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Abstract

Background: Diabetes mellitus is associated with micro- and macrovascular complications and increased
cardiovascular risk. Elevated levels of serum asymmetric dimethylarginine (ADMA) may be responsible for
endothelial dysfunction associated with diabetes-induced vascular impairment. Vitamin D may have potential
protective effects against arterial stiffening. This study aimed to examine both the effects of diabetes on the
functional/structural properties of the aorta and the endothelial function and the effects of vitamin D
supplementation.

Methods: Male Wistar rats (n = 30) were randomly assigned to control untreated, diabetic untreated, and
diabetic + cholecalciferol groups. Diabetes was induced by intraperitoneal injection of streptozotocin, followed by
oral administration of cholecalciferol (500 IU/kg) for 10 weeks in the treatment group. Aortic pulse wave velocity
(PWV) was recorded over a mean arterial pressure (MAP) range of 50 to 200 mmHg using a dual pressure sensor
catheter. Intravenous infusion of phenylephrine and nitroglycerine was used to increase and decrease MAP,
respectively. Serum 25-hydroxyvitamin D [25(OH)D] levels were measured using a radioimmune assay. ADMA levels
in serum were measured by enzyme-linked immunoassay. Aortic samples were collected for histomorphometrical
analysis.

Results: PWV up to MAP 170 mmHg did not reveal any significant differences between all groups, but in diabetic
rats, PWV was significantly elevated across MAP range between 170 and 200 mmHg. Isobaric PWV was similar
between the treated and untreated diabetic groups, despite significant differences in the levels of serum 25(OH)D
(493 ± 125 nmol/L vs 108 ± 38 nmol/L, respectively). Serum levels of ADMA were similarly increased in the treated
and untreated diabetic groups, compared to the control group. The concentration and integrity of the elastic
lamellae in the medial layer of the aorta was impaired in untreated diabetic rats and improved by vitamin D
supplementation.

Conclusion: PWV profile determined under isobaric conditions demonstrated differential effects of uncontrolled
diabetes on aortic stiffness. Diabetes was also associated with elevated serum levels of ADMA. Vitamin D
supplementation did not improve the functional indices of aortic stiffness or endothelial function, but prevented
the fragmentation of elastic fibers in the aortic media.
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Background
Cardiovascular (CV) events are considered to be a prin-
cipal cause of mortality in patients with diabetes mellitus
(DM) [1]. Macrovascular complications of DM are asso-
ciated with stiffening of the aorta, which is a major con-
tributing factor to the target organ damage, such as
impaired coronary perfusion [2] and cardiac hypertrophy
[3]. Aortic stiffness can be assessed with measurement of
aortic pulse wave velocity (PWV) that is largely deter-
mined by the structural properties of the vessel wall and
blood pressure (BP) level. PWV is regarded as a strong
and independent predictor of CV complications in
patients with DM [4].
Asymmetric dimethylarginine (ADMA) is an endogen-

ous inhibitor of nitric oxide synthase [5] which is pro-
duced by vascular endothelial cells [6]. Elevated levels of
ADMA in plasma have been found associated with
impaired endothelial function [7] and decreased arterial
elasticity [8], characterised by decreased bioavailability of
nitric oxide (NO). There is substantial evidence that
endothelial dysfunction in diabetes is directly associated
with increased aortic stiffness [9].
It is now widely recognised that vitamin D not only

plays a major role in bone and calcium metabolism, but
may also improve CV health and reduce the risk of CV
morbidity and mortality [10,11]. There is evidence that
hypovitaminosis D may adversely affect endothelial func-
tion [12], leading to increased aortic stiffness [13]. The
association between vitamin D deficiency and increased
aortic stiffness has been demonstrated in healthy subjects
[14,15] and in different chronic inflammatory diseases,
including systemic lupus erythematosus [16] and DM
[17,18]. Furthermore, the administration of vitamin D to
subjects with DM been shown to improve insulin secre-
tion and insulin resistance [19]. However, the potential
role of vitamin D in diabetic macrovascular complica-
tions remains unclear. We designed the current study to
investigate the effects of streptozotocin-induced diabetes
on the functional/structural properties of the aorta and
endothelial function and the potential protective effects
of vitamin D supplementation.

