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Abstract
Background
Although the benefits of sodium–glucose cotransporter 2 inhibitors (SGLT2i) on cardiovascular events have been reported in patients with type 2 diabetes mellitus (T2DM) with or without heart failure (HF), the impact of SGLT2i on cardiac remodelling remains to be established.

Methods
We searched the PubMed, Embase, Cochrane Library and Web of Science databases up to November 16th, 2020, for randomized controlled trials reporting the effects of SGLT2i on parameters of cardiac structure, cardiac function, plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) level or the Kansas City Cardiomyopathy Questionnaire (KCCQ) score in T2DM patients with or without chronic HF. The effect size was expressed as the mean difference (MD) or standardized mean difference (SMD) and its 95% confidence interval (CI). Subgroup analyses were performed based on the stage A–B or stage C HF population and HF types.

Results
Compared to placebo or other antidiabetic drugs, SGLT2i showed no significant effects on left ventricular mass index, left ventricular end diastolic volume index, left ventricular end systolic volume index, or left atrial volume index. SGLT2i improved left ventricular ejection fraction only in the subgroup of HF patients with reduced ejection fraction (MD 3.16%, 95% CI 0.11 to 6.22, p = 0.04; I2 = 0%), and did not affect the global longitudinal strain in the overall analysis including stage A–B HF patients. SGLT2i showed benefits in the E/e’ ratio (MD − 0.45, 95% CI − 0.88 to − 0.03, p = 0.04; I2 = 0%), plasma NT-proBNP level (SMD − 0.09, 95% CI − 0.16 to − 0.03, p = 0.004; I2 = 0%), and the KCCQ score (SMD 3.12, 95% CI 0.76 to 5.47, p  = 0.01; I2 = 0%) in the overall population.

Conclusion
The use of SGLT2i was associated with significant improvements in cardiac diastolic function, plasma NT-proBNP level, and the KCCQ score in T2DM patients with or without chronic HF, but did not significantly affect cardiac structural parameters indexed by body surface area. The LVEF level was improved only in HF patients with reduced ejection fraction.
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Abbreviations
	HF
	Heart failure

