
Shao et al. Cardiovascular Diabetology           (2024) 23:81  
https://doi.org/10.1186/s12933-024-02165-7

RESEARCH

Link between triglyceride-glucose-body 
mass index and future stroke risk 
in middle-aged and elderly chinese: 
a nationwide prospective cohort study
Yuankai Shao1†, Haofei Hu2†, Qiming Li1†, Changchun Cao3†, Dehong Liu1* and Yong Han1* 

Abstract 

Objective Current literature is deficient in robust evidence delineating the correlation between the triglyceride 
glucose-body mass index (TyG-BMI) and the incidence of stroke. Consequently, this investigation seeks to elucidate 
the potential link between TyG-BMI and stroke risk in a cohort of middle-aged and senior Chinese individuals.

Methods This study employs longitudinal data from four waves of the China Health and Retirement Longitudinal 
Study (CHARLS) conducted in 2011, 2013, 2015, and 2018, encompassing 8,698 participants. The CHARLS cohort 
was assembled using a multistage probability sampling technique. Participants underwent comprehensive evalua-
tions through standardized questionnaires administered via face-to-face interviews. Our analytic strategy involved 
the application of Cox proportional hazards regression models to investigate the association between TyG-BMI 
and the risk of stroke. To discern potential non-linear relationships, we incorporated Cox proportional hazards regres-
sion with smooth curve fitting. Additionally, we executed a battery of sensitivity and subgroup analyses to validate 
the robustness of our findings.

Results Our study utilized a multivariate Cox proportional hazards regression model and found a significant correla-
tion between the TyG-BMI and the risk of stroke. Specifically, a 10-unit increase in TyG-BMI corresponded to a 4.9% 
heightened risk of stroke (HR = 1.049, 95% CI 1.029–1.069). The analysis also uncovered a non-linear pattern in this 
relationship, pinpointed by an inflection point at a TyG-BMI value of 174.63. To the left of this inflection point—mean-
ing at lower TyG-BMI values—a 10-unit hike in TyG-BMI was linked to a more substantial 14.4% rise in stroke risk (HR 
1.144; 95% CI 1.044–1.253). Conversely, to the right of the inflection point—at higher TyG-BMI values—each 10-unit 
increment was associated with a smaller, 3.8% increase in the risk of stroke (HR 1.038; 95% CI 1.016–1.061).

Conclusions In the middle-aged and elderly Chinese population, elevated TyG-BMI was significantly and positively 
associated with stroke risk. In addition, there was also a specific non-linear association between TyG-BMI and stroke 
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Introduction
A stroke is medically characterized as an acute episode of 
neurological dysfunction, typically resulting from either a 
hemorrhage or an obstruction in blood flow, with symp-
toms persisting for more than 24  h or leading to death 
[1]. As a major health concern, stroke is associated with 
high rates of death, long-term disability, and limited 
effective treatments [2–4]. Data from the 2019 Global 
Burden of Disease study reveal that strokes have esca-
lated from being the fifth to the third leading contribu-
tor to the global health burden since 1990 [5]. Projections 
indicate that, in the absence of effective preventive meas-
ures, annual stroke fatalities could reach between 7 and 
8 million by the year 2030 [6]. The financial burden on 
families and society is enormous. Thus, the identification 
and management of stroke risk factors are crucial for pre-
vention and for alleviating societal financial strains.

There is growing evidence that insulin resistance 
(IR) is recognized as a new risk factor for stroke and an 
early sign of type 2 diabetes, including not only diabetic 
but also nondiabetic individuals [7–10]. There are sev-
eral methods to assess IR, and the Homeostasis Model 
Assessment of IR (HOMA-IR) has been widely used 
and shown its effectiveness in predicting cardiovascular 
disease [11]. Nevertheless, its requirement for fasting 
insulin levels limits its practicality in clinical settings. 
Studies have confirmed that the triglyceride-glycemic 
index (TyG), which consists of the product of fasting 
plasma glucose (FPG) levels and triglycerides (TG), is a 
simple, reproducible, and reliable index for assessing IR 
[12–14]. Many studies have confirmed the association of 
this index with stroke risk [15–18]. In addition, a study 
found that TyG is superior to HOMA-IR in predicting 
stroke risk [19]. Recently, there has been a surge of inter-
est in a metric known as the triglyceride glucose-body 
mass index (TyG-BMI), which is the product of body 
mass index (BMI) and the TyG index. The TyG-BMI cap-
tures multiple clinical variables, such as BMI, glycemia, 
and lipid profiles simultaneously, and is more reflective of 
IR than the individual indices [20]. Studies have demon-
strated that TyG-BMI is significantly associated with dia-
betes, hypertension, and nonalcoholic fatty liver disease 
(NAFLD) [21–23].

Since there is a significant association between IR 
and stroke, we hypothesized that TyG-BMI may be a 
valid predictor of stroke. Unfortunately, studies on the 

association between TyG-BMI and stroke are very lim-
ited, with only one cross-sectional study addressing this 
topic [24]. Besides, there are no studies investigating the 
non-linear relationship between them. In addition, stud-
ies differed in terms of implementation time, TyG-BMI 
range, sex ratio, and adjustment factors. Therefore, the 
relationship between TyG-BMI and stroke risk in the 
Chinese population remains unclear. To test this hypoth-
esis, we embarked on a prospective cohort study using 
data from the China Health and Retirement Longitudinal 
Study (CHARLS) 2011–2018.

Methods
Study design
This cohort study used data from CHARLS from 2011 to 
2018. TyG-BMI was considered the primary independent 
variable, and the incidence of stroke, coded as a binary 
variable (stroke = 1, no stroke = 0), served as the outcome 
of interest.

Data sources and study population
The data for this investigation were sourced from the 
China Health and Retirement Longitudinal Study 
(CHARLS), a comprehensive national cohort study 
designed to evaluate the economic, social, and health 
circumstances of the population [25]. The CHARLS 
cohort was established through a multistage probability 
sampling process, selecting participants from 450 com-
munities across 150 counties in 28 provinces, resulting 
in 10,257 households included in the initial survey. The 
baseline survey included targeted individuals aged 45 and 
older as of the survey period, which spanned from June 
2011 to March 2012. Data were collected via standard-
ized questionnaires administered through personal inter-
views, with follow-up interviews conducted biennially. 
The study received ethical approval from the Biomedi-
cal Ethics Review Board of Peking University in China 
(IRB00001052-11015). All study participants provided 
written consent prior to their inclusion. The dataset 
and Additional file 1 pertinent to this study are publicly 
accessible on the CHARLS project’s website [25].