Materials and methods
Animals
The experiments were performed in 30 male Wistar rats
(RccHan:WIST, age 4 months) obtained from Harlan La-
boratories (Harlan Laboratories, Inc., The Netherlands).
The animals were kept in a room with controlled
temperature (21 ± 2°C) and lighting (12:12-h light–dark
cycle) with free access to food pellets and tap water. All
experimental procedures were approved by the Estonian
National Board of Animal Experiments and were con-
ducted in accordance with the European Communities
Directive (86/609/EEC).
Treatment
Rats were randomly assigned to three groups of equal
size: control group, diabetic group, and cholecalciferol-
treated diabetic group. Diabetes was induced by a single
intraperitoneal injection of streptozotocin (STZ) 50 mg/
kg (Sigma-Aldrich, St. Louis, MO, USA) freshly dissolved
in 0.9% NaCl solution. Blood samples were taken 48 h
later from the tail vein and glucose levels were measured
with a glucometer (Glucocard X-meter, Arkray Inc.,
Japan). Rats with glucose levels >15 mmol/L were con-
sidered diabetic. One animal died 2 days following STZ
injection and another animal did not develop hypergly-
cemia. Immediately after confirmation of diabetes, one
diabetic group of animals was submitted to supplementa-
tion with cholecalciferol (Sigma-Aldrich, St. Louis, MO,
USA) 12.5 μg (500 IU) kg-1 body weight, dissolved in
0.3 ml olive oil administered orally. This dose was
expected to be below that which causes hypercalcemia
and soft tissue calcification since animal models of arter-
ial wall calcification require the administration of much
higher doses of vitamin D [20]. Cholecalciferol was
chosen over calcitriol, the hormonal form of vitamin D,
to further reduce the risk of soft tissue calcification. Cho-
lecalciferol was administered every other day by gavage
for a period of 10 weeks. Weekly, body weight was moni-
tored and glycosuria was assessed with reagent strips
(Combur Test, Roche, Germany) to exclude ketosis.

Haemodynamic measurements
After 10 weeks, the animals were anesthetised with a
mixture of fentanyl (0.07 mg/kg, Gedeon-Richter Plc.,
Hungary), midazolam (5 mg/kg, Roche Pharma AG, Ger-
many), and ketamine (75 mg/kg Vetoquinol Biowet Sp. z.
o.o., Poland) administered subcutaneously. The optimal
concentrations of the anesthetic substances were deter-
mined in pilot experiments. After induction of
anesthesia, animals were placed on a heating pad and
body temperature was maintained at 37°C. A 2.5 F high-
fidelity, dual pressure sensor catheter with 50 mm separ-
ation between sensors (SPC-721, Millar Instruments Inc.,
TX, USA) was introduced via the femoral artery into the
descending aortic trunk so that the distal sensor was
positioned at the beginning of the descending aorta and
the resulting position of the proximal sensor was just
proximal to the aortic bifurcation. Mean arterial pressure
(MAP) was determined from measurements made by the
proximal pressure transducer. Arterial pressure was
increased and decreased by infusion of phenylephrine
(50 μg/min) and nitroglycerine (30 μg/min), respectively,
via a catheter inserted into the femoral vein. Measure-
ments of PWV were performed similarly to what has
been described by other investigators [21,22]. Briefly,
pulse pressure waves were recorded simultaneously at
the two aortic sites and PWV was calculated by dividing
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the propagation distance by propagation time using an
automated foot-to-foot method. The foot of the pressure
wave was defined by the peak of the second time deriva-
tive of pressure during each pulse. As the distance be-
tween the sensors is fixed at 50 mm, this calculation
provides a highly accurate measurement of PWV. Data
were acquired at a sampling rate of 2 kHz (PowerLab,
ADInstruments, Australia) and feature extraction and
calculations made with custom scripts in Spike2 v.6. soft-
ware (Cambridge Electronic Design, UK). PWV was plot-
ted against MAP at 5 mmHg increments to characterise
PWV over a wide range of MAP from 50 to 200 mmHg.