	T2DM
	Type 2 diabetes mellitus

	HFpEF
	Heart failure with preserved ejection fraction

	HFrEF
	Heart failure with reduced ejection fraction

	SGLT2i
	Sodium–glucose cotransporter 2 inhibitors

	RCT
	Randomized controlled trial

	LVEF
	Left ventricular ejection fraction

	GLS
	Global longitudinal strain

	NT-proBNP
	N-terminal pro-brain natriuretic peptide

	KCCQ
	The Kansas City Cardiomyopathy Questionnaire

	PRISMA
	The Preferred Reporting Items for Systematic Reviews and Meta-Analyses

	SD
	Standard deviation

	GRADE
	The Grading Recommendations Assessment, Development and Evaluation

	LVMI
	Left ventricular mass indexed by body surface area

	LVEDVI
	Left ventricular end diastolic volume indexed by body surface area

	LVESVI
	Left ventricular end systolic volume indexed by body surface area

	LAVI
	Left atrial volume indexed by body surface area

	E/e'
	The mitral inflow to mitral relaxation velocity ratio

	CI
	Confidence interval

	MD
	Mean difference

	SMD
	Standardized mean difference

	BSA
	Body surface area




Background
Heart failure (HF) is one of the leading causes of morbidity and mortality worldwide. Type 2 diabetes mellitus (T2DM) can cause diabetic cardiomyopathy, which typically manifests first as left ventricular hypertrophy, diastolic dysfunction, and impaired systolic reserve before gradually showing clinical indications of heart failure with preserved ejection fraction (HFpEF), followed by systolic dysfunction and heart failure with reduced ejection fraction (HFrEF) [1]. T2DM also increases the risk of coronary heart disease and subsequent HF, especially HFrEF [2]. Besides, both in HFrEF and HFpEF patients, comorbid T2DM is associated with a worse prognosis [3–5].
The effects of sodium–glucose cotransporter 2 inhibitors (SGLT2i) on the prognosis (including all-cause death, cardiovascular death, and HF hospitalization) of T2DM [6–9] patients with or without HF [10–12] have been demonstrated in large-scale randomized controlled trials (RCTs) and meta-analyses. Based on clinical evidence, SGLT2i was recommended by the latest guidelines of the American Diabetes Association and the European Association for the Study of Diabetes in patients with T2DM and HF [13], and several agents were recommended by the Heart Failure Association of the European Society of Cardiology in T2DM patients at high cardiovascular risk or with established cardiovascular disease, especially symptomatic HFrEF [14]. However, the mechanism and intermediate links of the drugs remain to be clarified.
Cardiac anatomical and functional parameters partially predict the prognosis and quality of life of patients with T2DM and patients with HF and serve as important surrogate endpoints. Experiments in rodent T2DM models revealed the benefits of SGLT2i on left ventricular hypertrophy [15] and dilation [16], as well as cardiac systolic [15] and diastolic functions [15, 17]. In rodent and porcine nondiabetic HFrEF models, SGLT2i improved left ventricular ejection fraction (LVEF) [18–20] but not diastolic function [20], and showed conflicting results in left ventricular structure [18–21]. In animal models of HFpEF with or without T2DM, SGLT2i improved left ventricular structure [22] and diastolic function [22, 23], but did not affect LVEF [23].
Recent clinical studies have also reported conflicting results. In T2DM patients, the DAPA-LVH trial showed that SGLT2i reversed left ventricular hypertrophy compared to placebo [24], but the EMPA-HEART CardioLink-6 trial showed nonsignificant results [25]. The impacts on LVEF [25, 26], global longitudinal strain (GLS) [24, 27], and diastolic function [25, 28] were also inconsistent in different studies. Similarly, in patients with T2DM and HF, the effects of SGLT2i on left ventricular hypertrophy [27, 29], cardiac function [27, 30, 31], and neurohormonal parameters [32, 33] were inconsistent. Whether such diversity was due to insufficient sample size or heterogeneity among studies remains to be explored.
To make better use of up-to-date clinical evidence, we conducted this meta-analysis to further clarify the effect of SGLT2i on cardiac structure, cardiac function, plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) level and the Kansas City Cardiomyopathy Questionnaire (KCCQ) score in T2DM patients with or without chronic HF. Subgroup analyses were performed based on the stage A–B or stage C HF population and HF types.
Methods
This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [34].
Search strategy and selection criteria
We systematically searched PubMed, Embase, Cochrane Library and Web of Science databases up to November 16th, 2020, using specific MeSH terms and random words with no restriction of language or publication status. The inclusion criteria were as follows: (1) reported the effect of SGLT2i in adult T2DM patients (≥ 18 years) with or without chronic HF; (2) placebo or other antidiabetic agents were accepted as comparison; (3) reported the outcomes of interest; (4) was an RCT; and (5) had complete data for extraction. Observational studies, single-arm studies, studies in acute heart failure patients and studies with a sample size of < 10 were excluded. The reference lists of eligible studies and related articles were reviewed manually to identify additional studies. The main search was conducted on April 21st, 2020, and the supplementary search was performed before data analysis with the same strategy in case of omission. We also sent data request letters by email to the authors of articles with insufficient data for analysis. In the case of two independent reports of the same study, only the one with more complete data was included. Searching details and the flow diagram (including the exclusion criteria) are available in Additional file 1: Data S1 and Fig. 1.[image: ../images/12933_2020_1209_Fig1_HTML.png]
