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Cross-sectional and longitudinal associations 
of Iron biomarkers and cardiovascular risk 
factors in pre- and postmenopausal women: 
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Abstract 

Background The association between iron biomarkers and cardiovascular disease risk factors (CVD‑RFs) remains 
unclear. We aimed to (1) evaluate the cross‑sectional and longitudinal associations between iron biomarkers (serum 
ferritin, transferrin saturation (TSAT), transferrin) and CVD‑RFs among women, and (2) explore if these associations 
were modified by menopausal status.

Method Cross‑sectional and longitudinal analyses including 2542 and 1482 women from CoLaus cohort, respec‑
tively. Multiple linear regression and multilevel mixed models were used to analyse the associations between Iron 
biomarkers and CVD‑RFs. Variability of outcomes and iron markers between surveys was accessed using intraclass 
correlation (ICC).

Results After multivariable adjustment, elevated serum ferritin levels were associated with increased insulin and glu‑
cose levels, while higher transferrin levels were linked to elevated glucose, insulin and total cholesterol, and systolic 
and diastolic blood pressure (p < 0.05). No association was observed between CVD‑RFs and TSAT (p > 0.05). Iron bio‑
markers demonstrated low reliability across reproductive stages but exhibited stronger associations in the perimeno‑
pausal group. In longitudinal analysis, we found association only for transferrin with lower glucose levels [β = − 0.59, 
95% CI (− 1.10, − 0.08), p = 0.02] and lower diastolic blood pressure [β = − 7.81, 95% CI (− 15.9, − 0.56), p = 0.04].

Conclusion In cross‑sectional analysis, transferrin was associated with several CVD‑RFs, and the associations did 
not change according to menopausal status. Conversely, in the longitudinal analyses, changes in transferrin were 
associated only with lower glucose and diastolic blood pressure levels. These differences might stem from the sub‑
stantial longitudinal variation of iron biomarkers, underscoring the need for multiple iron measurements in longitudi‑
nal analyses.

*Correspondence:
Noushin Sadat Ahanchi
Noushinsadat.Ahanchi@chuv.ch
Pedro‑Marques Vidal
pedro‑manuel.marques‑vidal@chuv.ch
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12933-024-02242-x&domain=pdf


Page 2 of 13Ahanchi et al. Cardiovascular Diabetology          (2024) 23:158 

Key Messages 

• Different iron biomarkers showed inconsistent associations with cardiovascular disease risk factors (CVD‑RFs) 
in cross‑sectional and longitudinal analyses.

• We assessed the cross‑sectional and prospective associations between several iron biomarkers and CVD‑RFs 
in women, and the possible role of menopause.

• In cross‑sectional analyses, transferrin was associated with several CVD‑RFs in women, which was not the case 
for ferritin or transferrin saturation.

• In the longitudinal part of our study, we took advantage of repeated measures of iron biomarkers to correct 
for low reliability of iron biomarkers.

• In the longitudinal analyses, we found that only changes in transferrin were associated with lower levels of glu‑
cose and diastolic blood pressure.

• The associations between iron biomarkers and CVD‑RFs did not change according to menopausal status.

Keywords Iron biomarkers, Menopause, Cohort, Cardio‑metabolic risk factors

Introduction
Regardless of the geographical variations, cardiovascular 
disease (CVD) remains the most common cause of death 
worldwide [1]. Sex differences in CVD are well-docu-
mented, encompassing variations in risk factors, disease 
presentation, and outcomes between men and women 
[2]. While men traditionally exhibit higher rates of CVD, 
women often catch up in risk post menopause, suggesting 
hormonal influences on cardiovascular health [3].

Menopause, characterized by hormonal shifts and 
decreased estrogen levels, represents a pivotal sex-spe-
cific event that significantly impacts CVD risk profiles 
and outcomes in women [4]. While oestrogen deficiency 
has been suggested as the main causative factor for the 
increased risk of cardiometabolic diseases after meno-
pause, the evidence is not persuasive in supporting this 
hypothesis and is amenable to alternative explanations 
[5].

The associations between iron biomarkers and CVD-
RFs did not change according to menopausal status.

During menopause, oestrogen levels decrease by 
90%, while risk of iron deficiency decreases because of 
decreasing menstrual periods [6, 7]. Thus, changes in 
iron status have been suggested as an alternative expla-
nation for the increased risk of cardiometabolic disease 
after menopause [8]. Previous studies have linked iron 
status with the risk of heart failure, CVD, and diabetes 
mellitus [9–11]. A possible mechanism might be the role 
of iron metabolism on cardiovascular risk factors, includ-
ing blood lipids, blood pressure, and glucose levels [11]. 
Indeed, prior cross-sectional studies have shown iron to 
be negatively associated with HDL cholesterol and posi-
tively associated with fasting blood sugar, triglyceride 
and blood pressure levels [11]. However, the results are 

inconsistent [12]. This inconsistency could be due to sev-
eral factors such as (1) small sample size; (2) differences 
in sampling methods; (3) non-reliable measures of iron 
status; (4) results based on a single measurement of iron 
status (which can fluctuate markedly within individuals 
over time); (5) presence of potential confounding vari-
ables; (6) ethnic differences in iron biomarkers, and (7) 
lack of replication using a unified methodology [13]. Fur-
ther, longitudinal studies with repeated measurements of 
iron biomarkers are lacking [11].