Laboratory parameters
After the haemodynamic measurements were completed,
blood samples were taken from the tail vein for assess-
ment of glucose levels. The rats were euthanised by
drawing blood by cardiac puncture; part was used to
measure glycated haemoglobin (HbA1c) level and the
remaining portion was centrifuged at 3000 rpm for 15
minutes to obtain serum. Serum 25-hydroxyvitamin D
[25(OH)D] level was measured using a radioimmune
assay (25-Hydroxyvitamin D, 125I Ria Kit, Diasorin Cor-
poration, USA). ADMA was determined from serum
samples by an enzyme-linked immunoassay using a com-
mercial kit (DLD Diagnostika, Germany). Calcium con-
centration in serum was determined by a colorimetric
test (Calcium liquicolor, HUMAN Gesellschaft für Bio-
chemica und Diagnostica mbH, Germany).

Histological analysis and morphometric parameters
The aortic samples for histological analysis were fixed in
10% formalin for 12 hours and embedded in paraffin
with vacuum infiltration processor (Tissue-TekW VIPTM

5 Jr, Sakura, USA). Specimens were cut with microtome
Ergostar HM 200 (Microm, Germany) at four-μm thick-
ness sections and stained using the hematoxylin-eosin,
resorcin-fuchsin, and van Gieson methods for examin-
ation by light microscopy (Olympus BX50, Japan).
Estimation of the internal diameter of the aorta was

performed by measuring two inner diameters at right
angle for each cross-section of the thoracic aorta. At
least eight different cross-sections of the aorta were ana-
lysed for each rat.
Thickness of the medial layer of the aorta was deter-

mined in thoracic aorta cross-sections by ten consecutive
measurements in a systematic manner to evaluate all
segments of the circumference of the aorta. At least six
different cross-sections of aorta were analysed for each
rat.
The staining intensities of the elastic fibers in the

media and collagen fibers in the media and adventitia
were evaluated on a subjective scale ranging from 0 to 3
(0 – no staining of fibers, 1 – poor staining of fibers, 2 –
moderate staining of fibers, 3 – intensive staining of
fibers). The evaluations were performed by two inde-
pendent observers in a blinded fashion; the scores were
summed and used for statistical analysis.

Statistical analysis
Results are expressed as means ± standard deviation
(SD). Differences between the groups were evaluated
using the one-way analysis of variance (ANOVA) fol-
lowed by Tukey’s post-hoc analysis for multiple compari-
sons of group means. Semi-quantitative data were
compared by the Kruskal-Wallis one-way ANOVA fol-
lowed by Mann–Whitney U test. Differences were con-
sidered to be statistically significant when p was <0.05.
All statistical comparisons were performed with Statis-
tica software (version 8; StatSoft, USA).

Results
Basic and biochemical parameters
The results are presented in Table 1. The initial body
weights were similar in control and diabetic groups. The
final body weights in the diabetic groups were signifi-
cantly lower than in the control group. There were no
differences between the diabetic treated and untreated
groups in body weight after the treatment period. The
levels of blood glucose and HbA1c were found to be sig-
nificantly increased in the diabetic rats and were not
affected by the vitamin D supplementation. Serum 25
(OH)D level was significantly decreased in the untreated
diabetic group, compared to the control group. Adminis-
tration of vitamin D resulted in a significantly higher
serum 25(OH)D level than that in the control group.
Serum levels of ADMA were significantly lower in the
control group compared with both diabetic groups. Vita-
min D supplementation did not prevent the elevation of
serum ADMA concentration. Serum calcium levels were
similar between all groups, indicating that the adminis-
tered dose of cholecalciferol remained within safe limits
without increasing the risk of soft tissue calcification and
possibly contributing to aortic stiffening.