Our investigation drew upon data from waves of the 
CHARLS survey conducted in the years 2011, 2013, 
2015, and 2018 [25]. The initial 2011–2012 baseline sur-
vey included 17,708 respondents. To refine our study 
group, we applied several exclusion criteria. Initially, we 

(inflection point 174.63). Further reduction of TyG-BMI below 174.63 through lifestyle changes and dietary control can 
significantly reduce the risk of stroke.
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removed 1717 individuals who had been followed for less 
than two years. We also omitted 612 participants who 
had experienced a stroke prior to the baseline survey, 
187 individuals for whom stroke data were incomplete, 
and 2 subjects who had received stroke treatment during 
the 2011 survey phase. Further exclusions were made for 
4702 participants lacking blood glucose measurements 
and 1525 without recorded height or weight data. We 
also excluded 75 cases with TyG-BMI values exceeding 
three standard deviations from the mean. After applying 
these criteria, our final analysis encompassed 8698 par-
ticipants. In addition, to further explore the relationship 
between changes in TyG-BMI (2011 to 2015) and stroke 
risk. We further included 5878 participants who had 
access to TyG-BMI values at both wave 1 and wave 3 sur-
veys. The detailed methodology of our participant selec-
tion process is depicted in Fig. 1.

Variables
Calculation of triglyceride glucose‑body mass index
The specific procedure for defining TyG-BMI in this 
study was as follows: TyG-BMI was calculated as TyG-
BMI = BMI × TyG index, where TyG index = ln [FPG (mg/
dL) × TG (mg/dL)/2], and BMI = weight/height2 (kg/m2) 
[14, 20].

Stroke diagnosis
Participants free of stroke at baseline who reported a 
stroke at subsequent follow-up were recorded as incident 
cases. Data on stroke occurrence were systematically 
gathered via a questionnaire inquiring if participants had 
been diagnosed with a stroke by a physician, the date of 
diagnosis or awareness of the condition, and whether 
they were undergoing treatment for their stroke [25, 26]. 
Affirmative responses during follow-up led to classifica-
tion as first-time stroke diagnoses, with the reported date 
marking the onset. The interval between the stroke onset 
and baseline assessment was calculated to establish the 
timing of the stroke. For those without reported strokes 
during follow-up, we determined follow-up duration by 
the interval between the baseline assessment and their 
final survey date [25].

Covariates
Covariates were chosen based on prior studies and 
clinical expertise [26, 27]. The following covariates 
were included: (i) categorical variables: smoking sta-
tus, sex, chronic kidney disease(CKD), chronic lung 
disease(CLD), malignant tumors, diabetes mellitus 
(DM), drinking status, hypertension; (ii) continuous vari-
ables: age, serum high-density lipoprotein cholesterol 

Fig. 1 Flowchart illustrating the selection process of study participants
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(HDL-c), BMI, Cystatin C, diastolic blood pressure(DBP), 
total serum cholesterol (TC), hemoglobin concentration 
(HGB), hemoglobin A1c (HBA1c), platelet (PLT), serum 
triglyceride (TG), fasting plasma glucose (FPG), serum 
low-density lipoproteins cholesterol (LDL-c), systolic 
blood pressure (SBP), blood urea nitrogen (BUN), Uric 
acid(UA), serum creatinine (Scr), Estimated glomerular 
filtration rate (eGFR).

Data collection
Interviewers trained by CHARLS staff at Peking Univer-
sity conducted in-home surveys using computer-assisted 
personal interviewing (CAPI) methods [25]. The core 
questionnaire of CHARLS included sections on demo-
graphics, health status, functioning, diagnosed chronic 
conditions, and health-related behaviors such as smok-
ing, drinking, and exercise. These interviewers were also 
equipped to measure participants’ physical health met-
rics, including height, weight, and blood pressure.

Participants were further requested to visit their 
nearest township hospital or local Centers for Disease 
Control and Prevention for comprehensive health evalu-
ations. At these locations, trained nurses obtained an 
8 mL fasting blood sample from each respondent. These 
samples underwent a complete blood count within one 
to two hours of collection. The samples were then pre-
pared by separating plasma and red blood cells, followed 
by storage at − 20  °C for safe transportation. Finally, all 
collected blood samples were sent to Beijing for detailed 
analyses at the Chinese Center for Disease Control and 
Prevention [25].

To calculate the eGFR for “Asian origin” patients, the 
Chronic Kidney Disease Epidemiology Collaboration 
(CKD-EPI) formula was employed [28]. This estimation 
takes into account variables such as sex, age, and Scr lev-
els. The eGFR for female patients with Scr levels at or 
below 0.7 mg/dL is determined by the equation eGFR = 
151 × (Scr/0.7)−0.328 × (0.993)age. For female patients with 
Scr levels above 0.7 mg/dL, the eGFR is calculated as eGF
R = 151 × (Scr/0.7)−1.210 × (0.993)age. In male patients with 
Scr levels at or below 0.9 mg/dL, the eGFR is calculated 
using eGFR = 149 × (Scr/0.9)−0.415 × (0.993)age, and for 
those with Scr levels above 0.9 mg/dL, the eGFR formula 
is eGFR = 149 × (Scr/0.9)−1.210 × (0.993)age. The unit of age 
and Scr was year and mg/dL, respectively.

Missing data processing
In our study, there were missing data on BUN (1, 0.01%), 
smoking status (1, 0.01%), Scr (2, 0.02%), HDL-c (2, 
0.02%), alcohol consumption (4, 0.05%), LDL-c (13, 
0.15%), CLD (30, 0.34%), CKD (41, 0.47%), hypertension 
(46, 0.53%), DBP (61, 0.70%), HBA1c (62, 0.71%), DM 
(82, 0.94%), SBP (93, 1.06%), PLT (165, 1.90%), HGB (166, 

1.91%), WBC (169, 1.94%), cystatin C (2090, 24.03%), 
and eGFR (2, 0.02%). In order to reduce bias due to miss-
ing variables, which prevented the modeling phase from 
accurately describing the statistical efficacy of the tar-
get sample, multiple imputations based on approaches 
reported by White and Groenwald for missing data [29, 
30]. Age, LDL-c, drinking status, FPG, BUN, smoking 
status, HDL-c, CLD, eGFR, UA, malignancy, sex, TC, 
CKD, HBA1c, DM, PLT, and HGB were included in the 
estimation model (the number of iterations was 10, and 
the regression type was linear regression). The missing 
data analysis process used the missing at random (MAR) 
assumption [29].