Understanding the intricate interplay between iron 
biomarkers and cardiovascular risk factors in pre- and 
postmenopausal women holds significant promise in elu-
cidating underlying biological pathways that may contrib-
ute to CVD development. Moreover, investigating these 
biomarkers could offer valuable insights into their poten-
tial clinical utility in risk prediction, prevention, and man-
agement strategies [13]. Hence, this study aimed to assess 
the association between iron biomarkers and cardiovascu-
lar disease risk factors (CVD-RFs–cholesterol, blood pres-
sure, glucose metabolism) in two ways. Firstly, we explored 
the interaction between menopause and iron status 
regarding the association between iron status and CVD-
RFs in the total sample. Secondly, we evaluated the cross-
sectional and longitudinal associations between iron status 
and CVD-RFs among pre- and postmenopausal women. In 
addition, we explored the intra-variability of iron biomark-
ers over time as it determines whether a single measure-
ment accurately reflects an individual’s iron status. This 
information is critical for guiding clinical decision-making 
and interventions aimed at reducing CVD risk by ensuring 
the accuracy of iron biomarker assessments.
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Methods
Participants
The CoLaus study is an ongoing population-based cohort 
conducted in the city of Lausanne, Switzerland, aim-
ing to identify the biological and genetic determinants 
of cardiovascular disease [14]. Briefly, all participants 
aged 35 to 75 living in the city of Lausanne were eligible. 
Subjects were included if they consented to participate 
in the study and were willing to provide a blood sample. 
Recruitment began in June 2003 and ended in May 2006. 
The first follow-up was performed between April 2009 
and September 2012, and the second follow-up between 
May 2014 and April 2017. The information collected at 
follow-ups was the same as that collected during the 
baseline examination. For this study, data from the base-
line, first, and second follow-ups of the CoLaus study 
were used.

Selection of participants
Overall, 3544 women aged 35–75 years from the baseline 
survey were eligible. Of these, 868 (24.4%) were excluded 
due to missing information on CVD-RFs, and 134 (3.8%) 
because of C-reactive protein (CRP) levels ≥ 10 mg/L, as 
they are indicative of acute inflammatory processes that 
might modify levels of iron markers. This led to 2542 
women (71.7%) for the cross-sectional analysis (Fig.  1). 
Among the 2542 women, 433 (17.0%) were excluded 
because they had less than two measurements on CVD-
RFs, 314 (12.3%) because of missing iron biomarkers, 
and 268 (10.5%) because of CRP levels ≥ 10  mg/L dur-
ing follow-up. A further 49 women (2.0%) were excluded 
because of missing or unreliable information on meno-
pausal status (i.e., reporting being postmenopausal at the 
first follow-up and premenopausal at the second follow-
up). Thus, 1482 women (58.3% of the participants in the 
cross-sectional analysis) were included in the longitudi-
nal analysis (Fig. 1).

Iron status
A comprehensive assessment of iron status often involves 
considering multiple biomarkers. Ferritin is a long-term 
indicator of iron stores in the body; elevated levels indi-
cate high iron stores, whereas low levels may indicate 
iron deficiency. Serum iron levels provide a snapshot of 
the amount of iron circulating in the blood. Interpreta-
tion of serum iron levels in isolation can be challeng-
ing due to their daily variability [15]. Transferrin plays a 
key role in transporting iron throughout the body and is 
often measured indirectly through calculations involv-
ing other iron biomarkers; abnormal levels may indicate 
disruptions in iron metabolism or transport. Transferrin 
saturation (TSAT) is the ratio of serum iron to transfer-
rin, is a more dynamic marker of short-term iron status 

compared to ferritin. Elevated TSAT levels may suggest 
excess iron accumulation or impaired iron regulation, 
while low TSAT levels may indicate iron deficiency or 
inefficient iron absorption [16]. Venous blood sam-
ples were drawn after an overnight fast. Clinical chem-
istry assays were performed at the central laboratory of 
the University Hospital of Lausanne (CHUV). Iron was 
assessed by colorimetric method (ferrozine, BioSys-
tems); ferritin (µg/L) by immunoturbidimetric method 
(Tina-quant 4th generation, Roche Diagnostics, Swit-
zerland); transferrin (µg/dL) by immunoassay. Trans-
ferrin saturation (TSAT, %) was determined as (serum 
iron ÷ (25 × transferrin)) × 100 [17].

Cardiovascular risk factors
Blood pressure and heart rate were measured thrice on 
the left arm, with an appropriately sized cuff, after at 
least 10-min rest in the seated position using an Omron® 
HEM-907 automated oscillometric sphygmomanometer 
(Matsusaka, Japan). The average of the last two meas-
urements was used for analyses. Body weight and height 
were measured in light indoor clothes and without shoes. 
Body weight was measured in kilograms to the nearest 

Fig. 1 Enrolment flow chart for study population
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100  g using a Seca® scale, which was calibrated regu-
larly. Height was measured to the nearest 5 mm using a 
Seca® height gauge. Body Mass Index (BMI) was calcu-
lated as weight (kg) divided by the square of the height 
(m). Serum lipids and glucose were measured using enzy-
matic colorimetric assays. Insulin was assessed by elec-
trochemiluminescence (ECLIA). High-sensitivity CRP 
was assessed by immunoassay [14].

Menopausal status
Women participating in the study were asked whether 
they were still having menses. Women reporting “no” 
were classified as postmenopausal and as premenopau-
sal if they answered “yes.” Based on the self-reported 
menopausal status at the first and second follow-up vis-
its, women were classified as being (1) premenopausal-
premenopausal if they remained premenopausal, (2) 
premenopausal-postmenopausal if they changed their 
status, (3) and otherwise as postmenopausal.