Haemodynamic parameters
Before administration of the vasoactive substances, resting
systolic blood pressure (SBP), diastolic blood pressure
(DBP), pulse pressure (PP), mean arterial pressure (MAP),
and heart rate (HR) were not statistically different between
all groups (Table 2). Intravenous infusion of phenylephrine
increased MAP to 200 mmHg, followed by infusion of
nitroglycerine, which decreased MAP to 50 mmHg. The
diabetic rats had a significantly higher PWV compared to
the control rats across a supraphysiological range of MAP
(170–200 mmHg), but not at a lower MAP range. The
non-linear PWV-MAP curve for the diabetic treated group
was similar to that of diabetic untreated group, indicating



Table 1 Basic and laboratory parameters

Group Body weight (g) Blood glucose (mmol/L) HbA1c (%) 25(OH)D (nmol/L) ADMA (μmol/L) Calcium (mmol/L)

Before After

Control (n = 10) 405 ± 26 450 ± 30 6.3 ± 1.6 4.0 ± 0.1 140 ± 21# 0.68 ± 0.18 2.7 ± 0.3

Diabetes (n = 9) 406 ± 56 370 ± 50* 28.3 ± 3.9* 10.3 ± 0.7* 108 ± 38#} 0.87 ± 0.14} 2.6 ± 0.3

Diabetes + vitamin D (n = 10) 406 ± 51 352 ± 43* 28.5 ± 5.9* 9.5 ± 1.3* 494 ± 125 0.85 ± 0.16} 2.7 ± 0.2

Body weight was assessed at the beginning and at the end of the experiment.
HbA1c, glycated haemoglobin; ADMA, asymmetric dimethylarginine; 25(OH)D, 25-hydroxyvitamin D.
} p< 0.05 vs control; * p< 0.001 vs control; # p< 0.001 vs diabetes + vitamin D.
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that aortic stiffness was similar at every given level of
MAP (Figure 1). Although all three groups received similar
doses of phenylephrine, MAP above 170 mmHg was not
achieved in diabetic treated rats. The reason for this effect
is unknown, but may possibly include a lower sensitivity to
phenylephrine.

Histological analysis and morphometric parameters
Aortae of the control group showed a regular vascular
morphology, while several alterations were noted in the
structure of aortae of rats in the untreated and treated
diabetic groups. More pronounced changes were found
in the aortae of the untreated diabetic group, where
focal irregular arrangement of elastic fibers was noted
together with decreased staining intensity of elastic
fibers and increased internal diameter of the aorta
(Table 3, Figures 2 and 3). Changes in the medial thick-
ness and in collagen staining were not statistically sig-
nificant compared to the control group (Table 3).
Milder changes of the aortic wall, particularly regarding
medial elastic fibers with no focal disarrangements were
noted in the diabetic treated group (Table 3, Figure 3).
Untreated diabetes was also associated with reduced
ratio of elastin to collagen that was prevented by vita-
min D supplementation (Table 3). Both in untreated
and treated diabetic groups no focal thickenings or
other significant alterations of the intimal layer were
found.

Discussion
In the current study, we have investigated the effects of
experimental diabetes on the functional/structural prop-
erties of the aorta and the endothelial function and the
possible protective effects of vitamin D supplementation.
The principal finding of this study was that diabetes was
Table 2 Resting anesthetic haemodynamic parameters obtain

