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Abstract
Background: All previous studies that investigated the association between abdominal fat
distribution and insulin resistance evaluated subcutaneous and visceral fat area and/or volume, but
these values were not related to the body type of each subject. In the present study we have
examined the association between abdominal fat distribution and peripheral (muscle)/hepatic
sensitivity to insulin using the visceral to abdominal subcutaneous fat area ratio (VF/SF ratio) in male
patients with type 2 diabetes mellitus. This ratio defines the predominancy of visceral or
subcutaneous abdominal adiposity, independent of the body type of each individual.

Methods: Thirty-six type 2 diabetic male patients underwent a euglycemic insulin clamp (insulin
infusion rate = 40 mU/m2·min) with 3-3H-glucose to measure insulin-mediated total body (primarily
reflects muscle) glucose disposal (TGD) and suppression of endogenous (primarily reflects liver)
glucose production (EGP) in response to a physiologic increase in plasma insulin concentration.
Abdominal subcutaneous (SF) and intraabdominal visceral fat (VF) areas were quantitated with
magnetic resonance imaging (MRI) at the level of L4–5.

Results: TGD and TGD divided by steady state plasma insulin concentration during the insulin
clamp (TGD/SSPI) correlated inversely with body mass index (BMI), total fat mass (FM) measured
by 3H2O, SF and VF areas, while VF/SF ratio displayed no significant relationship with TGD or TGD/
SSPI. In contrast, EGP and the product of EGP and SSPI during the insulin clamp (an index hepatic
insulin resistance) correlated positively with VF/SF ratio, but not with BMI, FM, VF or SF.

Conclusion: We conclude that, independent of the individual's body type, visceral fat dominant
accumulation as opposed to subcutaneous fat accumulation is associated with hepatic insulin
resistance, whereas peripheral (muscle) insulin resistance is more closely related to general obesity
(i.e. higher BMI and total FM, and increased abdominal SF and VF) in male patients with type 2
diabetes.
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Background
Reduced insulin-mediated glucose disposal in muscle and
impaired suppression of hepatic glucose production by
insulin are common metabolic features of both obesity
and type 2 diabetes mellitus (T2DM) [1]. A close associa-
tion between obesity and T2DM is well established [2,3].
Many studies have documented that intraabdominal vis-
ceral fat is closely associated with insulin resistance in
obese non-diabetic and T2DM subjects [4-13]. However,
several studies have demonstrated that subcutaneous fat,
not visceral fat, is the best predictor of insulin resistance
in obese individuals [14-17]. The factors responsible for
these inconsistent results have yet to be elucidated. One
potential explanation that might account for these dis-
cordant reports is the failure to account for differences in
gender. Men tend to accumulate adipose tissue in the
abdomen, while women tend to accumulate fat in the glu-
teal-femoral region, in part due to the differences in
androgen and/or estrogen action in vivo [18,19]. Another
potential explanation for the discordant reports might be
the failure to account for the differences in the individual
body type of the study subject. All previous studies that
investigated the association between abdominal fat distri-
bution and insulin resistance evaluated subcutaneous and
visceral fat area and/or volume, but these values were not
related to the body type of each subject. One would expect
that the metabolic impact of visceral and/or subcutaneous
fat area in vivo would be different between subjects who
are 150 cm tall from those who are 180 cm tall, even if
both of them have a similar value for visceral and/or sub-
cutaneous fat sectional area. We previously demonstrated
that visceral fat area was significantly correlated with
peripheral and hepatic insulin resistance, independent of
gender. However, in male, but not in female subjects, BMI
(body mass index), fat mass, and subcutaneous fat area
also were significantly correlated with peripheral and
hepatic insulin resistance [20]. Peripheral (muscle) and
hepatic insulin sensitivity can be quantitated by measur-
ing the rate of glucose disappearance and appearance,
respectively, during the euglycemic hyperinsulinemia
clamp and usually expressed per min and per lean body
weight. Thus, these parameters of insulin action are to
some extent standardized irrespectively of the total body
fat mass and body type of each individual subject. Accord-
ingly, some correction of abdominal fat area/volume by
the body type of each subject should be instituted when
examining the relationship between abdominal fat distri-
bution and insulin sensitivity and circulating metabolic
parameters. A number of reports have employed the vis-
ceral to subcutaneous fat area ratio (VF/SF ratio) to exam-
ine the metabolic impact of visceral fat accumulation. The
visceral fat area and/or volume typically correlated more
strongly with measured metabolic parameters (insulin
action, plasma lipids and cytokine concentrations) than
with the VF/SF ratio. However, one could hypothesize that
the VF/SF ratio would be a better indicator of visceral fat

predominant distribution since it is independent of the
individual subject's body type (body weight, body height,
BMI, body surface area, total fat mass, total fat free mass).