Statistical analyses
Statistical analyses were conducted using R language 
software version 3.4.3 and Empower(R) software version 
4.0. Statistical significance was defined as P values below 
0.05 (two-sided). Baseline indicators were categorized 
based on the quartiles of TyG-BMI, and a comparison 
of the baseline characteristics was made for individuals 
in each group. Continuous variables were presented as 
median (interquartile range) or mean (SD: standard devi-
ation), while categorical variables were described using 
percentages and frequencies. Differences between TyG-
BMI groups were tested using the χ2 test, and differences 
in continuous variables were analyzed using analysis of 
variance (ANOVA) and the Kruskal–Wallis H test.

Univariate and multivariate Cox regression analyses 
were employed to evaluate the relationships between TG, 
FPG, TyG, BMI, and TyG-BMI with the risk of stroke. 
Three models were used: Model I (not adjusted for any 
covariates), Model II (adjusted for sex and age), Model 
III (adjusted for age, CRP, eGFR, sex; HDL-c, LDL-c, UA, 
CLD, PLT, Cystatin C; hypertension, HBA1C, diabetes; 
CKD, smoking, and drinking status variables). The TC 
was excluded from the final multivariate Cox propor-
tional hazards model due to collinearity with other pre-
dictors, as detailed in Additional file 1: Table S1.

Besides, an unsupervised machine learning tech-
nique, the K-means algorithm with Euclidean distance, 
was utilized to group patients based on their TyG-BMI 
measurements in 2011 and 2015 [31]. Subsequently, the 
relationship between changes in TyG-BMI and the risk 
of stroke was investigated using a multivariate logistic 
regression model. Previous studies have shown a sig-
nificant association between diabetes, obesity, CKD 
and stroke [32–34]. Several sensitivity analyses were 
performed to validate the findings. First, participants 
without diabetes (n = 8224) were analyzed. In addition, 
participants with a BMI ≥ 24 kg/m2 were excluded from 
the sensitivity analyses (n = 5208) [35]. Besides, the asso-
ciation between TyG-BMI and stroke risk in participants 
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without CKD (n = 8120) was explored. In addition, con-
tinuous covariates were included in the equations using 
generalized additive modeling (GAM). The E-value was 
calculated to assess the possibility of unmeasured con-
founders between TyG-BMI and stroke risk [36].

To explore potential non-linear associations between 
the TyG-BMI index and stroke risk, we employed Cox 
proportional hazards models with smooth curve fitting. 
Where nonlinearity emerged, a recursive algorithm pin-
pointed the inflection point. We then formulated a piece-
wise Cox proportional hazards model on either side of 
these inflection points. The optimal model describing 
the TyG-BMI-stroke risk relationship was determined 
through a log-likelihood ratio test.

Subgroup analyses of different subgroups (age, sex, 
hypertension, smoking status, and alcohol consumption 
status) were performed using stratified Cox proportional 
hazards regression models. In addition to stratification 
factors, we adjusted for age, CRP, eGFR, sex, HDL-c, 
LDL-c, UA, CLD, PLT, Cystatin C, hypertension, HBA1C, 
DM, CKD, smoking, and drinking status. To assess the 
presence of an interaction term, we used likelihood ratio 
tests in models with and without an interaction term.

Results
Participant characteristics
A total of 8,698 participants, 4,008 males and 4,690 
females, with a mean age of 59.36 (9.27) years, partici-
pated in the analysis. TyG-BMI was normally distributed, 
ranging from 88.45 to 331.39, with a mean (standard 
deviation) of 203.52 (38.66) (Fig. 2). Anthropometric and 
biochemical characteristics of patients stratified accord-
ing to TyG-BMI quartiles are presented in Table  1. The 
results showed that various parameters such as FPG, 
BMI, TC, DBP, SBP, HBA1C, BMI, TyG, TG, UA, and 
HGB increased significantly with increasing TyG-BMI 

values. In contrast, age, HDL-c, BUN, and Scr showed 
opposite trends. In addition, the proportion of non-
smokers, females, hypertensive disorders, and DM grad-
ually increased with increasing TyG-BMI, whereas the 
proportion of males, CLD, and CKD gradually decreased.

The incidence rate of stroke
Table 2 showed that 1,001 participants had a stroke. The 
overall stroke incidence rate was 180 cases per 10,000 
person-years. The stroke incidence rates for partici-
pants in the TyG-BMI quartiles were: Q1: 133.71/10000 
person-years; Q2: 160.78/10000 person-years; Q3: 
196.74/10000 person-years; Q4: 261.92/10000 person-
years. The overall stroke incidence was 11.51%. The inci-
dence for each TyG-BMI quartile was: Q1: 8.09%; Q2: 
9.98%; Q3: 12.10%; Q4: 15.86% (Fig. 3). Participants with 
lower TyG-BMI had markedly lower stroke incidence 
compared to those with higher TyG-BMI.

Regardless of age group, women had a greater inci-
dence of stroke among individuals in the age stratifica-
tion based on age < 50, 50 to < 60, 60 to < 70, and ≥ 70. 
Additionally, it was shown that incidence rose with age in 
both men and women (Fig. 4).

Factors influencing the risk of stroke analyzed 
by univariate Cox proportional hazards regression
Based on univariate analyses, the risk of stroke was not 
related to BUN and HGB(P > 0.05), but was positively 
correlated with age, PLT, Scr, TC, TG, LDL-c, CRP, 
HBA1C, UA, Cystain C, FPG, hypertension, DM and cur-
rent drinking, current smoking, whereas it was negatively 
associated with HDL-c and eGFR (all P < 0.05) (Addi-
tional fil 1: Table S2).

Relationship between TyG‑BMI and the risk of stroke
To explore the association between TyG-BMI and stroke 
risk, we developed three Cox proportional hazards 
regression models, detailed in Table  3. A 10-unit incre-
ment in TyG-BMI was associated with a 7.1% elevation in 
stroke risk in Model I (HR = 1.071, 95% CI 1.055–1.087). 
Model II demonstrated an 8.4% increase in stroke risk per 
10-unit increase in TyG-BMI (HR = 1.084, 95% CI 1.067–
1.101). In Model III, each 10-unit rise in TyG-BMI was 
linked to a 4.9% increase in the risk of stroke (HR = 1.049, 
95% CI 1.029–1.069).