Fig. 1PRISMA flow diagram of study selection


Data extraction
The extracted data included (1) general information: title, author, publication year, trial name, eligibility and the reasons; (2) clinical information: age, sex, country or area of the participants; specific agent of the SGLT2 inhibitor given to the experiment group; therapy for the control group; whether the participant was diagnosed as HF at baseline; HF types by reduced or preserved ejection fraction; (3) data for overall effect size calculation: the sample size of each group, as well as the mean value and standard deviation (SD) of the change of outcomes before and after treatment in each group; and (4) methodological information. Data were extracted from the main article reporting the included studies, related articles reporting the same study, and the study registry websites. T2DM patients with an established diagnosis of HF was classified as stage C HF, and those without were classified as stage A–B HF.
Quality assessment of eligible studies
We used the revised Cochrane risk-of-bias tool to assess the quality of the RCTs (see Additional file 2: Figure S1). Publication bias was evaluated by funnel plots (see Additional file 3: Figure S2). Egger’s regression asymmetry test was conducted to assess the significance of funnel plot asymmetries.
We assessed the certainty of the evidence for each outcome using the Grading Recommendations Assessment, Development and Evaluation (GRADE) approach. We used the Guideline Development Tool (https://​www.​gradepro.​org) to formulate the evidence profile table.
Literature search, study selection, data extraction, quality assessment of eligible studies and the GRADE assessment were performed by two researchers (YWY and YHW) independently, and disagreements were resolved by consensus.
Outcomes
The outcomes of this meta-analysis were (1) cardiac anatomic changes including left ventricular mass indexed by body surface area (LVMI), left ventricular end-diastolic volume indexed by body surface area (LVEDVI), left ventricular end-systolic volume indexed by body surface area (LVESVI), and left atrial volume indexed by body surface area (LAVI); (2) cardiac functional changes including LVEF, GLS, and the mitral inflow to mitral relaxation velocity ratio (E/eʹ); (3) changes in plasma NT-proBNP level; and (4) the KCCQ score, or the score of any scale in the questionnaire including the symptom section.
Data analysis
All the variables of interest were continuous and expressed as the mean ± SD. Data reported as the median and interquartile range were transformed to the mean and SD according to the methods suggested by McGrath [35] and Wan [36]. The SD was calculated according to the Cochrane Handbook [37] if results were reported in other forms [p values or confidence intervals (CI)]. The NT-proBNP level reported as the geometric means or geometric mean ratio and 95% CI in three studies were converted to log-transformed scale and analyzed by the generic inverse variance method [38], as sensitivity analysis for the studies reported in the raw scale. The KCCQ score was also analyzed by the generic inverse variance method due to incomplete reporting of the mean ± SD in each group. We used a random-effects model for all the analyses. The effects of SGLT2i on the outcomes were compared between the intervention and comparison arms. Pooled results were expressed as the mean difference (MD) or standardized mean difference (SMD) and its 95% CI. A two-sided P < 0.05 was considered significant. The heterogeneity of the results was assessed using I2 statistics. Sensitivity analyses included heterogeneity analysis using the leave-one-out method, analysis of only high-quality studies, and analysis of only studies using placebo as the control group. Subgroup analyses were performed if each subgroup contains two or more studies, basing on the stage A–B or stage C HF population and the LVEF level in stage C HF patients. All analyses were performed using Review Manager software version 5.4 (The Cochrane Collaboration), R version 3.6.1 (R Foundation for Statistical Computing), and STATA software version 15.0 (StataCorp LP, College Station, TX, USA).
Results
A total of 21 RCTs [10, 24, 25, 29–31, 33, 39–52] were recognized eligible in this meta-analysis, including 3 in crossover design [41, 44, 50]. A total of 10,978 participants were enrolled, including 6236 in the SGLT2i group and 4821 in the control group. Seventy percent of the participants were male, and the mean age ranged from 56 to 73 years old. The mean follow-up period ranged from 14 days to one year, including three studies [41, 50, 51] less than 3 months. Participants with T2DM that were mostly in stage A–B HF were enrolled in 10 studies [24, 25, 39, 40, 44, 46, 48, 49, 51, 52], and patients with T2DM and stage C HF were enrolled in 11 studies [10, 29–31, 33, 41–43, 45, 47, 50]. LVMI, LVEDVI, LVESVI, LAVI, LVEF, GLS, the E/e’ ratio, plasma NT-proBNP level, and the KCCQ score were reported in 6 [24, 25, 29, 44, 45, 52], 3 [25, 29, 30], 3 [25, 29, 30], 4 [25, 29, 45, 52], 9 [24, 25, 29–31, 39, 40, 44, 45], 4 [24, 39, 44, 51], 8 [24, 25, 30, 31, 44, 45, 49, 52], 11 [10, 24, 25, 31, 41, 44–46, 48–50] and 3 [10, 42, 43] studies, respectively. Cardiac structure and function were evaluated by magnetic resonance imaging in 4 studies [24, 25, 29, 51], echocardiography in 8 studies [24, 30, 31, 39, 44, 45, 49, 52], and impedance cardiography in 1 study [40]. The treatment for the control group was placebo in 15 studies [10, 24, 25, 29, 33, 40–44, 46, 47, 50–52], and conventional treatment or other antidiabetic drugs in 6 studies [30, 31, 39, 45, 48, 49]. Baseline characteristics of the eligible studies were presented in Table 1.Table 1Baseline characteristics of eligible studies