In the present study, we quantitated the VF/SF ratio using
MRI and examined the association between this parame-
ter and peripheral and hepatic insulin sensitivity in male
adult type 2 diabetic subjects. We did not include female
subjects in order to exclude the effect of age-dependent
differences in sex hormone levels, especially pre- and
post-menopausal, on the abdominal fat distribution.

Methods
Subjects
Thirty-six male patients with type 2 diabetes mellitus were
recruited from the outpatient clinic of the Texas Diabetes
Institute. Entry criteria included an age = 30–70 years and
a fasting plasma glucose concentration (FPG) between
126–260 mg/dl. The patient characteristics of the 36
males are shown in table 1. All patients were in good gen-
eral health without evidence of cardiac, hepatic, renal or
other chronic diseases as determined by medical history,
physical examination, and screening blood tests. In all
subjects body weight was stable (within ± 2 lbs) for at
least 3 months prior to study. Sixteen subjects were taking
a stable dose (for at least 6 months) of sulfonylurea drugs
and 20 subjects were treated with diet alone. Patients who
previously had received insulin, metformin, or a thiazoli-
dinedione were excluded. All subjects gave their written
voluntary, informed consent prior to participation. The
protocol was approved by the Institutional Review Board
of the University of Texas Health Science Center at San
Antonio.

Study Design
Within a 5–7 day interval all subjects (i) measurement of
fat free mass and fat mass using an intravenous bolus of
3H2O; (ii) quantitation of total subcutaneous, superficial
subcutaneous, deep subcutaneous, and intraabdominal
visceral fat content at L4–5 using nuclear magnetic
response imaging (MRI); (iii) a euglycemic insulin clamp
study in combination with tritiated glucose to examine
hepatic and peripheral tissue (muscle) sensitivity to insu-
lin. Fasting plasma concentrations of glucose and free
fatty acid and HbA1c were measured on the day of the
insulin clamp. All studies were done in the postabsorptive
state after a 10–12 h overnight fast. Subjects who were tak-
ing sulfonylureas stopped their medication 2 days prior to
study.

Fat Free Mass and Fat Mass
At 8 AM (time zero) subjects receive a 100 μCi intrave-
nous bolus of 3H2O and plasma tritiated water radioactiv-
ity was determined at 90, 105, 120 minutes for calculation
of fat free mass (FFM) and fat mass (FM) as described pre-
viously [8].
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Abdominal Fat Distribution
Intraabdominal visceral and subcutaneous fat depots
were measured by MRI, using imaging procedures that
have been published previously [21]. Briefly, images were
acquired on a 1.9 T Elscint Prestige MRI system, using a
T1-weighted spin echo pulse sequence with a TR (repeti-
tion time) of 500 msec and a TE (echo time) of < 20 msec.
A sagittal localizing image was used to center transverse
sections on the line through the space between L4 and L5.
Ten 5.0 mm thick sections were acquired with a gap of 1.0
mm to prevent signal cross-over from adjacent sections.
The field of view ranged from 30 to 50 cm, depending on
body size. Phase encoding was in the anteroposterior
direction to minimize the effects of motion-induced
phase artifacts that might otherwise be distributed later-
ally through a large portion of the abdomen. The field of

view was adjusted for body size to insure 2 mm pixel spac-
ing. Signal averaging (four signals averaged) was used to
reduce the effect of motion-related artifacts. Additionally,
respiratory gating was used to combat motion induced
artifacts and to reduce the blurring of fat boundaries in the
anterior region of the abdomen. Images were processed
using Alice software (Perceptive Systems Inc, Boulder,
CO) to determine abdominal subcutaneous and intraab-
dominal visceral fat areas. The subcutaneous fat area was
analyzed by selecting the outer and inner margins of sub-
cutaneous adipose tissue as region of interests (ROIs)
from the cross-sectional images and counting the number
of pixels between the outer and inner margins of subcuta-
neous adipose tissue. The abdominal subcutaneous fat
area was subdivided into superficial and deep subcutane-
ous fat areas (SSF and DSF) by identifying the fascial line
which demarcates these two fat depots [22]. The visceral
(intraabdominal) fat area was determined using histo-
grams specific to the visceral regions. The histograms were
summed over the range of pixel values designated as fat by
fitting two normal analysis distribution curves to them.