Covariates
Information on age, lifestyle, educational attainment, 
medical history (CVD, diabetes), medication use (anti-
hypertensive drugs, antidiabetic drugs or statins) and 
alcohol consumption was obtained through a question-
naire. Educational attainment was defined as ‘high’ for 
those with at least a university degree, ‘middle’ for those 
who finished secondary school and ‘low’ for those who 
completed mandatory elementary education or appren-
ticeship. Alcohol consumption was obtained by asking if 
participants regularly consumed alcohol and their weekly 
consumption of wine, beer, and spirits in units per week. 
Smoking was categorized as never, former, and current. 
Body mass index and C-Reactive Protein (CRP) were 
considered as continuous variables. Data on hormone 
replacement therapy (HRT) was obtained and catego-
rized as having ever taken HRT (‘yes’) or not (‘no’).

Statistical analysis
Statistical analyses were performed using Stata ver-
sion 15.1 for Windows (Stata Corp, College Station, TX, 
USA). Baseline characteristics of the study population are 
described as frequencies and percentages for categori-
cal variables, mean and standard deviation, or median 
and 25th–75th percentile for continuous variables. The 
Gaussian distribution of continuous variables was visu-
ally inspected using a histogram and applying the Sha-
piro–Wilk test. Skewed variables (iron biomarkers, 
insulin, and hs-CRP) were log-transformed to achieve 
a normal distribution. Iron markers were corrected for 
CRP as suggested by others [18, 19] prior to analysis. 
Two sets of analyses were performed: cross-sectional and 
longitudinal.

Cross‑sectional analysis
For the cross-sectional analysis baseline iron data, con-
founders and CVD-RFs were used. We compared the 
sociodemographic, iron biomarkers, CVD-RFs, and 
other lifestyle variables between pre- and postmeno-
pausal women, using the independent-samples T-test or 
Mann–Whitney-U test for continuous variables, and the 
chi-squared test for categorical variables. Multiple linear 
regression models were used to investigate the associa-
tion of CVD-RFs (as dependent variables) with levels of 
iron biomarkers (ferritin, transferrin, and TSAT, as inde-
pendent variables). Three models were used; the first 
one included age only, while the second one additionally 
included BMI, smoking, alcohol use, educational levels, 
hormone replacement therapy (HRT), antidiabetic and 
antihypertensive drugs, CVD, and menopause status, 
when the outcome was insulin or glucose, diabetes was 
also included in the model. The third one stratified by 
menopause status and included age BMI, smoking, alco-
hol use, educational levels, hormone replacement therapy 
(HRT), antidiabetic and antihypertensive drugs, CVD, 
When the outcome was insulin or glucose, diabetes was 
also included in the model. All iron biomarkers were cor-
rected for CRP as suggested by BRINDA protocol prior 
to analysis. Results were expressed as beta coefficient and 
95% confidence interval.

Variability of outcomes and iron markers
Variability of outcomes and iron markers between sur-
veys was accessed using intraclass correlation coeffi-
cient (ICC). ICC was obtained from a two-way random 
effects model with measures of absolute agreement. 
An ICC ≥ 0.75 was considered excellent, between 0.40 
and 0.75 good and < 0.40 unsatisfactory [20]. To explore 
the role of menopausal status, we calculated ICC in the 
whole sample and according to menopausal status (pre-
pre, pre-post and post-post).

Longitudinal analysis
To investigate the longitudinal association between iron 
biomarkers and CVD-RFs, we used a multilevel mixed-
model approach for baseline, first, and second follow ups, 
including the same baseline confounders as in the cross-
sectional analysis. Our model incorporated both fixed 
and random effects to comprehensively account for indi-
vidual variability and potential confounding factors. The 
fixed effects included iron biomarkers, follow-up time, 
and their interaction term, together with the same base-
line confounders as in the cross-sectional analysis. The 
fixed effects elucidated how changes in iron biomarkers 
over time were associated with changes in CVD-RFs. 
The random effects comprised random intercepts and 
random slopes, capturing individual-level variability in 
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baseline CVD-RF levels and their rates of change over 
time.”. For missing values during follow-up (smoking and 
HRT, up to 29% missing data), multiple imputations were 
conducted using a predictive mean matching method and 
5-time imputation with 50 iterations using Stata.

Sensitivity analyses
We performed three different sensitivity analyses. Firstly, 
we added an interaction term between iron biomarkers 
and menopausal status using the whole sample to explore 
the role of menopause on the associations between iron 
markers and CVD-RFs. Secondly, we stratified all analy-
ses by menopausal status. Thirdly, a sensitivity analy-
sis was conducted to further explore the association 
between the iron biomarkers and CVD-RFs. In this anal-
ysis, we categorized the iron biomarker variable into ter-
tiles based on their relative levels and tested for a linear 
trend in cross-sectional and longitudinal analyses. This 
approach allowed us to assess potential non-linear rela-
tionships and investigate whether there were different 
patterns of association across different ranges of the iron 
biomarkers.

Results
Cross‑sectional analysis
The main characteristics of the women included accord-
ing to menopausal status are summarized in Table 1. As 
compared to premenopausal women, postmenopau-
sal women had higher ferritin, BMI, CRP, and SBP lev-
els, more prevalent CVD and diabetes, reported higher 
consumption of anti-diabetic and antihypertensive 
medications, and had lower transferrin levels. Also, the 
comparison between included and excluded participants 
showed differences in age (p < 0.001), BMI (p = 0.03), use 
of antidiabetic drugs (p = 0.02), and alcohol consumption 
(p = 0.01). Included participants exhibited higher mean 
age, BMI, a greater percentage reported antidiabetic 
drug use, and a higher prevalence of alcohol consump-
tion compared to excluded participants (Additional file 1: 
Table S1).