	Author
	Publication year
	Study design
	Trial
	Country/area
	Intervention in treatment and control arms
	Population
	Overall sample size (n)
	Follow-up period
	Age (year, mean ± SD)
	Sex (male%)
	Imaging
	Parameters

	Januzzi
	2017
	RCT
	–
	Multiple countries and areas
	Canagliflozin 100 mg/day or 300 mg/day; placebo
	Older patients with T2DM
	666
	52 weeks
	63.74 ± 6.31
	57.27%
	–
	NT-proBNP

	Bonora
	2019
	RCT
	DAPA-HDL
	Italy
	Dapagliflozin 10 mg/day; placebo
	T2DM, excluding HF patients with NYHA classes III-IV
	30
	12 weeks
	63.4 ± 6.9
	66.70%
	ICG
	LVEF

	Brown
	2020
	RCT
	DAPA-LVH
	UK
	Dapagliflozin 10 mg/day; placebo
	T2DM, excluding patients diagnosed as clinical HF
	66
	12 months
	65.53 ± 6.87
	57.60%
	MRI; ECHO
	LVMI, LVEF, GLS, E/e', NT-proBNP

	Ikonomidis
	2020
	RCT
	–
	Greece
	SGLT2i; standard care without SGLT2i
	T2DM
	160
	12 months
	58 ± 10
	72%
	ECHO
	LVEF, GLS

	Katakami
	2020
	RCT
	UTOPIA
	Japan
	Tofogliflozin 20 mg/day; conventional drugs
	T2DM
	340
	52 weeks
	61.10 ± 9.49
	58.40%
	–
	NT-proBNP

	Kayano
	2020
	RCT
	–
	Japan
	Dapagliflozin 5 mg/day; conventional therapy
	T2DM candidates with hypertension (grade 1 or 2) and/or a history of ischemic heart disease
	74
	6 months
	67.65 ± 8.53
	89.18%
	ECHO
	E/eʹ, NT-proBNP

	Oldgren
	2020
	RCT
	DAPACARD
	Sweden and Finland
	Dapagliflozin 10 mg/day; placebo
	T2DM with normal left ventricular ejection fraction (≥ 50%) assessed within 1 year
	49
	6 weeks
	64.4 ± 7.2
	53%
	MRI
	GLS

	Shim
	2020
	RCT
	IDDIA
	Korea
	Dapagliflozin 10 mg/day; placebo
	T2DM and LV diastolic dysfunction
	60
	24 weeks
	–
	–
	ECHO
	LVMI, LAVI, E/eʹ