Euglycemic Hyperinsulinemic Clamp
Insulin sensitivity was assessed with the euglycemic insu-
lin clamp, as previously described [23]. Upon arrival
(0800 h.) at the Clinical Research Center, blood for meas-
urement of fasting plasma glucose, HbA1c and lipid profile
was obtained, and a prime (25 μCi × FPG/100)-continu-
ous (0.25 μCi/min) infusion of 3H-3-glucose was started
via a catheter placed into an antecubital vein. The tritiated
glucose infusion was continued throughout the 7 hour
study. A second catheter was placed retrogradely into a
vein on the dorsum of the hand, which was then placed in
a heated box (60°C). Baseline arterialized venous blood
samples for determination of plasma 3H-3-glucose radio-
activity and plasma glucose, FFA and insulin concentra-
tions were drawn at 150, 160, 170, 175, and 180 minutes
after the start of the tritiated glucose infusion. At 180 min-
utes (1100 h), a prime-continuous infusion of human reg-
ular insulin (Novolin, Novo Nordisk Pharmaceuticals,
Princeton, NJ) was started at the rate of 40 mU/min·m2

body surface area and continued for 120 min. After initia-
tion of the insulin infusion, the plasma glucose concentra-
tion was allowed to drop spontaneously until it reached
90 mg/dl, at which level it was maintained by appropri-
ately adjusting a variable infusion of 20% dextrose.
Throughout the insulin clamp, blood samples for deter-
mination of plasma glucose concentration were drawn
every 5 minutes, and blood samples for determination of
plasma insulin and 3H-3-glucose radioactivity were col-
lected every 10–15 minutes.

Assays
Plasma glucose was measured at bedside using the glucose
oxidase method (Glucose Analyzer 2, Beckman Instru-

Table 1: Anthropometric and clinical characteristics

(Range)

Race (MA/C/AA) 22/11/3
Age (y) 55 ± 2 (32–70)
Duration of Diabetes 6 ± 1 (1–16)
Diet/SU therapy 20/16
Body Weight (kg) 89 ± 3 (60–119)
Height (cm) 172 ± 1 (156–192)
Body Mass Index (kg/m2) 30 ± 1 (22.9–38.9)
Body Surface Area (m2) 2.05 ± 0.03 (1.61–2.52)
Fat Mass (kg) 31 ± 2 (13.6–51.5)
Fasting Plasma Glucose (mg/dl) 199 ± 7 (101–265)
Fasting Plasma Insulin (μU/ml) 15 ± 1 (5.5–39.1)
HbA1c (%) 9.0 ± 0.2 (6.8–11.9)
Fasting Free Fatty Acid (μEq/L) 589 ± 22 (320–921)
Basal EGP (mg/kg FFM·min) 3.0 ± 0.1 (1.74–4.64)
Clamp EGP (mg/kg FFM·min) 1.2 ± 0.1 (0.2–2.2)
TGD (mg/kg FFM·min) 3.5 ± 0.2 (1.6–7.7)
SSPI 67 ± 2 (44–84)
Clamp EGP × SSPI 76 ± 7 (10–156)
TGD/SSPI 0.05 ± 0.003 (0.02–0.10)
Clamp FFA (μEq/L) 230 ± 13 (118–389)
VF (cm2) 159 ± 9 (75–337)
SF (cm2) 303 ± 21 (108–651)
VF/SF Ratio 0.59 ± 0.04 (0.17–1.30)
Deep SF (cm2) 199 ± 14 (53–418)
Superficial SF (cm2) 104 ± 8 (44–232)