The results of the multivariable analysis of the asso-
ciations between CVD-RFs and iron markers are 
summarized in Table 2. In the age adjusted model, Log-
transferred ferritin and transferrin were positively asso-
ciated with glucose and insulin (p < 0.05). In addition, 
Log-transferred transferrin was positively associated 
with SBP, DBP, TC in model 1 (p < 0.05) (Table 2). After 
adjustment for potential confounders, ferritin levels were 
positively associated with insulin and glucose, while 
transferrin levels were positively associated with glu-
cose, insulin, SBP, DBP and TC (Table 2). No association 
between CVD-RFs and TSAT was found in the age and 

in the fully adjusted models (p > 0.05) (Table  2), and no 
significant quadratic or cubic term was found (p > 0.05) 
(Additional file 1: Table S3).

Variability of outcomes and iron markers
For CVD-RFs, the ICCs varied from 0.32 for insulin to 
0.71 for HDL cholesterol (Table 3). Also, except for glu-
cose and total cholesterol, the ICC values did no differ 
markedly between menopausal categories. All iron bio-
markers consistently showed low reliability, especially 
in the perimenopausal group (Table 3) (Fig. 2),

Longitudinal analysis
During the follow-up period, 182 women remained 
premenopausal, 487 transitioned from premenopause 
to postmenopause, and 813 remained postmenopausal. 
The main characteristics of women included accord-
ing to menopausal status are summarized in Addi-
tional file  1: Table  S2. The results of Additional file  1: 
Table  S2 reveals differences in various demographic, 
lifestyle, cardiovascular, and iron biomarker variables 
among longitudinal participants based on their meno-
pausal status (all p < 0.05). The multivariable linear 
mixed-model analysis revealed no association (p > 0.05) 
between changes in iron biomarkers and changes in 
CVD-RFs during follow-up, except for a negative asso-
ciation between transferrin levels and glucose (−  0.59, 
95% CI −  1.10 to −  0.08) and DBP (−  7.81, 95% CI 
−  15.9 to −  0.56) (Table  4). Additionally, the negative 
association between transferrin and SBP (p = 0.03) in 
the age adjusted model, was attenuated (p = 0.11) after 
adjusting for antihypertensive drugs (Additional file  1: 
Tables S6 and S6 count).

Sensitivity analysis
Based on our second aim, we examined the interaction 
between iron biomarker levels and menopausal status 
in both models 1 and 2. In the cross-sectional analysis, 
after adjusting for potential confounders, interactions 
were observed between ferritin and menopausal status 
(p = 0.03) for HDL cholesterol, and between transfer-
rin and menopausal status for glucose and total choles-
terol (p = 0.01, Table 2). In the longitudinal analysis, also 
adjusted for potential confounders, only an interaction 
between transferrin and menopausal status for total cho-
lesterol was significant (p = 0.01, Table  4). we stratified 
cross-sectional and longitudinal analyses by menopausal 
status to determine if the association between iron bio-
markers and CVD risk factors is modified by menopause 
status. The analyses revealed no changes (p > 0.05) in 
association (Tables  2 and 4, Additional file  1: Tables S4 
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to S8). Finally, we categorized iron biomarkers into ter-
tiles and we tested for a linear trend in cross-sectional 
and longitudinal analyses and the results did not change 
(Additional file 1: Tables S4 to S8).

Discussion
This study performed both cross-sectional and prospec-
tive analyses to assess the associations between iron bio-
markers and CVD-RFs among pre and postmenopausal 
women. In the cross-sectional analysis, after adjustment 

for potential confounders, ferritin levels were positively 
associated with insulin levels, while transferrin levels 
were positively associated with glucose, insulin, SBP, DBP, 
triglycerides, total-, LDL- and HDL-cholesterol levels. 
No association between CVD-RFs and TSAT was found 
in the fully adjusted model. In the prospective analysis, 
no association was found between changes of iron bio-
markers and changes CVD-RFs during follow up, except 
for a negative association between changes of transferrin 
and changes of glucose and DBP.

Table 1 Characteristic of the study participants at baseline, CoLaus study, Lausanne, Switzerland

Continuous variables shown as mean (SD) with p according to t-test; categorical variables as % with p according to χ2, median (25th-75th percentile) with p according 
to Mann–Whitney U-test

CVD-RFs: Cardiovascular disease risk factors, CVD: Cardiovascular disease, HDL-C: High density lipoprotein cholesterol, LDL: Low-Density Lipoprotein, BMI, body mass 
index. SBP, systolic blood pressure; DBP, diastolic blood pressure; TC: Total cholesterol, HRT: Hormone Replacement Therapy
* Comparing menopause and Pre-menopause women respondents

Variable Total Menopause Pre‑menopause P value*

Sample size 2542 1421 1121

Age (years) 53.2 (10.4) 60.8 (6.1) 44.1 (5.3)  < 0.001

Smoking status (%) 0.53

 Never 1219 (47.9) 726 (51.09) 493 (43.9)

 Former 718 (28.2) 407 (28.6.7) 311 (27.7)

 Current 605 (23.8) 288 (20.2) 317 (28.2)

Education level (%) 0.37

 High 379 (14.9) 140 (9.8) 239 (21.3)

 Middle 633 (24.9) 328 (23.1) 305 (27.2)