	Verma
	2019
	RCT
	EMPA-HEART CardioLink-6
	Canada
	Empagliflozin 10 mg/day; placebo
	T2DM and CAD, excluding patients with an LVEF < 30%, NYHA class IV or hospitalized for decompensated HF within the preceding 3 months
	97
	6 months
	67.6 ± 6.6
	80%
	MRI
	LVMI, LVEDVI, LVESVI, LAVI, LVEF, E/eʹ, NT-proBNP

	Anker
	2020
	RCT
	EMPEROR-Reduced
	Multiple countries and areas
	Empagliflozin 10 mg/day; placebo
	T2DM and CHF
	1856
	52 weeks
	66.70 ± 10.15
	76.90%
	–
	KCCQ, NT-proBNP

	Bhatt
	2020
	RCT
	SOLOIST-WHF
	Multiple countries and areas
	Sotagliflozin 200 mg/day; placebo
	T2DM recently hospitalized for worsening heart failure
	1222
	4 months
	69.90 ± 9.34
	66.24%
	–
	KCCQ

	Carbone
	2020
	RCT
	CANA-HF
	US
	Canagliflozin 100 mg/day; sitagliptin 100 mg/day
	T2DM and HFrEF
	36
	12 weeks
	56.1 ± 7.8
	77.77%
	ECHO
	LVEDVI, LVESVI, LVEF, E/eʹ

	de Boer
	2020
	RCT
	–
	Multiple countries and areas
	Empagliflozin 25 mg/day; placebo
	T2DM and CHF
	63
	12 weeks
	68.02 ± 9.10
	61.93%
	–
	NT-proBNP

	Eickhoff
	2020
	RCT (crossover)
	DapKid
	Denmark
	Dapagliflozin 10 mg/day; placebo
	T2DM and CHF
	40
	12 weeks
	64 ± 8
	89%
	ECHO
	LVMI, LVEF, GLS, E/eʹ, NT-proBNP

	Ejiri
	2020
	RCT
	MUSCAT-HF
	Japan
	Luseogliflozin 2.5 mg/day; voglibose
	T2DM and HFpEF
	165
	12 weeks
	73.1412 ± 7.8130
	62.52%
	ECHO
	LVMI, LAVI, LVEF, E/eʹ, NT-proBNP

	Griffin
	2020
	RCT (crossover)
	–
	US
	Empagliflozin 10 mg/day; placebo
	T2DM and HF
	20
	14 days
	60 ± 12
	75%
	–
	NT-proBNP

	Januzzi
	2020
	RCT
	CANVAS; CANVAS-R
	Multiple countries and areas
	Canagliflozin 100 or 300 mg/day; placebo
	T2DM and high risk for cardiovascular events
	3587
	1 year
	62.6999 ± 7.8670
	67%
	–
	NT-proBNP

	Mordi
	2020
	RCT (crossover)
	RECEDE-CHF
	UK
	Empagliflozin 25 mg/day; placebo
	T2DM and CHF
	23
	6 weeks
	69.8 ± 5.7
	73.90%
	–
	NT-proBNP

	Petrie
	2020
	RCT
	DAPA-HF
	Multiple countries and areas
	Dapagliflozin 10 mg/day; placebo
	T2DM and HFrEF
	2139
	8 months
	66.50 ± 9.85
	77.70%
	–
	NT-proBNP, KCCQ

	Singh
	2020
	RCT
	REFORM
	UK
	Dapagliflozin 10 mg/day; placebo
	T2DM and CHF
	56
	1 year
	67.1
	66.10%
	MRI
	LVMI, LVEDVI, LVESVI, LAVI, LVEF

	Tanaka
	2020
	RCT
	CANDLE
	Japan
	Canagliflozin 100 mg/day; glimepiride 0.5 to 6.0 mg/day
	T2DM and HF
	233
	24 weeks
	68.6 ± 10.1
	74.71%
	ECHO
	LVEF, E/e', NT-proBNP


RCT randomized controlled trial, SGLT2i sodium–glucose cotransporter 2 inhibitors, T2DM type 2 diabetes mellitus, HF heart failure, CHF chronic heart failure, HFrEF heart failure with reduced ejection fraction, HFpEF heart failure with preserved ejection fraction, LVEF left ventricular ejection fraction, CAD coronary artery disease, CV cardiovascular, NYHA New York Heart Association, MRI magnetic resonance imaging, ECHO echocardiography, ICG impedance cardiography, LVMI left ventricular mass indexed by body surface area, LVEDVI left ventricular end diastolic volume indexed by body surface area, LVESVI left ventricular end systolic volume indexed by body surface area, LAVI left atrial volume indexed by body surface area, GLS global longitudinal strain: E/e' mitral inflow to mitral relaxation velocity ratio, NT-proBNP N-terminal pro-brain natriuretic peptide, KCCQ the Kansas City Cardiomyopathy Questionnaire, UK the United Kingdom, US the United States