MA = Mexican American; C = Caucasian; AA = African American
FFM = fat free mass (kg)
EGP = endogenous glucose production rate
Clamp EGP = endogenous glucose production rate during insulin 
clamp
SSPI = steady state plasma insulin concentration during insulin clamp
Clamp FFA = plasma free fatty acid concentration during insulin clamp
TGD = total glucose disposal rate during insulin clamp
Clamp EGP × SSPI = product of the Clamp EGP and steady state 
plasma insulin concentration during insulin clamp (index of hepatic 
insulin resistance)
TGD/SSPI = TGD divided by SSPI (index of peripheral [muscle] insulin 
sensitivity)
VF = visceral fat area at L4–5
SF = subcutaneous fat area at L4–5
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ments Inc., Fullerton, CA). Plasma insulin (Diagnostic
Products Corporation, Los Angeles, CA) was measured by
radioimmunoassay. HbA1c was measured by affinity chro-
matography (Biochemical Methodology, Drower 4350;
Isolab, Akron, OH). Plasma FFA was measured by an
enzymatic calorimetric quantitation (Wako Chemicals
GmbH, Neuss, Germany). Tritiated glucose specific activ-
ity was determined on barium hydroxide/zinc sulfate
deproteinized plasma samples.

Calculations
Under steady state postabsorptive conditions, the rate of
endogenous glucose appearance (Ra) was calculated as
the 3H-3-glucose infusion rate (dpm/min) divided by the
steady state plasma 3H-3-glucose specific activity (dpm/
mg). During the insulin clamp, non-steady conditions
prevail and Ra was calculated from Steele's equation [24].
Endogenous glucose production (EGP) was calculated as:
Ra minus glucose infusion rate. During the insulin clamp
total body glucose disposal (TGD) equals the sum of the
residual EGP plus the exogenous GIR. TGD primarily rep-
resents insulin sensitivity in skeletal muscle, which is
responsible for > 80% of insulin-stimulated glucose dis-
posal during euglycemic hyperinsulinemic clamp studies.
We also expressed insulin sensitivity in skeletal muscle as
TGD divided by the steady state plasma insulin concentra-
tion (SSPI) during the last 30 minutes of insulin clamp
(TGD/SSPI), because there are differences in insulin clear-
ance among the individuals. Hepatic insulin resistance
was expressed as the residual rate of EGP during the insu-
lin clamp (clamp EGP) and the product of clamp EGP and
the steady state plasma insulin concentration (clamp EGP
× SSPI). The logic behind this calculation is as follows: (i)
under postabsorptive conditions, the majority (~85–
90%) of EGP is derived from the liver [25]; (ii) insulin is
an inhibitor of hepatic glucose production and incre-
ments in the ambient insulin concentration exert a potent

inhibitory effect on hepatic glucose output [26], (iii) sup-
pression of hepatic glucose production is impaired under
conditions of physiologic hyperinsulinemia (< 100 μU/
ml) in obese subjects and type 2 diabetic patients com-
pared with control subjects [26,27], and (iv) there are dif-
ferences in the steady state plasma insulin concentrations
during the insulin clamp because of differences in insulin
clearance among study subjects.

Total body water was calculated from the mean plasma
3H2O radioactivity measured at 90, 105, and 120 min
after the intravenous bolus of 3H2O. Plasma 3H2O specific
activity was calculated assuming that plasma water repre-
sents 93% of total plasma volume. Fat free mass (FFM)
was calculated by dividing total body water by 0.73 [28].

Statistical Analysis
Data are given as the mean ± standard error of the mean
(SEM). Statistics were performed with StatView for Win-
dows, v 5.0 (SAS Institute Inc., Cary, NC). We used Pear-
son correlation coefficients to assess the association
between fat topography and versus age, BMI, and insulin
sensitivity. All results are presented as the mean ± stand-
ard error. A p value less than 0.05 was considered to be
statistically significant.

Results
Correlations between Age, Obesity, and Abdominal Fat 
Distribution (Table 2)
Age correlated positively with visceral fat area and tended
to be positively correlated with V/S ratio. There was no
correlation between age and subcutaneous fat area (SF),
superficial and deep subcutaneous fat area (SSF & DSF),
body mass index (BMI), body surface area (BSA) and fat
mass (FM). BMI, BSA and total FM strongly and positively
correlated with SF, SSF, and DSF, while BMI, BSA and total
FM correlated positively with VF. VF/SF ratio correlated

Table 2: Correlation coefficients between age, BMI, and parameters of abdominal fat area.