 Low 1530 (60.1) 951 (63.3) 577 (51.4)

Use of antihypertensive drugs (n, %) 404 (15.8) 335 (23.5) 69 (6.1) 0.02

Use of antidiabetic drugs (n, %) 53 (2.1) 49 (3.4) 4 (0.3) 0.03

Alcohol drinker 1,611 (63.3) 894 (62.9) 717 (63.1) 0.06

Body mass index (kg/m2) 25.2 (4.6) 26.00 (4.2) 24.2 (4.3) 0.04

High‑sensitivity C‑reactive protein, (mg/l) 1.3 (0.6–2.7) 1.6 (0.8–2.9) 1 (0.5–2.4) 0.06

Prevalence of CVD 125 (4.9) 105 (7.3) 20 (1.7) 0.03

Prevalence of diabetes 94 (3.7) 82 (5.7) 12 (1.1) 0.04

HRT user (%) 905 (35.6) 850 (59.8) 55 (0.49) 0.001

Cardiovascular risk factors

 Glucose (mmol/L) 5.30 (0.7) 5.43 (0.8) 5.15 (0.4) 0.05

 Insulin (mIU/mL) 6.01 (4.4–9.5) 6.57 (4.6–9.8) 5.9 (4.8–8.4) 0.44

 SBP (mm Hg) 124 (17) 130 (18) 116 (13) 0.04

 DBP (mm Hg) 77 (11) 79 (10) 75 (10) 0.82

 HDL‑C (mmol/L) 1.80 (0.4) 1.83 (0.43) 1.87 (0.4) 0.60

 TC (mmol/L) 5.62 (1.1) 5.98 (0.98) 5.19 (0.9) 0.28

 LDL (mmol/L) 3.30 (0.93) 3.57 (0.91) 3.21(0.88) 0.07

 Triglyceride (mmol/L) 1 (0.8–1.4) 1.1 (0.9–1.6) 0.9 (0.7–1.2) 0.11

Iron biomarkers

 Iron (μg/dL) 95 (74–119) 96 (77–122) 97 (77–118) 0.05

 Ferritin ( μg/L) 78 (44–138) 112 (66–169) 52 (30–86) 0.002

 Transferrin (mg/dL) 236 (213–263) 232 (211–256) 239 (215–271) 0.04

 Transferrin saturation (%) 29.5 (22.4–36.6) 30.1 (23.4–36.4) 28.5 (20.7–37.3) 0.06
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Cross‑sectional analysis
In line with most previous related studies [21–33], our 
results indicated that postmenopausal women had higher 

BMI, CRP, and SBP levels, and were more likely to have 
CVD and T2D. Moreover, postmenopausal women 
showed higher levels of ferritin and lower levels of trans-
ferrin than premenopausal women [34]. This may be due 
to menstruation, which causes a loss of ~ 250 mg of iron 
per year [35]. Serum ferritin levels were positively and 
independently associated with insulin levels after mul-
tivariable adjustment, a finding in agreement with pre-
vious studies [36–45]. Because ferritin is also increased 
in inflammatory status, we included CRP in the mul-
tivariable analysis. In agreement with a previous report 
in women [46], our study shows that ferritin is positively 
associated with insulin independently of CRP. Iron inter-
venes in the formation of hydroxyl radicals, which are 
powerful prooxidants. Therefore, it has been hypothe-
sized that the formation of hydroxyl radicals catalysed by 
iron contributes to insulin resistance and subsequently to 
the development of type 2 diabetes [47]. When we strati-
fied by menopausal status, we found significant asso-
ciations between ferritin and insulin in pre-menopausal 
women, but not in post-menopausal women, although 
the confidence intervals overlapped. Previous studies 
have shown disparity in the association between ferritin 
and insulin according to sex and menopausal status [37, 
40, 48].

Table 3 Result of intraclass correlation in total longitudinal 
population (n = 1482), CoLaus study, Lausanne, Switzerland

Data for 1482 participants. An ICC ≥ 0.75 was considered excellent, between 0.40 
and 0.75 good and < 0.40 unsatisfactory

ICC, intra-class correlation coefficient; HDL, high Density lipoprotein cholesterol

Variables ICC (95% CI)

CVD risk factors

 Glucose (mmol/L) 0.60 (0.53, 0.64)

 Insulin (mIU/mL) 0.32 (0.29, 0.34)

 Systolic blood pressure (mm Hg) 0.59 (0.29, 0.34)

 Diastolic blood pressure (mm Hg) 0.49 (0.45, 0.52)

 HDL cholesterol (mmol/L) 0.71 (0.65, 0.76)

 Total cholesterol (mmol/L) 0.46 (0.42, 0.49)

 LDL cholesterol (mmol/L) 0.52 (0.48, 0.55)

 Triglyceride (mmol/L) 0.54 (0.43, 0.58)

Iron biomarkers

 Ferritin (μg/L) 0.34 (0.31, 0.36)

 Transferrin (mg/dL) 0.47 (0.43, 0.50)

 Transferrin saturation (%) 0.32 (0.29, 0.38)

 Iron (μg/dL) 0.24 (0.22, 0.28)

Fig. 2 Result of intraclass correlation, stratified by menopausal status, CoLaus study, Laussane, Switzerland. ICC, intra‑class correlation coefficient; 
HDL‑C, High density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC: Total cholesterol. Data for 1482 
participants. An ICC ≥ 0.75 was considered excellent, between 0.40 and 0.75 good and < 0.40 unsatisfactory
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Table 4 Longitudinal association between iron markers and cardiovascular risk factors in the baseline, first and second follow‑up of 
the CoLaus study, Lausanne, Switzerland