Results of the main analyses and sensitivity analyses
The use of SGLT2i showed no significant effect on LVMI compared with placebo or other antidiabetic drugs in T2DM patients with or without HF (MD -0.96 g/m2, 95% CI − 2.69 to 0.77, p = 0.27; I2 = 23%) (Fig. 2). LVEDVI, LVESVI and LAVI were also not significantly changed by the use of SGLT2i compared to the control group in the overall population (MD 1.32 ml/m2, 95% CI −2.20 to 4.85, p = 0.46; I2 = 0%; MD −.03 ml/m2, 95% CI −3.08 to 3.02, p = 0.98; I2 = 9%; MD −.28 ml/m2, 95% CI − 1.98 to 1.42, p = 0.75; I2 = 0%) (Fig. 2).[image: ../images/12933_2020_1209_Fig2_HTML.png]
Fig. 2Forest plots of the effects of SGLT2i on cardiac structure indexed by body surface area. a LVMI; b LVEDVI; c LVESVI; d LAVI. SGLT2i sodium–glucose cotransporter 2 inhibitors, T2DM type 2 diabetes mellitus, HF heart failure, LVMI left ventricular mass indexed by body surface area, LVEDVI left ventricular end diastolic volume indexed by body surface area, LVESVI left ventricular end systolic volume indexed by body surface area, LAVI left atrial volume indexed by body surface area


As for systolic function, SGLT2i did not have a significant effect on LVEF (MD 0.21%, 95% CI − 0.65 to 1.06, p = 0.63; I2 = 12%) (Fig. 3) or GLS (MD − 0.38%, 95% CI − 1.04 to 0.29, p = 0.27; I2 = 28%) (Fig. 3) in the overall population. For left ventricular diastolic function, the use of SGLT2i was associated with a reduction of the E/eʹ ratio (MD − 0.45, 95% CI − 0.88 to − 0.03, p = 0.04; I2 = 0%) (Fig. 3). Sensitivity analysis including only the 7 high-quality studies showed a similar reduction of the E/eʹ ratio by SGLT2i, and analysis including the 4 placebo-controlled studies showed insignificant results.[image: ../images/12933_2020_1209_Fig3_HTML.png]
Fig. 3Forest plots of the effects of SGLT2i on cardiac function. a LVEF; b GLS; c E/eʹ. SGLT2i sodium–glucose cotransporter 2 inhibitors, T2DM type 2 diabetes mellitus, HF heart failure, LVEF left ventricular ejection fraction, GLS global longitudinal strain, E/eʹ mitral inflow to mitral relaxation velocity ratio


The use of SGLT2i reduced the plasma NT-proBNP levels (SMD − 0.09, 95% CI − 0.16 to − 0.03, p = 0.004; I2 = 0%) (Fig. 4) in the overall population. The three studies reporting data in the geometric scales could not be pooled with those reporting data in the raw scale, thus served as sensitivity analysis, and showed consistent results as in the main analysis (SMD − 0.12, 95% CI − 0.17 to − 0.07, p < 0.00001; I2 = 0%) (Fig. 4). Other sensitivity analyses included only the 9 high quality studies and only the 7 placebo-controlled studies, both showed consistent results with the main analysis.[image: ../images/12933_2020_1209_Fig4_HTML.png]
Fig. 4Forest plots of the effects of SGLT2i on a NT-proBNP and b KCCQ score. SGLT2i sodium–glucose cotransporter 2 inhibitors, T2DM type 2 diabetes mellitus, HF heart failure, NT-proBNP N-terminal pro-brain natriuretic peptide, KCCQ the Kansas City Cardiomyopathy Questionnaire


The KCCQ score was significantly improved by SGLT2i compared with placebo or other antidiabetic drugs (SMD 3.12, 95% CI 0.76 to 5.47, p = 0.01; I2 = 0%) (Fig. 4). The KCCQ items used were different among the three eligible trials, including the total symptom score in the DAPA-HF trial, the total symptom score and physical limitation score in the EMPEROR-Reduced trial, and the KCCQ-12 items score in the SOLOIST-WHF trial. All the trials were placebo-controlled and of high quality, so sensitivity analysis was not conducted.
Results of subgroup analyses
Subgroup analyses of LVMI and LAVI based on stage A–B or stage C HF population showed insignificant results. We did not conduct subgroup analysis in LVEDVI and LVESVI because only three studies reported the outcomes.
LVEF was not significantly changed by the use of SGLT2i compared to placebo or other antidiabetic drugs in subgroup analysis based on stage A–B or stage C HF population. Nevertheless, in subgroup analyses in stage C HF patients based on HF types, SGLT2i was related to improved LVEF in HFrEF patients (MD 3.16%, 95% CI 0.11 to 6.22, p = 0.04; I2 = 0%), but was insignificant in HFpEF patients (MD 0.19%, 95% CI − 1.76 to 2.15, p = 0.85; I2 = 0%) (Additional file 4: Figure S3). All the studies reporting GLS were in stage A–B HF patients with T2DM, so subgroup analysis was not conducted. SGLT2i improved the E/e’ ratio in stage A–B HF population (MD − 0.54, 95% CI − 1.01 to − 0.07, p = 0.02; I2 = 0%) but not in stage C HF population (MD − 0.06, 95% CI − 1.05 to 0.92, p = 0.9; I2 = 0%) (Fig. 3). In stage C HF patients, SGLT2i did not significantly affect the E/e’ ratio in both the HFrEF (MD − 0.33, 95% CI − 2.76 to 2.10, p = 0.79; I2 = 0%) and HFpEF (MD − 0.19, 95% CI − 1.23 to 0.85, p = 0.72; I2 = 2%) groups (Additional file 4: Figure S3).
The use of SGLT2i reduced the NT-proBNP level in stage C HF population (SMD − 0.12, 95% CI − 0.20 to − 0.05, p = 0.002; I2 = 0%) but not in stage A–B HF population (SMD − 0.02, 95% CI − 0.14 to 0.09, p = 0.69; I2 = 0%) (Fig. 4). In stage C HF patients, SGLT2i significantly improved the NT-proBNP level in the HFrEF subgroup (SMD − 0.14, 95% CI − 0.22 to − 0.05, p = 0.001; I2 = 0%) but not in the HFpEF subgroup (SMD − 0.07, 95% CI − 0.29 to 0.14, p = 0.51; I2 = 0%) (Additional file 4: Figure S3).
All the three studies reporting the KCCQ score were conducted in stage C HF patients with T2DM and subgroup analysis was not performed.
Quality assessment and publication bias
Quality assessments of each of the RCTs are shown in Additional file 2: Figure S1. Among the 21 RCTs included in this meta-analysis, 14 were considered to be at low risk, 3 with some concerns, and 4 were at high risk, which was mainly driven by the open-label design in the studies by Tanaka et al. and Katakami et al., and the high missing rate in the studies by Ikonomidis et al. and de Boer et al. The results of publication bias assessment are shown in Additional file 3: Figure S2. According to the results of Egger’s asymmetry test, there was no obvious publication bias in any of the analyses (p > 0.05).
According to the GRADE evidence profile (Table 2), the certainty of the evidence was moderate for most of the outcomes, except for LVEF in HFrEF population, which showed a low certainty mostly driven by the high risk of bias in the study by Tanaka et al.; and for the KCCQ score, which showed a high certainty.Table 2GRADE evidence profile