Besides, we further converted TyG-BM from a con-
tinuous variable to a categorical variable based on 
quartiles. The multivariable-adjusted model revealed 
that, with the lowest quartile (Q1) as the reference, the 
hazard ratios (HRs) for the subsequent quartiles (Q2, 
Q3, and Q4) in relation to stroke risk were as follows: 
Q2 had an HR of 1.238 (95% CI 1.011, 1.517), Q3 had 
an HR of 1.387 (95% CI 1.128, 1.706), and Q4 had an 

Fig. 2 The distribution of TyG-BMI across the study population, 
indicating a normal distribution with a mean value of 203.52 kg/m2
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HR of 1.611 (95% CI 1.292, 2.010). This indicates that, 
compared to participants in Q1, those in Q2 had a 
23.8% increased risk of stroke, those in Q3 had a 38.7% 
increased risk, and those in Q4 had a 61.1% increased 
risk (Table 3).

Association of TG, FPG, TyG, and BMI with stroke risk based 
on multivariate Cox proportional hazards regression 
regression
The associations of TG, FPG, TyG, and BMI with stroke 
risk were further analyzed using multivariate Cox 

Table 1 The baseline characteristics of participants

SD standard deviation, N number, LDL-c low-density lipoproteins cholesterol, BUN blood urea nitrogen, TyG-BMI Triglyceride glucose-body mass index, WBC white 
blood cell count, PLT platelet, BMI body mass index, HGB hemoglobin concentration, UA Uric acid, TC total cholesterol, HBA1c hemoglobin A1c, DBP diastolic blood 
pressure, TG triglyceride, eGFR Estimated glomerular filtration rate, CLD Chronic Lung Diseases, DM diabetes mellitus, Scr serum creatinine, HDL-c high-density 
lipoprotein cholesterol, CKD Chronic kidney diseases, SBP systolic blood pressure

TyG‑BMI quartile Q1 (< 175.14) Q2 (175.14–198.79) Q3 (198.79–228.35) Q4 (≥ 228.35) P‑value

Participants (n) 2175 2174 2174 2175

Age (years, mean ± SD) 61.9 ± 9.9 59.4 ± 9.2 58.7 ± 8.9 57.5 ± 8.5 < 0.001

PLT  (109/L, mean ± SD) 208.41 ± 76.22 210.43 ± 72.23 209.89 ± 70.63 217.45 ± 71.30 < 0.001

WBC  (109/L, mean ± SD) 6.05 ± 1.98 6.15 ± 1.85 6.21 ± 1.78 6.55 ± 1.90 < 0.001

BUN (mg/L, mean ± SD) 45.60 ± 14.04 44.44 ± 13.02 43.21 ± 11.76 42.99 ± 11.95 < 0.001

FPG (mg/L, mean ± SD) 99.17 ± 18.79 104.95 ± 26.84 109.82 ± 32.37 125.99 ± 52.62 < 0.001

Scr (mg/dL, mean ± SD) 0.78 ± 0.24 0.78 ± 0.30 0.78 ± 0.18 0.78 ± 0.20 0.707

eGFR (mL/min·1.73  m2, mean ± SD) 96.54 ± 15.47 97.29 ± 15.28 96.84 ± 15.58 96.72 ± 15.99 0.433

TC (mg/dL, mean ± SD) 183.83 ± 35.25 190.64 ± 37.15 196.32 ± 37.42 203.63 ± 40.65 < 0.001

TG (mg/dL,median, quartile) 73.46 (57.53–94.69) 92.93 (71.02–124.79) 116.82 (87.61–161.96) 165.49 (120.36–243.38) < 0.001

TyG(mean ± SD) 8.20 ± 0.44 8.49 ± 0.46 8.77 ± 0.52 9.26 ± 0.68 < 0.001

TyG-BMI (mean ± SD) 158.34 ± 12.84 186.80 ± 6.86 212.56 ± 8.35 256.36 ± 22.38 < 0.001

HDL-c (mg/dL, mean ± SD) 59.89 ± 15.79 54.75 ± 14.38 49.01 ± 13.04 42.16 ± 11.58 < 0.001

LDL-c (mg/Dl, mean ± SD) 109.75 ± 30.75 116.90 ± 32.86 120.86 ± 34.12 119.07 ± 40.05 < 0.001

CRP (mg/L median, quartile) 0.77 (0.44–1.81) 0.83 (0.48–1.80) 1.05 (0.58–2.07) 1.43 (0.80–2.73) < 0.001

HBA1C (%, mean ± SD) 5.09 ± 0.52 5.18 ± 0.68 5.23 ± 0.70 5.56 ± 1.10 < 0.001

UA (mg/dL, mean ± SD) 4.29 ± 1.21 4.31 ± 1.19 4.49 ± 1.27 4.66 ± 1.27 < 0.001

HGB (g/L, mean ± SD) 13.96 ± 2.23 14.26 ± 2.26 14.31 ± 2.06 14.67 ± 2.28 < 0.001

SBP (mmHg, mean ± SD) 124.88 ± 21.75 126.96 ± 20.48 130.60 ± 21.21 134.43 ± 21.47 < 0.001

DBP (mmHg, mean ± SD) 71.81 ± 11.75 73.99 ± 11.72 76.57 ± 11.75 79.51 ± 12.29 < 0.001

Cystatin C (mg/L, mean ± SD) 1.06 ± 0.27 1.02 ± 0.32 0.99 ± 0.24 0.96 ± 0.25 < 0.001

BMI (kg/m2, mean ± SD) 19.36 ± 1.70 22.07 ± 1.34 24.30 ± 1.54 27.77 ± 2.51 < 0.001

Sex (N, %) < 0.001

 Male 1240 (57.01%) 1064 (48.94%) 912 (41.95%) 791 (36.37%)

 Female 935 (42.99%) 1110 (51.06%) 1262 (58.05%) 1384 (63.63%)