Iron Biomarkers Total, Model 1 Total, Model 2

Beta (95% CI) P‑value P‑value ‡ P−value § Beta (95% CI) P‑value P‑value ‡ P‑value §

Sample size 1482 1482

Glucose (mmol/L)

 Ferritin 0.08 (− 0.001; 0.16) 0.07 0.61 0.93 0.08 (− 0.002; 0.18) 0.07 0.66 0.90

 Transferrin − 0.68 (− 1.16; − 0.20) 0.005 0.91 0.01 − 0.59 (− 1.10; − 0.08) 0.02 0.93 0.07

 TSAT − 0.21 (− 0.38; 0.03) 0.06 0.72 0.01 − 0.11 (− 0.30; 0.06) 0.21 0.82 0.09

Insulin (mIU/mL)

 Ferritin 0.01 (− 0.04; 0.07) 0.53 0.65 0.49 0.03 (− 0.02; 0.09) 0.29 0.25 0.87

 Transferrin − 0.14 (− 0.58; 0.29) 0.52 0.74 0.72 0.07 (− 0.27; 0.42) 0.66 0.70 0.96

 TSAT 0.07 ( − 0.04; 0.19) 0.21 0.21 0.70 0.07 (− 0.05; 0.20) 0.26 0.10 0.30

SBP (mm Hg)

 Ferritin 0.21 (− 1.82; 2.25) 0.83 0.68 0.49 0.43 (− 2.05; 2.92) 0.73 0.75 0.72

 Transferrin − 14.8 (− 28.5; − 1.18) 0.03 0.46 0.39 − 10.8 (− 24.1; 2.55) 0.11 0.37 0.43

 TSAT 2.41 (− 1.62; 6.45) 0.24 0.99 0.72 2.36 (− 2.55; 7.28) 0.34 0.85 0.71

DBP (mm Hg)

 Ferritin − 0.02 (− 1.11; 1.05) 0.95 0.94 0.71 0 .23 (− 1.26; 1.73) 0.76 0.77 0.35

 Transferrin − 10.7 (− 19.2; − 2.32) 0.01 0.77 0.20 − 7.81 (− 15.9; − 0.56) 0.04 0.72 0.23

 TSAT 0.99 (− 1.14; 3.14) 0.36 0.79 0.26 1.00 (− 1.96; 3.96) 0.50 0.69 0.65

HDL (mmol/L)

 Ferritin 0.03 (− 0.01; 0.07) 0.19 0.65 0.42 0.02 (− 0.03; 0.09) 0.40 0.87 0.31

 Transferrin 0.03 (− 0.36; 0.43) 0.86 0.99 0.27 − 0.06 (− 0.43; 0.29) 0.71 0.71 0.15

 TSAT − 0.04 (− 0.13; 0.04) 0.31 0.71 0.77 − 0.02 (− 0.16; 0.10) 0.65 0.88 0.63

TC (mmol/L)

 Ferritin 0.04 (− 0.05; 0.15) 0.34 0.85 0.43 0.07 (− 0.07; 0.21) 0.32 0.71 0.52

 Transferrin 0.13 (− 0.65; 0.92) 0.74 0.22 0.004 0.12 (− 0.65; 0.89) 0.75 0.27 0.01

 TSAT 0.08 (− 0.11; 0.29) 0.41 0.69 0.83 0.09 (− 0.18; 0.38) 0.51 0.77 0.16

LDL (mmol/L)

 Ferritin 0.06 (− 0.01; 0.07) 0.13 0.69 0.49 0.09 (− 0.02; 1.2) 0.47 0.43 0.50

 Transferrin 0.19 (− 0.36; 0.43) 0.89 0.70 0.60 0.14 (− 0.46; 0.33) 0.70 0.71 0.79

 TSAT 0.09 (− 0.13; 0.14) 0.33 0.91 0.71 0.08 (− 0.18; 0.21) 0.82 0.89 0.93

Triglyceride (mmol/L)

 Ferritin 0.11 (− 0.03; 0.14) 0.13 0.50 0.33 0.05 (− 0.001; 0.08) 0.19 0.58 0.66

 Transferrin 0.21 (− 0.06; 0.30) 0.89 0.86 0.60 0.19 (− 0.03; 0.22) 0.73 0.89 0.52

 TSAT 0.06 (− 0.10; 0.14) 0.33 0.35 0.76 0.03 (− 0.01; 0.09) 0.36 0.40 0.32

Iron Biomarkers Pre‑menopause Model 3 Menopause Model 3 Perimenopausal Model 3

Beta (95% CI) P‑value Beta (95% CI) P‑value Beta (95% CI) P‑value

Sample size 182 813 487

Glucose (mmol/L)

 Ferritin 0. 05 (− 0.17; 0.29) 0.61 0.16 (− 0.01; 0.32) 0.06 − 0.08 (− 0.24; 0.06) 0.27

 Transferrin − 0.59 (− 1.45; 0.26) 0.17 − 0.98 (− 1.88; − 0.08) 0.03 − 0.12 (− 0.75; 0.50) 0.69

 TSAT − 0.12 (− 0.26; 0.00) 0.06 − 0.14 (− 0.42; 0.13) 0.34 − 0.23 (− 0.53; 0.06) 0.13

Insulin (mIU/mL)

 Ferritin 0.03 (− 0.20; 0.27) 0.77 0.03 (− 0.06; 0.13) 0.50 0.05 (− 0.08; 0.19) 0.41