	Certainty assessment
	No. of patients
	Effect
	Certainty
	Importance

	No. of studies
	Study design
	Risk of bias
	Inconsistency
	Indirectness
	Imprecision
	Other considerations
	SGLT2i
	Control
	Relative (95% CI)
	Absolute (95% CI)

	LVMI

	 6
	Randomized trials
	Not serious
	Not serious
	Not serious
	Seriousa
	None
	251
	254
	–
	MD 0.96 lower (2.69 lower to 0.77 higher)
	⨁⨁⨁◯
Moderate
	Important

	LVEDVI

	 3
	Randomized trials
	Not serious
	Not serious
	Not serious
	Seriousa
	None
	89
	93
	–
	MD 1.32 higher (2.20 lower to 4.85 higher)
	⨁⨁⨁◯
Moderate
	Important

	LVESVI

	 3
	Randomized trials
	Not serious
	Not serious
	Not serious
	Seriousa
	None
	89
	93
	–
	MD 0.03 lower (3.08 lower to 3.02 higher)
	⨁⨁⨁◯
Moderate
	Important

	LAVI

	 4
	Randomized trials
	Not serious
	Not serious
	Not serious
	Seriousa
	None
	187
	182
	–
	MD 0.28 lower (1.98 lower to 1.42 higher)
	⨁⨁⨁◯
Moderate
	Important

	LVEF

	 9
	Randomized trials
	Not serious
	Not serious
	Not serious
	Seriousa
	None
	427
	442
	-
	MD 0.21 higher (0.65 lower to 1.06 higher)
	⨁⨁⨁◯
Moderate
	Important

	LVEF in HFrEF

	 2
	Randomized trials
	Serious b
	Not serious
	Not serious
	Seriousa
	None
	70
	74
	–
	MD 3.16 higher (0.11 higher to 6.22 higher)
	⨁⨁◯◯
Low
	Important

	LVEF in HFpEF

	 2
	Randomized trials
	Not serious
	Not serious
	Not serious
	Seriousa
	None
	151
	158
	–
	MD 0.19 higher (1.76 lower to 2.15 higher)
	⨁⨁⨁◯
Moderate
	Important

	GLS

	 4
	Randomized trials
	Not serious
	Not serious
	Not serious
	Seriousa
	None
	162
	164
	–
	MD 0.38 lower (1.04 lower to 0.29 higher)
	⨁⨁⨁◯
Moderate
	Important

	E/eʹ

	 8
	Randomized trials
	Not serious
	Not serious
	Not serious
	Seriousa
	None
	354
	371
	–
	MD 0.45 lower (0.88 lower to 0.03 lower)
	⨁⨁⨁◯
Moderate
	Important

	NT-proBNP

	 11
	Randomized trials
	Not serious
	Not serious
	Not serious
	Seriousa
	None
	1997
	1777
	–
	SMD 0.09 lower (0.16 lower to 0.03 lower)
	⨁⨁⨁◯
Moderate
	Critical

	NT-proBNP (ln scale)

	 3
	Randomized trials
	Not serious
	Not serious
	Not serious
	Seriousa
	None
	2702
	1629
	–
	SMD 0.12 lower (0.17 lower to 0.07 lower)
	⨁⨁⨁◯
Moderate
	Critical

	KCCQ

	 3
	Randomized trials
	Not serious
	Not serious
	Not serious
	Not serious
	None
	2610
	2607
	–
	SMD 3.12 higher (0.76 higher to 5.47 higher)
	⨁⨁⨁⨁
High
	Critical