Hypertension (N, %) 272 (12.51%) 362 (16.65%) 550 (25.30%) 872 (40.09%) < 0.001

DM (N, %) 38 (1.75%) 68 (3.13%) 121 (5.57%) 247 (11.36%) < 0.001

Malignant tumors (N, %) 25 (1.15%) 15 (0.69%) 18 (0.83%) 32 (1.47%) 0.051

CLD (N, %) 318 (14.62%) 220 (10.12%) 185 (8.51%) 194 (8.92%) < 0.001

CKD (N, %) 170 (7.82%) 144 (6.62%) 139 (6.39%) 125 (5.75%) 0.049

Smoking status (N, %) < 0.001

 Never 1087 (49.98%) 1276 (58.69%) 1435 (66.01%) 1524 (70.07%)

 Ever 171 (7.86%) 167 (7.68%) 197 (9.06%) 208 (9.56%)

 Current 917 (42.16%) 731 (33.62%) 542 (24.93%) 443 (20.37%)

Drinking status (N, %) < 0.001

 Never 311 (14.30%) 296 (13.62%) 300 (13.80%) 281 (12.92%)

 Ever 1226 (56.37%) 1281 (58.92%) 1357 (62.42%) 1463 (67.26%)

 Current 638 (29.33%) 597 (27.46%) 517 (23.78%) 431 (19.82%)
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proportional hazards regression models (Additional 
file  1: Table  S3). After adjusting for confounding varia-
bles, the results showed that there was no significant rela-
tionship between TG and FPG and stroke risk, with HR 
(95% CI, P) of 1.024 (95% CI 0.970–1.080, P = 0.389) and 
1.015 (95% CI 0.987–1.044, P = 0.287), respectively. There 
was a significant positive relationship between BMI and 
the risk of stroke, with an increase in stroke risk of 4.5% 
for every 1  kg/m2 increase in BMI (HR = 1.045, 95% CI 
1.025–1.064). In addition, TyG was significantly and 
positively associated with stroke risk, with each 1-unit 
increase in TyG increasing the risk of stroke by 16.5% 
(HR = 1.165, 95% CI 1.043–1.302).

Sensitivity analysis
To ensure the integrity of our findings, sensitivity analy-
ses were systematically conducted. Initially, TyG-BMI 
was categorized into quartiles and subsequently rein-
corporated into the regression model in its modified cat-
egorical form. It was observed that the intervals between 
effect sizes were uniform across the groups, and this 
pattern of effect sizes remained congruent with those 
observed when TyG-BMI was assessed as a continuous 
variable, as indicated in Table 3.

Additionally, we introduced the continuity covariate 
as a curve into the equation using a GAM. Table 3 illus-
trated that the results obtained from Model IV closely 
paralleled those from the fully adjusted model, exhibiting 
an HR of 1.046 with a 95% CI of 1.026–1.067, achieving 
statistical significance (P < 0.001).

Besides, participants were categorized into two groups 
based on their TyG-BMI measurements in 2011 and 2015 
using a K-means with Euclidean distance. These included 
a group in which a change in TyG-BMI between 2011 
and 2015 was observed, with overall low TyG-BMI values 
(Class 1), and a group in which a change was observed 
alongside high TyG-BMI values (Class 2). As depicted in 
Additional file 1: Fig. S1, it was observed that participants 
in Class 1 exhibited overall low TyG-BMI levels (2011: 

Table 2 Incidence rate of stroke (% or Per 1000 person-year) 

TyG-BMI triglyceride glucose-body mass index, CI confidence

TyG‑BMI Participants (n) Stroke events (n) Incidence rate (95% CI) (%) Per 10,000 
person‑year

Total 8698 1001 11.51(10.84–12.18) 187.92

Q1(< 175.14) 2175 176 8.09(6.95–9.24) 133.71

Q2 (175.14–198.79) 2174 217 9.98(8.72–11.24) 160.78

Q3 (198.79–228.35) 2174 263 12.10(10.73–13.47) 196.74

Q4 (≥ 228.35) 2175 345 15.86(14.33–17.40) 261.92

P for trend < 0.001

Fig. 3 Bar chart represented the incidence of stroke across different 
quartiles of TyG-BMI

Fig. 4 Comparative chart displayed the incidence of stroke 
across age groups, stratified by decade, highlighting that stroke 
incidence was higher in women than in men across all age groups 
and that stroke incidence increased with age for both genders
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182.77 ± 22.56; 2015: 185.26 ± 24.08), whereas overall high 
TyG-BMI levels were exhibited by participants in Class 2 
(2011: 245.52 ± 27.03; 2015: 250.24 ± 31.61). Multifacto-
rial logistic regression analysis showed a 24.1% increased 
stroke risk in participants of Class 2 compared to par-
ticipants of Class 1 (odds ratio OR = 1.241, 95CI% 1.012–
1.523, P = 0.038) (Additional file 1: Table S4).

Furthermore, the study conducted additional analyses 
to verify the strength and consistency of the relation-
ship between TyG-BMI and the risk of stroke by focusing 
on specific groups and adjusting for various health fac-
tors (Table 4). Firstly, in a group without DM, consisting 
of 8,224 participants, the analysis adjusted for factors 
such as age, CRP, eGFR, sex, HDL-c, LDL-c, UA, CLD, 
PLT, Cystatin C, hypertension, HBA1C, CKD, smok-
ing, drinking status. This analysis still showed a signifi-
cant positive link between TyG-BMI and stroke risk (per 
10 units, HR = 1.052, 95%CI 1.030–1.073, P < 0.001). 

Secondly, when participants with CKD were excluded, 
the results were similar after adjusting for confounding 
variables (including age, CRP, eGFR, sex; HDL-c, LDL-c, 
UA, CLD, PLT, Cystatin C; Hypertension, HBA1C, diabe-
tes, smoking, drinking status), the TyG-BMI association 
with stroke risk remained positively significant, with an 
HR(95% CI) of 1.048 (1.027–1.070, per 10 units of TyG-
BMI). Lastly, the analysis was narrowed down to partic-
ipants with a BMI under 24  kg/m2, adjusting for all the 
previously mentioned factors (included age, CRP, eGFR, 
sex; HDL-c, LDL-c, UA, CLD, PLT, Cystatin C, CKD, 
hypertension, HBA1C, DM, smoking, drinking status.). 
The findings showed a significant positive association 
between TyG-BMI (per 10 units) and stroke risk, with 
an HR (95%CI) of 1.062 (1.016, 1.110). Furthermore, the 
E-value (1.28) was found to be greater than the relative 
risk of TyG-BMI and unmeasured confounders (1.26), 
suggesting that unknown or unmeasured variables may 