Group SBP (mmHg) DBP (mmHg) M

Control (n = 10) 140± 30 106 ± 27

Diabetes (n = 9) 135± 15 103 ± 18

Diabetes + vitamin D (n = 9) 136± 14 104 ± 12

SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial press
p> 0.05 between all groups.
associated with differential effects on the aortic stiffness,
demonstrated by higher isobaric PWV at a supraphysio-
logical range of MAP (170–200 mmHg), but not at a
lower MAP range. Untreated diabetic rats also exhibited
lower levels of serum 25(OH)D and elevated levels of
serum ADMA, a marker of endothelial dysfunction. Ad-
ministration of vitamin D for 10 weeks significantly
increased the levels of serum 25(OH)D, but did not pro-
tect from aortic stiffening as evidenced by isobaric PWV.
Serum ADMA levels were also not affected by vitamin D
supplementation. However, vitamin D effectively pre-
served the structure of elastic fibers and the ratio of elas-
tic fibers to collagen fibers in the aortic media.
STZ-induced diabetes is a well-accepted experimental

model of uncontrolled type 1 DM and studies have
reported STZ-induced impairment of aortic elastic prop-
erties in rats [23,24]. Increased arterial stiffness has also
been demonstrated in Zucker diabetic fatty rats, an ani-
mal model of type 2 DM. [25,26]. These findings have
been supported by clinical observations, which have
shown associations between increased aortic PWV and
type 1 or type 2 DM [5,27,28]. In accordance with previ-
ous studies, we demonstrate increased aortic stiffness in
STZ-diabetic rats compared to nondiabetic rats.
It is important to note that as PWV is strongly

dependent on BP [29], measurements of PWV can be ac-
curately and independently compared only if obtained
over a range of BP that is often not feasible to induce in
patients. We assessed PWV over a wide range of MAP
using phenylephrine and nitroglycerine to raise and
lower MAP, respectively. As a result, we found that dif-
ferences in isobaric PWV only became evident at high
levels of MAP which demonstrates that intrinsic aortic
stiffness was not increased in diabetic animals at the
physiological BP levels. These results indicate that,
ed before the administration of vasoactive substances

AP (mmHg) PP (mmHg) HR (beats/min) PWV (m/s)

118 ± 28 34 ± 6 364 ± 96 5.0 ± 0.6

114 ± 17 31 ± 4 343 ± 53 5.2 ± 0.3

115 ± 12 32 ± 3 348 ± 107 4.9 ± 0.3

ure; PP, pulse pressure; HR, heart rate; PWV, pulse wave velocity



Figure 1 Isobaric PWV-MAP curves in the control (n = 10), untreated diabetic (n = 9), and diabetes + vitamin D (n = 9) groups, averaged
over 5 mmHg pressure steps. * p< 0.05 vs control.

Salum et al. Cardiovascular Diabetology 2012, 11:58 Page 5 of 8
http://www.cardiab.com/content/11/1/58
during the course of diabetes, early changes in the arter-
ial integrity are reflected in the increased central artery
stiffness that can remain undetected since blood pressure
may not be elevated in that stage. Increased aortic stiff-
ness can be established when diabetic patients develop
hypertension, which highlights the importance of ad-
equate and early blood pressure control for prevention
of diabetic macrovascular complications.
The possible mechanisms implicated in the differential

effects of diabetes on aortic stiffness may include altera-
tions in the proportions and structural integrity of elastic
fibers, collagen fibers, or the extracellular matrix in the
vessel wall [30]. Biomechanically, collagen fibers mediate
stiffness at higher pressure, while elastin provides support
at a lower pressure range [31,32]. In our experiment, a
decrease in the elastic lamellae in the aortic media was
noted in the untreated diabetic group whilst no clear
Figure 2 Micrographs of the transverse aortic sections in the
control group (a), untreated diabetic group (b), and
diabetes + vitamin D group (c). Note the enlarged internal
diameter of the aorta in the diabetic group (b). Resorcin-fuchsin.
Original magnification × 26.
changes in collagen fibers were detected. Nevertheless, a
decrease in elastic fibers and a relative increase of colla-
gen in relation to elastin can result in increased stiffness
that may become evident at a high-pressure range as was
observed in our experiments. The absence of differences
in aortic stiffness at a lower BP range may also be attribu-
ted to a compensatory mechanism of preserved smooth
muscle activity.
Endothelial dysfunction, characterised by impaired