Age BMI BSA FM SF VF VF/SF SSF DSF

Age
BMI -0.03
BSA -0.02 0.75 a

FM -0.09 0.76 a 0.75 a
SF -0.17 0.85 a 0.75 a 0.78 a

VF 0.35 b 0.55 a 0.46 a 0.46 a 0.28 c

VF/SF 0.29 c -0.40 b -0.40 b -0.41 b NA NA
SSF -0.27 0.66 a 0.65 a 0.63 a 0.87 a 0.13 -0.61 a
DSF -0.09 0.86 a 0.71 a 0.78 a 0.95 a 0.33 b -0.62 a 0.69 a

a: p < 0.01; b: p < 0.05; c: p < 0.1 for regression analysis.
SFF = superficial subcutaneous fat
DSF = deep subcutaneous fat
VF = visceral abdominal fat
SF = subcutaneous abdominal fat
FM = total body fat mass
Page 4 of 9
(page number not for citation purposes)



Cardiovascular Diabetology 2009, 8:44 http://www.cardiab.com/content/8/1/44
inversely with BMI, BSA and FM, possibly because BMI,
BSA and FM correlated more strongly with SF than did VF.
VF did not correlate with SF or SSF but correlated signifi-
cantly with DSF. VF tended to be positively correlated with
SF, possibly because VF correlated positively with DSF but
not with SSF.

Relationships between FM, BMI, BSA, VF, SF (SSF, DSF), 
and VF/SF ratio versus Indices of Peripheral/Hepatic Insulin 
Resistance, and Free Fatty Acid Concentration (FFA) 
(Figures 1 &2)
TGD, an index of peripheral (muscle) insulin sensitivity,
correlated inversely with BMI, BSA (r = -0.52, p < 0.01),
FM, SF, SSF (r = -0.33, p = 0.05), DSF (r = -0.34, p = 0.04)
and VF. TGD/SSPI during the insulin clamp similarly cor-
related with BMI (r = -0.38, p = 0.02), BSA (r = -0.46, p <
0.01), FM (r = -0.35, p = 0.03), SF (r = -0.37, p = 0.02),

DSF (r = -0.40, p = 0.01), and VF (r = -0.34, p = 0.04). VF/
SF ratio did correlate with TGD or TGD/SSPI. EGP during
the insulin clamp (an index of hepatic insulin resistance)
correlated positively with VF/SF ratio but not with BMI,
BSA, FM, SF, SSF, DSF, or VF. Similarly, EGP × SSPI during
the insulin clamp correlated positively only with the VF/
SF ratio (r = 0.39, p = 0.02). Log transformed (TGD/SSPI)
correlated inversely with BMI (r = -0.42, p = 0.01), BSA (r
= -0.55, p < 0.01), FM (r = -0.41, p = 0.01), SF (r = -0.41,
p = 0.01), VF (r = -0.33. p = 0.04), DSF (r = -0.43, p =
0.01), but did not with VF/SF ratio and SSF. Log trans-
formed (Clamp EGP × SSPI) positively correlated with VF/
SF ratio (r = 0.36, p = 0.03), but did not with BMI, BSA,
FM, SF, VF, SSF, DSF. Fasting plasma FFA correlated posi-
tively with VF/SF ratio and weakly with VF. No significant
correlations were observed between the plasma FFA con-
centration and BMI, FM, SF, SSF or DSF. During the insu-

Relationship between total body glucose disposal (TGD) during the insulin clamp (top), endogenous glucose production during the insulin clamp (middle), and fasting plasma free fatty acid (FFA) concentration (lower) versus body mass index (BMI), total body fat mass (FM), abdominal subcutaneous fat (SF) area and visceral fat (VF) area at the L4–5 vertebral levelFigure 1
Relationship between total body glucose disposal (TGD) during the insulin clamp (top), endogenous glucose 
production during the insulin clamp (middle), and fasting plasma free fatty acid (FFA) concentration (lower) 
versus body mass index (BMI), total body fat mass (FM), abdominal subcutaneous fat (SF) area and visceral fat 
(VF) area at the L4–5 vertebral level.
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lin clamp, the plasma FFA concentration correlated
inversely with TGD/SSPI and positively with clamp EGP ×
SSPI.