Table 3 Relationship between TyG-BMI and the risk of stroke in different models

Model I: we did not adjust other covariates

Model II: we adjust sex and age

Model III: we adjust age, CRP, eGFR, sex, HDL-c, LDL-c, UA, CLD, PLT, Cystatin C, hypertension, HBA1C, DM, CKD, smoking, and drinking status

Model IV: we adjust age(smooth), CRP (smooth), eGFR (smooth), sex; HDL-c(smooth), LDL-c(smooth), UA (smooth), CLD, PLT(smooth), Cystatin C(smooth), 
hypertension, HBA1C, diabetes; CKD, smoking, drinking status

HR hazard ratio, Ref reference, CI confidence

Model I (HR., 95%CI) P Model II (HR., 95%CI) P Model III (HR., 95%CI) P Model IV (HR., 95%CI) P

TyG-BMI 
(per 10 
units)

1.071 (1.055, 1.087) < 0.001 1.084 (1.067, 1.101) < 0.001 1.049 (1.029, 1.069) < 0.001 1.046 (1.026, 1.067) < 0.001

TyG-BMI quartile

 Q1 Ref Ref Ref Ref

 Q2 1.197 (0.982, 1.461) 0.076 1.290 (1.057, 1.576) 0.012 1.238 (1.011, 1.517) 0.039 1.229 (1.003, 1.508) 0.047

 Q3 1.461 (1.207, 1.768) < 0.001 1.614 (1.330, 1.958) < 0.001 1.387 (1.128, 1.706) 0.002 1.366 (1.109, 1.684) 0.003

 Q4 1.945 (1.622, 2.332) < 0.001 2.238 (1.858, 2.696) < 0.001 1.611 (1.292, 2.010) < 0.001 1.566 (1.249, 1.963) < 0.001

Table 4 Relationship between TyG-BMI and the risk of stroke in different sensitivity analyses

Model I was a sensitivity analysis in participants without DM (n = 8224). Adjusted age, CRP, eGFR, sex; HDL-c, LDL-c, UA, CLD, PLT, Cystatin C, hypertension, HBA1C, DM, 
CKD, smoking, and drinking status

Model II was a sensitivity analysis conducted on non-CKD participants (n = 8120). Adjusted age, CRP, eGFR, sex; HDL-c, LDL-c, UA, CLD, PLT, Cystatin C, hypertension, 
HBA1C, DM, smoking, and drinking status

Model III was a sensitivity analysis conducted on participants with BMI < 24 kg/m2. (n = 5208). Adjusted age, CRP, eGFR, sex; HDL-c, LDL-c, UA, CLD, PLT, Cystatin C; 
hypertension, HBA1C, DM, CKD, smoking, drinking status

HR hazard ratio, Ref reference, CI confidence

Model I (HR., 95%CI) P Model II (HR., 95%CI) P Model III (HR., 95%CI) P

TyG-BMI (per 10 
units)

1.052 (1.030, 1.073) < 0.001 1.048 (1.027, 1.070) < 0.001 1.062 (1.016, 1.110) 0.008

TyG-BMI quartiles

 Q1 Ref Ref Ref

 Q2 1.233 (1.002, 1.517) 0.047 1.243 (1.003, 1.540) 0.047 1.225 (0.992, 1.514) 0.059

 Q3 1.384 (1.119, 1.713) 0.003 1.369 (1.101, 1.702) 0.005 1.311 (1.002, 1.716) 0.048

 Q4 1.622 (1.289, 2.040) < 0.001 1.598 (1.265, 2.018) < 0.001 0.970 (0.508, 1.851) 0.926
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have little effect on the relationship between TyG-BMI 
and stroke risk. Based on all sensitivity analyses, our find-
ings were robust.

Cox proportional hazards regression model with smooth 
curve fitting to address nonlinearity
The nonlinearity of the association between TyG-BMI 
and stroke risk was discerned through the application of 
a Cox proportional hazards regression model with cubic 
spline functions, as depicted in Fig.  5. Subsequently, 
the most suitable model was ascertained via the log-
likelihood ratio test, the results of which are detailed in 
Table  5, yielding a P-value of less than 0.05. An inflec-
tion point for the TyG-BMI was identified at 174.63 by 
employing a recursive algorithm. Post identification, 
a two-piecewise Cox proportional hazards regression 
model was utilized to ascertain the HRs and CIs on either 
side of this demarcation. It was observed that the HR 

stood at 1.144 (95% CI 1.044, 1.253) preceding the inflec-
tion point and 1.038 (95% CI 1.016–1.061) subsequent to 
it.

Results of subgroup analysis
The link between TyG-BMI and stroke risk was not 
affected by sex, age, smoking status, hypertension, and 
drinking status in any of the prespecified or exploratory 
subgroups examined (Table 6). That is to say, the interac-
tion between these variables and TyG-BMI was not sta-
tistically significant (P > 0.05 for interaction).

Discussion
In this study, the connection between TyG-BMI and 
stroke incidence among middle-aged and senior indi-
viduals was evaluated. The findings revealed that a rise in 
TyG-BMI was associated with a significantly heightened 
risk of stroke. Additionally, an inflection point was iden-
tified, and different relationships between the TyG-BMI 
and stroke risk were detected on both sides.

The TyG index was first reported in 2008 and is con-
sidered a reliable, inexpensive, and simple surrogate for 
IR [37]. Many studies have confirmed that TyG is sig-
nificantly associated with the incidence of atheroscle-
rotic cardiovascular disease, including stroke [38–43]. 
A cohort study from the United States showed that 
after adjusting for potential confounders, each one-unit 
increase in the TyG index was associated with a 32.1% 
increase in the risk of stroke [43]. Another cohort study 
from China also showed a 34% increase in stroke risk for 
every 1-SD increase in the TyG index, with an adjusted 
HR of 1.34 (95% CI 1.11 to 1.61) [44]. In addition, the link 
between obesity and an elevated risk of stroke has been 
corroborated by numerous studies. BMI is frequently 
used as a measure of obesity, and a substantial positive 
correlation between BMI and the incidence of stroke 
has been documented in various research [34, 45, 46]. 
TyG-BMI is an obesity-related parameter that has been 
developed in recent years and has been strongly associ-
ated with NAFLD, cardiovascular events, prehyperten-
sion, and DM [21–23]. TyG-BMI is the product of BMI 
and TyG. This composite measure is believed to be a 
more accurate indicator of IR than individual indices. 
Given the known positive associations of both TyG and 
BMI with the risk of stroke and the critical role that IR 
is understood to play in stroke pathogenesis, we hypoth-
esized that TyG-BMI might be positively correlated with 
stroke risk. Unfortunately, there is a scarcity of research 
investigating the connection between TyG-BMI and 
stroke risk, with only one study addressing this topic. A 
cross-sectional study from northeastern China showed 
that after multivariate adjustment, the risk of ischemic 
stroke increased by 20% for each standard deviation 