production of nitric oxide (NO), plays an important role
in the development of diabetic vascular complications
[33]. Several studies have indicated that the impairment
of endothelium-dependent vasodilation is an important
factor contributing to aortic stiffening [9,34]. Our experi-
ment shows that the serum level of ADMA, a marker of
endothelial dysfunction, is significantly elevated in STZ-
induced diabetes in parallel with impaired structural and
functional properties of the aorta. These findings are
consistent with studies showing that endothelial dysfunc-
tion occurs early in the course of diabetic vascular com-
plications, as evidenced by functional assessment of the
endothelium [35,36] and elevated levels of circulating
ADMA [37].
Previous studies have reported that treatment with

vitamin D may lower arterial blood pressure [38], im-
prove endothelial function [38], and decrease aortic stiff-
ness [39]. In our study, the isobaric PWV in diabetic
animals receiving vitamin D was similar to that of dia-
betic untreated animals. Furthermore, there were no dif-
ferences in the serum ADMA concentrations between
the diabetic groups. These findings may be attributed to
the fact that the levels of blood glucose and HbA1c were



Figure 3 A panel of micrographs of the aortic sections in the control group (a and b), untreated diabetic group (c and d), and
diabetes + vitamin D group (e and f). Reduction of the thickness of the medial layer (c and d) and disorganisation of elastic lamellae (c) was
observed in diabetic untreated rats, while in diabetes + vitamin D group the aortic wall morphology was more similar to the control group
samples. Resorcin-fuchsin (a, c, e) and van Gieson (b, d, f). Original magnification × 360.
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unaffected by vitamin D supplementation, suggesting
that the possible protective effects of vitamin D against
diabetes-induced increase in aortic stiffness and endothe-
lial dysfunction may have been abolished by the persist-
ent high-grade hyperglycemia.
Although vitamin D supplementation could not pro-

tect from the early impairment of large artery function,
it still had a positive effect on relative preservation of
elastic fiber organisation in the medial layer of the aorta.
The mechanisms involved in this process remain un-
known, but may include the down-regulation of the
renin-angiotensin system [40], since angiotensin II is
known to stimulate tissue remodeling in the arteries [41]
and agents that inhibit this system have been shown to
have beneficial effects on the structural properties of the
arterial wall [41,42]. Nevertheless, the effects of vitamin
D supplementation on the diabetic complications at a
molecular level remain to be established. Indeed, our
preliminary experiments have shown that vitamin D may
Table 3 Morphometric parameters and estimations of staining
adventitial layers of the thoracic aorta

Parameter Control (n = 10)

Internal diameter of aorta (mm) 1.40 ± 0.27

Thickness of media (μm) 86.41 ± 8.15

Elastic fibers in media (arbitrary units) 2.44 ± 0.33

Collagen fibers in media (arbitrary units) 1.20 ± 0.38

Collagen fibers in adventitia (arbitrary units) 2.90 ± 0.41

Elastin/collagen ratio in media (%) 1.72 ± 0.55
* p< 0.05 vs control; } p< 0.01 vs control; # p< 0.05 vs diabetes + vitamin D.
affect several oxidative stress parameters in STZ-induced
diabetes, including serum total antioxidant capacity and
advanced glycation end-products (manuscript in prepar-
ation), which requires further investigation.
In summary, the present study demonstrated that in

rats, STZ-induced diabetes impairs endothelial function
and exerts differential effects on aortic stiffness, charac-
terised by the increased PWV at supraphysiological MAP
levels, whereas aortic elasticity was preserved at a lower
pressure range. Chronic administration of vitamin D did
not have an effect on the diabetes-induced aortic stiff-
ness and endothelial dysfunction, but preserved the pro-
portions and integrity of elastic fibers in the aortic
media. Further investigations will provide more informa-
tion on the effects and role of vitamin D in the macro-
vascular complications of type 1 diabetes.
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intensity of connective tissue fibers in the medial and
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