even beyond the small chronological age
difference. On the other hand, systolic blood pressure is
less age-dependent in macroalbuminuria and ESRD
groups, which is probably caused by interference from
medication and the decline in the capacity of the heart to
compensate for arterial stiffening [45,46].

Conclusion
The various clinical and biochemical risk factors that pre-
dispose to cardiovascular disease and diabetic complica-
tions share mutual connections that have overlapping
origins in methodology, physiology and pathology. It
may not be possible to fully isolate the effects of the vari-
ous components in the traditional reductionist frame-
work. Therefore, we think that the complex pattern of
links between diverse characteristics such as working abil-
ity, life style, aging and biofluid chemistry is explicit evi-
dence to develop multifactorial and multidisciplinary
paradigms for the research, treatment and prevention of
diabetic complications.
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