Fig. 5 Curve plot demonstrated the non-linear relationship 
between TyG-BMI and stroke risk among all participants, adjusted 
for various factors including age, CRP, eGFR, sex, HDL-c, LDL-c, UA, 
CLD, PLT, Cystatin C, hypertension, HBA1C, DM, CKD, smoking, 
and drinking status

Table 5 The result of the two-piecewise linear regression model

Adjusted age, CRP, eGFR, sex; HDL-c, LDL-c, UA, CLD, PLT, Cystatin C; 
Hypertension, HBA1C, DM; CKD, smoking, drinking status

Outcome: incident stroke HR (95%CI) P-value

Fitting model by standard linear regres-
sion

1.049 (1.029, 1.069) < 0.001

 Inflection points of TyG-BMI 174.63

 < 174.63 1.144 (1.044, 1.253) 0.004

 ≥ 174.63 1.038 (1.016, 1.061) < 0.001

P for log-likelihood ratio test 0.046
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increase in TyG-BMI (OR = 1.20, 95% CI 1.10–1.32) [24]. 
Participants in the second and third tertiles of TyG-BMI 
had a significantly higher risk of ischemic stroke com-
pared with those in the lowest tertile, with OR (95% CI) 
values of 1.39 (1.10–1.74) and 1.72 (1.37–2.17), respec-
tively [24]. Our study expands on prior research sup-
porting the hypothesis of a positive association between 
an elevated TyG-BMI index and stroke risk. Unlike pre-
vious studies, our investigation analyzed the TyG-BMI 
index as both categorical and continuous variables in 
relation to stroke risk, thus reducing information loss and 
quantifying their relationship. In addition, the K-means 
algorithm with Euclidean distance and logistic regres-
sion model were used to explore the association between 
changes in TyG-BMI and stroke risk, and it was found 
that those with consistently higher TyG-BMI had a simi-
larly significant increase in stroke risk. Furthermore, sen-
sitivity analyses specifically focused on participants who 
reported no CKD, no DM, and a BMI < 24  kg/m2. The 
results of the sensitivity analyses further confirmed that 
the relationships still existed in this group of participants. 
These results validate the stability of our findings. The 
identification of TyG-BMI as a risk factor for stroke and 
the elucidation of the relationship between the two pro-
vides a new perspective on stroke prevention and man-
agement, which is beneficial to patients’ health outcomes 

and quality of life. In addition, it may lead clinicians and 
public health experts to revisit stroke risk assessment and 
prevention strategies.

The associations of TG, FPG, TyG, and BMI with stroke 
risk were further analyzed using multivariate Cox pro-
portional hazards regression models. It was found that 
neither TG alone nor FPG was significantly associated 
with stroke risk, whereas the product of TG and FPG, 
the TyG index, was significantly and positively associated 
with stroke risk. Other possible reasons for this discrep-
ancy include (1) the TyG index is considered a biomarker 
for metabolic syndrome [47]. Metabolic syndrome is 
an important factor in stroke risk and includes various 
metabolic abnormalities such as hypertension, abdomi-
nal obesity, and hyperlipidemia [48, 49]. Therefore, the 
TyG index provides a more comprehensive picture of 
the impact of these metabolic abnormalities on stroke 
risk than a single FPG or TG level. (2) Studies have con-
firmed that the TyG index is associated with IR, which 
is an independent risk factor for stroke [15]. IR may 
lead to a variety of pathologic changes, such as endothe-
lial dysfunction, enhanced inflammatory response, and 
increased tendency to thrombosis, all of which may 
increase stroke risk [7, 15]. (3) FPG and TG can inter-
act: Using FPG or TG levels alone to predict stroke risk 
may not be sensitive enough. However, if the two are 

Table 6 Stratified associations between TyG-BMI and stroke by age, sex, hypertension, smoking status, and drinking status

Above model adjusted for age, CRP, eGFR, sex; HDL-c, LDL-c, UA, CLD, PLT, Cystatin C; Hypertension, HBA1C, DM; CKD, smoking, drinking status. In each case, the model 
is not adjusted for the stratification variable

HR Hazard ratios, CI confidence, Ref reference

Characteristics No of participants HR (95%CI) P value P for interaction

Age (years) 0.851

 < 60 4731 1.064 (1.038, 1.091) < 0.001

 60–70 2618 1.035 (1.006, 1.065) 0.017

 70–80 1141 1.024 (0.984, 1.065) 0.245

 ≥ 80 208 1.009 (0.913, 1.115) 0.858

Sex 0.767

 Male 4008 1.052 (1.024, 1.081) < 0.001

 Female 4690 1.047 (1.024, 1.071) < 0.001

Hypertension 0.054

 No 6642 1.064 (1.039, 1.091) < 0.001

 Yes 2056 1.032 (1.006, 1.059) 0.014

Drinking status 0.135

 Current drinker 1188 1.013 (0.974, 1.055) 0.512

 Ever drinker 2185 1.058 (1.035, 1.082) < 0.001

 Never drinker 5325 1.048 (1.011, 1.085) 0.010

Smoking status 0.951

 Current smoker 2639 1.046 (1.014, 1.079) 0.005

 Ever smoker 745 1.038 (0.991, 1.087) 0.113

 Never smoker 5314 1.051 (1.027, 1.075) < 0.001
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combined into a single product, it may be possible to 
better reveal their interactions and synergistic effects in 
the metabolic process and thus more accurately predict 
stroke risk. In addition, BMI was also significantly and 
positively associated with stroke risk. Therefore, the ten-
dency is to believe that the independent effect of TyG-
BMI on stroke risk is based on the combined effect of 
TG, FPG, and BMI.