SGLT2i sodium–glucose cotransporter 2 inhibitors, MD mean difference, SMD standardized mean difference, HFrEF heart failure with reduced ejection fraction, HFpEF heart failure with preserved ejection fraction, LVMI left ventricular mass indexed by body surface area, LVEDVI left ventricular end diastolic volume indexed by body surface area, LVESVI left ventricular end systolic volume indexed by body surface area, LAVI left atrial volume indexed by body surface area, LVEF left ventricular ejection fraction, GLS global longitudinal strain, E/e' mitral inflow to mitral relaxation velocity ratio, NT-proBNP N-terminal pro-brain natriuretic peptide, KCCQ the Kansas City Cardiomyopathy Questionnaire
aSample size below optimal information size contributing to imprecision which lowers our certainty in effect
bOne in the two studies is of high risk according to the Cochrane risk of bias tool. And excluding the study would cause change of the results



Discussion
This meta-analysis comprehensively and quantitively analyses the effects of SGLT2i on cardiac structure, cardiac function, plasma NT-proBNP level and the KCCQ score in T2DM patients with or without chronic HF. The main findings of this study included the following: (1) SGLT2i showed no significant effects on LVMI, LVEDVI, LVESVI, and LAVI; (2) SGLT2i improved LVEF in HFrEF patients but not in HFpEF patients or stage A–B HF patients with T2DM, and showed no significant effects on GLS in stage A–B HF patients with T2DM; (3) SGLT2i reduced the E/e’ ratio in the overall population and stage A–B HF patients but not in stage C HF patients; (4) SGLT2i improved the plasma NT-proBNP level in the overall population and stage C HF patients, and showed no significant results in stage A–B HF patients; and (5) SGLT2i improved the KCCQ score in stage C HF patients with T2DM.
Our searching and analysis results on the LVM, LVEDV, and LVESV were the same as those reported in a recently published meta-analysis [53], thus were not presented in this article. Pooled analysis of two studies [24, 25] reporting LVM measured by MRI in stage A–B HF population showed a significant reduction after the use of SGLT2i compared to placebo or other antidiabetic drugs (MD − 3.04 g, 95% CI − 5.14 to − 0.94, p = 0.005; I2 = 0%). The inconsistency in the results of SGLT2i regarding LVM and LVMI may be attributed to the concomitant effect of weight loss, which was also observed in studies included in our analysis and a previous meta-analysis [24, 29, 31, 39, 54]. Since LVMI was calculated by LVM indexed by body surface area (BSA), which was influenced by both temporal height and weight of the individual, weight loss would obscure the estimation of the actual anatomical change of the heart. This was previously discussed in the study by Brown et al. [24], showing that SGLT2i significantly reduced LVM as well as LVM indexed by height or baseline BSA but not that indexed by real-time BSA. LVM was demonstrated to be a risk factor for the decline of LVEF [55] as well as all-cause and cardiovascular mortality [56] in stage A–B HF. The decrease of LVM might be related to the reduction of the incidence of stage C HF observed in previous RCTs. Despite larger sample sizes than the studies reporting LVM, the use of SGLT2i showed no significant effects on LVEDV, LVESV, LVEDVI, LVESVI, and LAVI, suggesting a null or faint effect of the drug on the dilation of cardiac chambers. Since the increase of LVM usually reflects both enlargement of the left ventricle and thickening of the walls, the results above may imply an effect of SGLT2i on the wall thickness rather than on the ventricle volume, which is to be demonstrated in future studies.
Taken together, the results of the overall and subgroup analyses suggested that SGLT2i significantly reduced LVEF in HFrEF patients but not in HFpEF patients, showing benefits in patients with obvious systolic dysfunction. However, the results in HFrEF subgroup suffered from a low certainty in the GRADE evidence profile, calling for more future studies in the population. The effect of SGLT2i on GLS, a more sensitive parameter reflecting even mild systolic dysfunction [57–59], was not significant in the pooled analysis. Nevertheless, GLS was reported in four RCTs in stage A–B HF patients with T2DM but not yet in stage C HF patients. Ongoing trials such as ERTU-GLS (NCT03717194) in the T2DM and stage C HF population would provide more evidence. As for diastolic dysfunction, the E/eʹ ratio was reduced by SGLT2i in the overall population and stage A–B HF patients, but not in stage C HF patients. The discrepancy between the subgroups could be due to the mild and more reversible impairment of the diastolic dysfunction in stage A–B HF patients, whereas large-scale trials are still needed.
The use of SGLT2i significantly reduced the plasma NT-proBNP level in the stage C HF population. However, the effect on NT-proBNP level between the SGLT2i and control group was − 333 pg/ml in the T2DM subgroup in the DAPA-HF trial [10] (median baseline level in the SGLT2i group: 1479 pg/ml), and − 103 pg/ml in the whole population of EMPEROR-Reduced trial [42] (median baseline level in the SGLT2i group: 1894 pg/ml) declaring no significant difference in patients with and without T2DM. Those changes were moderate and inconsistent with the remarkable influence of SGLT2i on the cardiovascular events [60], suggesting that NT-proBNP could not be considered to be a satisfying surrogate endpoint for efficacy assessment in this case.
In the pre-SGLT2i age, the change of NT-proBNP level used to be expected to predict the effect size of HF therapy on cardiovascular outcomes. One meta-analysis [61] suggested a significant association between changes in NT-proBNP level and the risk of hospital stay for HF worsening. In the PARADIGM-HF trial [62], the use of angiotensin receptor-neprilysin inhibitor in HFrEF patients induced a 30% decline in NT-proBNP level after the run-in period of 4–6 weeks, and the reduction was associated with the change in cardiovascular mortality and HF hospitalization rate. However, the relationship was less strong in the PARAGON-HF trial [63] in HFpEF patients, which showed a considerable effect of SGLT2i on the reduction of NT-proBNP but a moderate effect on the primary outcome in the subgroups of men and patients with higher LVEF. Moreover, the termination of the GUIDE-IT trial [64] due to futility suggested against the add-on NT-proBNP-guided strategy versus guideline-directed medical therapy alone in HFrEF patients. Updated evidence from the trials in SGLT2i further supported the view that the NT-proBNP could not be used generally as a predictor of the hard endpoints, but may be indicative for specific drugs or in certain subgroups of patients.
Pooled results of the three large-scale RCTs reporting the KCCQ score showed significant improvement by SGLT2i compared with placebo in T2DM patients with stage C HF. As for the magnitude of the effect, analysis of the T2DM subgroup in DAPA-HF trial [10] showed that more patients reported an increase of at least 5 points in the SGLT2i group compared with the placebo group (58.9% vs 49.9%), yielding a number needed to treat of 14 patients with dapagliflozin for one to be clinically better in eight months, which showed a considerable benefit [65]. The MD in the change of the KCCQ score was 4.1 points (95% CI 1.3 to 7.0) in the SOLOIST-WHF trial and 2.41 (95% CI 0.64 to 4.17) in the T2DM subgroup in EMPEROR-Reduced trial, but the numbers needed to treat were not calculable. The benefit on symptoms and quality of life associated with SGLT2i was consistent with the noteworthy reduction in the risk of hospitalization for heart failure in the T2DM subgroup of the DAPA-HF and EMPEROR-Reduced trials.
Despite the clinically significant improvement of quality of life and cardiovascular outcomes by SGLT2i, the debate on the underlying mechanism of the drug is still on the way. The most known mechanism of SGLT2i is based on excess excretion of fluid and glucose and modest removal of sodium [66]. Diuresis alleviates cardiac preload, leading to reduced blood pressure [67], left ventricular wall stress, and left ventricular filling pressure. This could be the reason for the reduction of the NT-proBNP level and the E/e’ ratio that we have observed. However, the significant effect of SGLT2i on LVM but not ventricular volume could not be fully interpreted by the theory above. Other possible mechanisms such as more efficient energy source of ketone bodies and fatty acids rather than glucose [19, 68], relieving inflammation [69, 70], and reducing fibrosis and oxidative stress [15], may also play a role. The previously prompted hypothesis of the inhibition of cardiac Na+–H+ Exchanger-1 was however challenged in a recent in vitro study [71]. Still, further research is required to illuminate the complete picture.
Previous systemic and narrative reviews [72–75] summarized completed and ongoing studies available on the same topic as ours. However, they were mostly conducted before the releasing of results of several important recent studies and thus lacked sufficient data for quantitative analyses. This meta-analysis included only RCTs but not observational studies to minimize the possible risk of bias, and used the GRADE tool to assess the certainty of the evidence for each outcome. Although conducted strictly following the PRISMA guidelines, the meta-analysis still has some limitations. First, in subgroup analyses, we stratified the T2DM population as stage A–B and stage C HF patients. But in some studies recognized as stage A–B HF, HF patients were not fully excluded. Second, heterogeneity in clinical characteristics and study methods was not completely avoidable, in consideration of which we used a random-effects model for all the analyses. Third, subgroup analyses based on the dosage forms of SGLT2i and the modality of imaging were not conducted due to insufficient data, which remain to be clarified in future studies.
Large-scale RCTs focusing on the effects of SGLT2i in different populations are required to provide more evidence for individualized intervention. The results of the ongoing EMPA-TROPISM (NCT03485222) [76], EMPA-HEART (EUDRACT 2016-0022250-10) [77], ERTU-GLS (NCT03717194), NATRIURETIC (NCT04535960), VERTICAL (NCT04490681), EMPERIAL-Preserved and EMPERIAL-Reduced (NCT03448406, NCT03448419) [78] trials would enhance knowledge of this topic. Although the efficacy and safety of SGLT2i in several dosage forms have been repeatedly verified in T2DM patients with or without HF to support the clinical application, the underlying mechanism remains to be clarified to achieve a more comprehensive understanding.
Conclusion
We found in this meta-analysis that SGLT2i improves the parameters of cardiac diastolic function, plasma NT-proBNP level, and the KCCQ score in T2DM patients with or without chronic HF, but did not significantly affect cardiac structural parameters indexed by body surface area. The LVEF level was improved only in HF patients with reduced ejection fraction. Future studies are anticipated to further elucidate the mechanisms and intermediate links in the effect of SGLT2i.
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