Discussion
As reviewed in the introduction, controversy remains con-
cerning the contribution of visceral versus subcutaneous
fat accumulation to the development of insulin resistance
in obesity and type 2 diabetes mellitus (T2DM). A number
of previous publications have examined the relationship
between peripheral (muscle) and/or hepatic insulin resist-
ance versus the visceral or subcutaneous fat area L4–5,
which correlates closely with visceral or subcutaneous adi-
pose tissue volumes calculated from multiple scans [29].
These studies have demonstrated the presence of signifi-
cant associations between insulin resistance and abdomi-
nal subcutaneous and visceral fat area/volume, but they
did not take into consideration differences in body type of
the subjects. Failure to do so could explain some of the
discordant reports concerning correlations – or lack

thereof – between abdominal fat distribution and insulin
resistance. In the present study, we have reexamined
whether abdominal visceral fat accumulation correlates
with peripheral (muscle) and hepatic insulin resistance in
male T2DM subjects, using the visceral to subcutaneous
fat area (VF/SF) ratio which provides information about
visceral and subcutaneous fat accumulation, independent
of the individual's body type.

In this cross-sectional study, we demonstrated that (i) age
is positively correlated with visceral fat area (VF), inde-
pendent of BMI, fat mass (FM), and subcutaneous fat area
(SF) (Table 2). This observation is consistent with previ-
ous publications [30,31]; (ii) BMI and FM simple indica-
tors of general obesity were more strongly and positively
correlated with SF (including superficial and deep SF)
than they were with VF, leading to the inverse correlation
of VF/SF ratio with BMI, FM and SF (Table 2). These
results are consistent with those of Smith et al [32] and the
fact that visceral fat (omentum and mesenteric fat) com-
prises only ~20% of total body fat in man [29]; (iii) BMI,
FM, SF, SSF, DSF, and VF all were inversely correlated with
peripheral (muscle) insulin sensitivity in male subjects
with T2DM, while the VF/SF ratio did not correlate with
the peripheral insulin sensitivity. These results are consist-
ent with some previous studies in male subjects [6,14,15],
although most prior publications have shown that vis-
ceral fat accumulation is correlated with insulin resistance
[4-13]. However, one should be cautious in interpreting
these previous reports, including our own, because the
values of FM, SF (SSF and DSF) and VF were evaluated
without consideration of the individual body type of the
subject. One would expect that the metabolic impact of
visceral and/or subcutaneous fat area in vivo would be dif-
ferent between subjects who are 150 cm tall from those
who are 180 cm tall, even if both of them have a similar
value for visceral and/or subcutaneous fat sectional area.
As an index of body type, body weight and/or height,
body surface area, and body mass index can easily be
measured. These indices, however, never have been used
to correct the SF and VF area and/or volume in previously
published papers. In our study the VF/SF ratio did not cor-
relate with peripheral insulin resistance. Our results sug-
gest that accumulation of both abdominal subcutaneous
and visceral fat, independent of which regional fat depot
predominates, is related to peripheral (muscle) insulin
resistance in male subjects with T2DM. In contrast, only
the VF/SF ratio, and not other parameters of fat mass/dis-
tribution, correlated with impaired suppression of EGP
during the insulin clamp and with the product of Clamp
EGP × SSPI – indices of hepatic insulin resistance. These
results indicate that peripheral (muscle) insulin resistance
is related to the accumulation of both abdominal subcu-
taneous and visceral fat (upper-body obesity), while
hepatic insulin resistance is more closely correlated with

Relationship between plasma FFA concentration during the insulin clamp versus glucose disposal (TGD) during the insu-lin clamp divided by the steady state plasma insulin concen-tration (SSPI) during the insulin clamp (top) and the product of EGP × SSPI during the insulin clampFigure 2
Relationship between plasma FFA concentration 
during the insulin clamp versus glucose disposal 
(TGD) during the insulin clamp divided by the steady 
state plasma insulin concentration (SSPI) during the 
insulin clamp (top) and the product of EGP × SSPI 
during the insulin clamp.
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the accumulation of visceral fat, independent of body
type, in male T2DM patients (Figure 3).