 Transferrin − 0.37 (− 1.23; 0.49) 0.39 0.48 (− 0.05; 1.03) 0.07 − 0.13 (− 0.66; 0.40) 0.63

 TSAT 0.18 (− 0.23; 0.60) 0.38 0.00 (− 0.16; 0.18) 0.91 0.15 (− 0.10; 0.41) 0.23

SBP (mm Hg)

 Ferritin − 6.61 (− 14.40; 1.17) 0.09 0.34 (− 3.69; 4.37) 0.86 1.00 (− 3.61; 5.62) 0.67
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Our result indicated that higher levels of transferrin 
were associated with high levels of glucose, insulin, SBP, 
DBP and total cholesterol in the fully adjusted model. 
These findings are in accordance with other studies [49–
53]. It is noteworthy to mention that transferrin exhibited 
a negative correlation with ferritin (r = -0.367, p < 0.001) 
and total serum iron (TSA) (r = −  0.27, p < 0.001). Con-
versely, ferritin was positively associated with TSA 
(r = 0.297, p < 0.001). However, both transferrin and fer-
ritin showed a positive association with insulin.. Our 
results have confirmed pervious results that showed fer-
ritin and transferrin levels, despite being negatively asso-
ciated, were independently and positively associated with 
hyperinsulinemia and hyperglycaemia [49].

No association between CVD-RFs and TSAT was 
found in the fully adjusted model. It is worth noting that 
the range of TSAT in our study was (22–36%) which is 
considered between the normal range among women. A 

meta-analysis showed a significantly higher risk of T2D 
for a TSAT ≥ 50%, which is above the normal range (20–
50%) and thus suggestive of iron overload [54].

Low reliability of iron biomarkers and pitfalls 
of cross‑sectional design
In our study all iron biomarkers (serum Iron, serum ferri-
tin, transferrin and TSAT) had a low reliability as defined 
by the ICC, especially in the perimenopausal group. Our 
findings are in line with a Dutch study that assessed the 
reliability of 20 serum biomarkers collected several years 
apart in men: except for ferritin, the other iron-related 
biomarkers had poor reliability [55]. By using unreliable 
biomarkers as a one-time exposure in cohort studies, the 
exposure- disease associations are likely to be lower than 
the true associations due to external variables and biolog-
ical variability [56]. To mitigate these challenges, in our 
study we took advantage of repeated measures of iron 

All iron biomarkers and insulin were log transformed. Model included age. Model 2 included age, BMI, smoking, alcohol use, educational levels, hormone replacement 
therapy (HRT), antidiabetic and antihypertensive drugs, CVD, and menopause status, when the outcome was insulin or glucose, diabetes was also included in the 
model.  Model 3 stratified by menopause status and included age, BMI, smoking, alcohol use, educational levels, hormone replacement therapy (HRT), antidiabetic 
and antihypertensive drugs, CVD, when the outcome was insulin or glucose, diabetes was also included in the model. All iron biomarkers were corrected for CRP as 
suggested by BRINDA protocol prior to analysis. Statistical analysis by linear mixed-effect models. The coefficients presented in the table represent the estimated 
change in the outcome variable (CVD risk factors) associated with a one-unit change in log-transformed iron biomarkers level, after controlling for confounders

HDL-C, High density lipoprotein cholesterol; LDL: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, Total cholesterol; LDL: Low-
Density Lipoprotein, TSAT, transferrin saturation; CVRs, cardiovascular risk factors
‡ p-value for interaction between iron marker and perimenopause
§ p-value for interaction between iron marker and menopause

Table 4 (continued)

Iron Biomarkers Pre‑menopause Model 3 Menopause Model 3 Perimenopausal Model 3

Beta (95% CI) P‑value Beta (95% CI) P‑value Beta (95% CI) P‑value

 Transferrin − 13.89 (− 42.36; 14.57) 0.03 − 15.82 (− 38.38; 6.72) 0.16 − 3.18 (− 21.22; 14.86) 0.73

 TSAT − 1.47 (− 15.57; 12.63) 0.83 2.60 (− 4.45; 9.67) 0.46 2.78 (− 5.96; 11.53) 0.53

DBP (mm Hg)

 Ferritin − 7.71 (− 10.7; 1.27) 0.12 0.72 (− 1.45; 2.91) 0.51 2.11 (− 1.00; 5.23) 0.18

 Transferrin − 6.57 (− 28.75; 15.60) 0.56 − 14.05 (− 26.22; − 1.89) 0.02 − 3.72 (− 15.91; 8.47) 0.55

 TSAT − 2.87 (− 13.74; 8.00) 0.60 2.08 (− 1.73; 5.90) 0.28 1.38 (− 4.53; 7.30) 0.64

HDL (mmol/L)

 Ferritin 0.13 (− 0.11; 0.37) 0.28 0.05 (− 0.04; 0.15) 0.29 − 0.10 (− 0.24; 0.03) 0.13

 Transferrin − 0.17 (− 1.08; 0.73) 0.70 − 0.17 (− 0.73; 0.38) 0.55 − 0.03 (− 0.58; 0.52) 0.91

 TSAT − 0.20 (− 0.64; 0.23) 0.36 0.01 (− 0.16; 0.18) 0.88 − 0.19 (− 0.45; 0.07) 0.16

TC (mmol/L)

 Ferritin 0.01 (− 0.50; 0.54) 0.94 0.13 (− 0.07; 0.35) 0.19 0.02 (− 0.27; 0.32) 0.86