Although the precise mechanisms are not fully under-
stood, the relationship between the TyG-BMI index and 
stroke risk is potentially linked to IR. The index is a com-
posite measure that includes FPG, TG, and BMI, which 
serve as IR indicators. FPG levels reflect insulin sensitiv-
ity in the liver and insulin secretion in the pancreas [50]. 
In addition, the role of BMI and TG in recognizing IR has 
been demonstrated in previous studies [51–53]. TyG-
BMI has been recommended as a marker for evaluating 
IR and IR-associated diseases [54, 55]. First, IR is impli-
cated in the onset of atherosclerosis, fostering endothe-
lial dysfunction, the emergence of foam cells, and the 
development of plaques prone to rupture [56–58]. Addi-
tionally, IR is often accompanied by a persistent state of 
mild inflammation, which can accelerate atherosclerotic 
processes and stimulate the release of pro-inflammatory 
markers [59, 60]. Moreover, IR can alter platelet func-
tion, leading to increased adhesion, activation, and 
aggregation, which may result in arterial narrowing or 
blockage, potentially leading to stroke [61, 62]. Therefore, 
the potential mechanism underlying the relationship 
between TyG-BMI and stroke incidence may be related 
to the association of three factors, FPG, TG, and BMI, 
with IR.

In addition, for the first time in our study, a non-lin-
ear relationship between TyG-BMI and stroke risk was 
observed. The inflection point of TyG-BMI was deter-
mined to be 174.63. When TyG-BMI was greater than 
174.63, the risk of stroke decreased by 3.8% for every 
10-unit decrease in TyG-BMI. On the other hand, 
when TyG-BMI was less than 174.63, the risk of stroke 
decreased by 14.4% for every 10-unit decrease in TyG-
BMI. In other words, as the patient’s TyG-BMI decreases, 
the risk of stroke gradually decreases. However, when 
TyG-BMI falls below 174.63, the stroke risk will fall more 
significantly. Further analysis showed that participants 
with TyG-BMI ≤ 174.63 had lower DBP, LDL-c, HB1AC, 
SBP, PLT, and UA, along with higher HDL-c, compared 
to those with TyG-BMI > 174.63. Additionally, those 
with TyG-BMI ≤ 174.63 had lower rates of CKD, DM, 
and hypertension (Additional file 1: Table S5). However, 
these indicators were strongly tied to stroke incidence 
[32–34, 63–67]. Due to these risk factors, the effect of 
TyG-BMI on stroke was relatively weak when TyG-BMI 
exceeded 174.63. In contrast, for those with TyG-BMI 

under 174.63, these stroke risk factors were lower and 
had less impact on stroke, and the role of TyG-BMI is 
relatively enhanced. This may explain the non-linear rela-
tionship between TyG-BMI and stroke risk. This find-
ing of a curvilinear relationship between TyG-BMI and 
stroke has important clinical value. It facilitates clinical 
counseling and provides a basis for decision-making in 
stroke prevention. Combined reduction of BMI, TG, and 
FPG through dietary intervention and lifestyle changes 
can reduce the risk of stroke, and this risk will be sig-
nificantly reduced by keeping TyG-BMI below 174.63. A 
previous cross-sectional study applied restricted cubic 
spline regression to analyze a possible non-linear rela-
tionship between TyG-BMI and ischemic stroke in the 
two cohorts included [24]. The results showed a linear 
relationship between TyG-BMI and ischemic stroke, with 
no threshold or saturation effect between the two. This 
is inconsistent with our findings of a non-linear relation-
ship between TyG-BMI and stroke risk. The reasons may 
be as follows: first, the types of studies were different; the 
previous study was a cross-sectional study, whereas our 
study was a prospective cohort study. Second, the study 
populations were inconsistent; the previous study was a 
general population, whereas our study was a middle-aged 
and older population aged > 45 years. In addition, there 
were differences in the study methodology; the previ-
ous study used restricted cubic spline logistic regression 
to assess non-linear relationships. Whereas our study 
was a Cox proportional hazards model with cubic spline 
function. There were also differences in the covariates 
adjusted for, as we adjusted for more covariates, includ-
ing UA, eGFR, DM, cystatin C, and CRP.

In the present study, several strengths have been identi-
fied. First, the application of both categorical and contin-
uous TyG-BMI as independent variables was utilized to 
evaluate their association with stroke risk. This method-
ology was instrumental in diminishing information loss 
and in the precise quantification of the relationship under 
scrutiny. Second, the issue of missing data was addressed 
through the adoption of multiple imputation techniques. 
This strategy has been recognized for its capacity to 
enhance statistical power and for its role in minimizing 
bias that might arise from missing covariate data. Third, 
compared with previous studies, our study showed a 
significant improvement in the treatment of nonlinear-
ity; for the first time, we found a non-linear relationship 
between TyG-BMI and stroke incidence. In addition, we 
performed a series of sensitivity analyses to ensure the 
stability of our findings. These analyses included explor-
ing the relationship between changes in TyG-BMI (2011 
to 2015) and stroke risk based on the K-means algorithm 
and multivariate logistic regression. The association 
between TyG-BMI and stroke incidence was reassessed 
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after excluding subjects with DM, a BMI greater than 
24 kg/m2, and CKD. Furthermore, the E-value was com-
puted to assess the impact of potential unmeasured con-
founding factors, further affirming the study’s findings.

The study in question presents certain limitations that 
warrant attention. Initially, the demographic focus on 
middle-aged and elderly individuals from China raises 
questions regarding the applicability of the findings to 
younger cohorts and different ethnic groups. To address 
this, future collaboration with international research-
ers is planned to explore these associations across varied 
genetic backgrounds. Additionally, the original dataset 
lacked certain stroke-related metrics, such as waist-to-
hip ratio, medication usage, and familial stroke history. 
Third, as with all observational studies, residual con-
founding by unmeasured or uncontrolled confound-
ers may remain despite adjustment for known potential 
confounders. However, we calculated E-values to assess 
the potential effect of unmeasured confounders, and the 
results suggested it was unlikely that these factors could 
entirely explain and influence our findings. Finally, this 
observational study could not ascertain causal relation-
ships between TyG-BMI and stroke risk but only deter-
mine an association between them.

Conclusion
The study found a significant link between higher TyG-
BMI levels and an increased risk of stroke among mid-
dle-aged and elderly individuals in China. Notably, the 
relationship between TyG-BMI and stroke risk was 
non-linear. When the TyG-BMI value was below 174.63, 
any further decrease in TyG-BMI was associated with a 
marked reduction in the risk of stroke. This study pro-
vides additional references to facilitate clinical consulta-
tion and optimize stroke prevention decisions.
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