Adipose tissue is a complex and highly active endocrine
organ that secretes multiple adipocytokines including lep-
tin, IL-6, TNFα, resistin, adiponectin, MCP-1 and FFA
[33,34]. Adipocyte enlargement, as observed in obesity, is
associated with dysfunctional fat cells which over-express
and secrete excessive amounts of leptin, IL-6, TNFα, resis-
tin, MCP-1 and FFA while under secreting adiponectin
[35,36]. Altered secretions of these adipocytokines have
been implicated in the development of insulin resistance
in obesity and T2DM [37]. Although there are differences
in the expression/production/secretion of the adipokines
between subcutaneous and visceral adipose tissue, they
are expressed in both fat depots altered production and/or
release from either fat depot can lead to altered circulating
adipokine levels and impaired insulin action in peripheral

tissues (primarily muscle). Our results demonstrate that
increased plasma FFA levels during the insulin clamp cor-
related inversely with peripheral (muscle) insulin sensitiv-
ity (TGD/SSPI) and positively with hepatic insulin
resistance (Clamp EGP × SSPI). Plasma concentrations of
other adipocytokines were not measured in this study.
Jensen et al. reported that elevated plasma FFA concentra-
tions in upper-body obesity arose from upper-body sub-
cutaneous fat and increased abdominal SF and VF areas
were positively correlated with abdominal subcutaneous
adipocyte size [38,39]. However, we failed to find a signif-
icant association between the plasma FFA concentration
during the insulin clamp and SF (both SSF and DSF), VF
or total FM. One could speculate that these discordant
results are explained by the failure of Jensen et al [38,39]
to take into account differences in the body type of the
individual subjects.

With respect to relationship between visceral fat accumu-
lation and hepatic insulin resistance (impaired insulin-
induced suppression of glucose production at liver), three
scenarios have been proposed [34,40]: (i) altered release
of adipocytokines into the portal vein by an expanded
mass of visceral adipose tissue; (ii) the relative inability of
subcutaneous adipose tissue to act as a protective meta-
bolic sink because of its inability to expand (like lipodys-
trophy) or because it already has become hypertrophied,
dysfunctional and insulin resistant, leading to accumula-
tion of fat at undesired site such as liver, skeletal muscle,
pancreas, and heart ("ectopic fat deposition"); (iii) vis-
ceral adipocyte resistance to the antilipolytic effect of
insulin leads to an increased portal vein delivery of FFA to
the liver. Scenarios (i) and (ii) would be expected to be
also closely related to peripheral (muscle) insulin resist-
ance, while scenario (iii) more likely would be related to
hepatic insulin resistance. In the present study, VF/SF ratio
correlated positively with the fasting plasma FFA concen-
tration, although this concentration does not necessarily
reflect the portal vein FFA concentration. In a previous
publication, we demonstrated that only the VF area corre-
lated positively with accelerated gluconeogenesis, but not
with glycogenolysis. This observation is consistent with
the concept that increased delivery of FFA from an
expanded visceral adipose tissue mass to the liver
enhances gluconeogenesis and causes hepatic insulin
resistance [41].

In the present study, there were several limitations. First,
the number of the study subjects is small and the subjects
are not homogenous as far as age and the duration of dia-
betes. Second, this study does not have healthy control
subjects. Therefore, a further investigation using a large
population with age- and the duration of diabetes-adjust-
ment to be performed for obtaining a precise evaluation

Transverse cross-sectional magnetic resonance image at the L4–5 vertebral level in a study subject whose visceral to abdominal subcutaneous fat (VF/SF) ratio was increased (bot-tom) or decreased (upper)Figure 3
Transverse cross-sectional magnetic resonance 
image at the L4–5 vertebral level in a study subject 
whose visceral to abdominal subcutaneous fat (VF/
SF) ratio was increased (bottom) or decreased 
(upper).
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of VF/SF ratio in relation to peripheral and hepatic insulin
resistance in T2DM.

Conclusion
The present results demonstrate that obesity per se (i.e.
higher levels of total body fat mass and BMI), independ-
ent of subcutaneous or visceral fat accumulation, is
related to peripheral (muscle) insulin resistance in male
type 2 diabetic patients. In contrast, dominant accumula-
tion of visceral adipose tissue as opposed to increased sub-
cutaneous fat, independent of the individual body type, is
related to hepatic insulin resistance in male type 2 dia-
betic patients. Lastly, our results indicate that it is impor-
tant to evaluate, not only the abdominal fat area/volume,
but also the VF/SF ratio which provides a measure of
abdominal fat distribution, i.e., predominancy of SF or
VF, independent of the body type of the study subject.
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