 Transferrin 0.58 (− 1.30; 2.48) 0.54 − 0.16 (− 1.33; 1.00) 0.78 − 0.07 (− 1.23; 1.08) 0.90

TSAT LDL (mmol/L) 0.69 (− 0.24; 1.62) 0.14 0.02 (− 0.34; 0.38) 0.09 − 0.11 (− 0.65; 0.47) 0.75

 Ferritin 0.08 (− 0.30; 0.19) 0.62 0.09 (− 0.09; 0.22) 0.40 0.04 (− 0.37; 0.14) 0.52

 Transferrin 0.28 (− 0.40; 0.68) 0.24 − 0.12 (− 0.83; 0.63) 0.38 − 0.05 (− 1.01; 0.95) 0.46

 TSAT 0.42 (− 0.64; 0.92) 0.29 0.32 (− 0.14; 0.60) 0.77 0.21 (− 0.35; 0.67) 0.92

Triglyceride (mmol/L)

 Ferritin 0.07 (− 0.03; 0.25) 0.52 0.05 (− 0.09; 0.19) 0.45 0.03 (− 0.05; 0.11) 0.40

 Transferrin 0.20 (− 0.20; 0.30) 0.34 0.15 (− 0.83; 0.23) 0.39 0.13 (− 0.02; 0.16) 0.35

 TSAT 0.07 (− 0.05; 0.32) 0.31 0.06 (− 0.14; 0.11) 0.36 0.05 (− 0.01; 0.13) 0.41
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biomarkers to correct for this low reliability and improve 
precision and the ability to capture changes over time.

Longitudinal analysis
Our results showed only a negative association between 
changes of transferrin and glucose and diastolic blood 
pressure. Our results do not replicate those of a Chinese 
study including 8337 adults, where transferrin levels were 
positively associated with incident hypertension [57]. 
Our results also do not replicate those of a prospective 
study where serum transferrin was inversely associated 
with insulin resistance and baseline serum ferritin, trans-
ferrin, and total serum iron were significantly associ-
ated with incident T2DM [58]. The low reliability of iron 
markers as described above might partly explain the lack 
of association between iron markers and CVD-RFs in 
our study. Our results indicated that due to menopause-
induced changes in iron levels, one single measure of iron 
biomarkers might not be enough when exploring longitu-
dinal associations, including the association of iron bio-
markers with cardiometabolic risk factors changes, and 
that a prospective setting might be more robust than the 
cross-sectional one. Furthermore, our findings showed 
that different iron biomarkers exhibit inconsistent asso-
ciations with CVD-RFs, independently of potential con-
founding factors. This implies that the exploration of the 
association between iron and CVD-RFs may require the 
utilization of different iron biomarkers (such as ferritin, 
transferrin, transferrin saturation, and so on). Also, as 
most of the cross-sectional associations we found did not 
hold in the longitudinal analysis, future studies exploring 
the association between iron and cardiometabolic risk 
should be prospective rather than cross-sectional.

Carrying out reliability studies before performing 
expensive analyses of biomarkers are necessary to investi-
gate which biomarkers are less likely to cause attenuation 
of observed exposure outcome associations due to inter 
and between-individual variability. Our results support 
the importance of using repeated measurements of iron 
biomarkers instead of relying on single measurements, 
particularly in the context of low reliability. By incorpo-
rating multiple measurements, researchers can improve 
the stability, accuracy, reproducibility, and precision of 
iron biomarker assessments, leading to more reliable 
diagnoses, monitoring, and evaluation of interventions 
related to iron status.

Strengths and limitations
This study highlighted the significance of repeated meas-
urements for minimizing the impact of measurement 
variability and increasing the reliability of iron bio-
marker evaluations. We used repeated measurements of 
iron biomarkers to assess the associations between iron 

biomarkers and changes in CVD-RFs, while most of pre-
vious prospective studies used a single measurement. 
Repeated individual assessments of iron biomarkers 
decrease the impact of intra-individual variability. Also 
using of both cross-sectional and prospective design, a 
relatively large sample size and the use of several mark-
ers of iron metabolism, contrary to other studies that 
focused only on ferritin or ferritin and transferrin [59].

Some limitation needs to be addressed. First, a sizable 
portion of the initial cohort was excluded from the analy-
sis. This procedure may have favored the selection of the 
most motivated individuals (with complete data and fol-
low-ups), potentially introducing selection bias.. Second, 
the study was conducted at the single location in Swit-
zerland, using a very ethnically limited cohort so results 
might not be generalizable to other settings. Third, the 
natural variability of some CVD risk factors such as 
blood pressure and to a lesser degree of lipid and glucose 
markers might reduce the association. A better strategy 
would be to consider CVD events, but even those are 
subject to possible misdiagnosis due to lack of adequate 
information for correct adjudication as recommended 
[60]. Lastly, it would have been interesting to report the 
magnitude of the relationships between iron markers and 
cardiometabolic risk factors. Still, as all associations were 
assessed using log-transformed data, interpreting the 
relationships would be complicated as back-transforma-
tion would be needed, and the linearity of the relation-
ships would no longer hold.

Conclusion
In cross-sectional analysis, transferrin was associated 
with several CVD-RFs, and the associations did not 
change according to menopausal status. Conversely, in 
the longitudinal analyses, transferrin was associated only 
with lower glucose and diastolic blood pressure levels. 
These differences might stem from the substantial lon-
gitudinal variation of iron biomarkers. Hence, prospec-
tive studies with multiple measurements of iron markers 
should be preferred to cross-sectional analyses.
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