
Valencia et al. Cardiovascular Diabetology           (2024) 23:75  
https://doi.org/10.1186/s12933-023-02097-8

REVIEW Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cardiovascular Diabetology

Mechanisms of endothelial activation, 
hypercoagulation and thrombosis in COVID-19: 
a link with diabetes mellitus
Inés Valencia1*, Jairo Lumpuy‑Castillo2,3, Giselle Magalhaes4, Carlos F. Sánchez‑Ferrer4,5, Óscar Lorenzo2,3* and 
Concepción Peiró4,5* 

Abstract 

Early since the onset of the COVID‑19 pandemic, the medical and scientific community were aware of extra respira‑
tory actions of SARS‑CoV‑2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID‑
19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase 
the severity of the disease and contribute to long‑COVID syndrome and post‑COVID sequelae. Besides, it may cause 
alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive 
in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothe‑
lial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related 
to COVID‑19 and COVID‑19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself 
and by the subsequent immune‑defensive response (i.e., NF‑κB/NLRP3 inflammasome pathway, vasoactive peptides, 
cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor 
VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST‑13 ratio, and the kallikrein‑kinin or plasminogen‑plasmin 
systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI‑I, fibrinogen) factors 
favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading 
to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such 
as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein‑kinin 
system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID‑
19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. 
By improving the microvascular pathology in COVID‑19 and post‑COVID subjects, the associated comorbidities 
and the risk of mortality could be reduced.
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COVID‑19 and the disruption of hemostasis
Hemostasis is a finely tuned physiological process that 
leads to the cessation of bleeding from a blood vessel. It 
begins with trauma to the lining of the vessel wall and 
involves multiple interlinked steps that allow forma-
tion of a fibrin clot, which finally dissolves after injury 
is repaired. However, alterations in these processes may 
lead to hemostasis diseases [1, 2]. In this sense, COVID-
19 infected patients have exhibited higher risk of arterial 
or venous thrombosis associated with disease severity 

[3] (Fig.  1). Higher plasma levels of hemostatic markers 
were linked to a worse prognosis and higher mortality 
[4]. Also, 25–85% of COVID-19 patients admitted to the 
intensive care unit (ICU) experienced a thrombotic com-
plication, and postmortem analysis revealed the presence 
of endothelitis [5–7]. Importantly, both hypercoagulation 
and thrombotic events have been observed not only in 
acute COVID-19. They have been experienced in some 
few patients suffering from long-COVID syndrome 
[8], what is currently acknowledged as a challenging 

Fig. 1 COVID-19 and hemostasis regulation. SARS‑CoV‑2 may infect endothelial cells (EC) causing endothelitis and directly disrupting 
endothelial homeostasis, leading to cytokine release, and favoring a pro‑coagulant micro‑environment. Then, primary hemostasis can be 
induced by fast vasoconstriction and release of pro‑inflammatory and pro‑contractile endothelial factors. Activation of coagulation cascades 
weaves thrombin and fibrin networks that immobilize erythrocytes and activated platelets to from a blood clot in the secondary hemostasis. 
The resolution of coagulation (tertiary hemostasis) may be also damaged in COVID‑19 by alterations in the plasminogen‑plasmin and thrombin/
thrombomodulin‑EPCRP‑aPC pathways. Hyperinflammation, hypercoagulation, and hypofibrinolysis could be responsible for thrombotic events 
in COVID‑19 subjects.  TXA2 (thromboxane A2), aPC (activated protein C), PC (protein C), EPCR (endothelial protein C receptor)
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component of post-COVID-19 sequelae [9, 10]. Moreo-
ver, thrombocytopenia or thrombocytopenic purpura 
have been rare but serious adverse effects of SARS-CoV-2 
spike (S) protein mRNA-based vaccines [11, 12] (see 
later).

Interestingly, among different regulators, the endothe-
lium and its highly specialized EC placed at the inner 
layer of blood vessels tightly regulate vascular reactivity, 
cell growth, and inflammation by releasing and modulat-
ing specific factors [13]. Endothelial activation and dys-
function can be crucial for COVID-19 patients and its 
major related comorbidities like Diabetes Mellitus (DM) 
[14–16]. This narrative review aims to discuss the main 
triggers of endothelial dysfunction in COVID-19 and 
how subsequent disruption in endothelium-dependent 
hemostasis may promote hypercoagulation and throm-
bosis. This endothelial dysfunction can be a common 
event linking the hemostatic alterations observed in 
COVID-19 with those present in DM. Novel opportuni-
ties for therapeutical interventions will be also explored.

Endothelial cell dysfunction and hypercoagulation 
in COVID‑19
Besides pulmonary complications, endothelial injury 
was established as a primary finding in patients infected 
by SARS-CoV-2. This virus leads to a complex and mul-
tifactorial EC activation, progressive loss of anti-throm-
botic factors, and promotion of local pro-angiogenesis 
(Fig. 1). Postmortem histology revealed viral inclusions in 
apoptotic EC, infiltration of inflammatory immune cells 
around the vessels and endothelial layer, and microvas-
cular lymphocytic endothelitis [17, 18]. Clinical observa-
tions have identified the vasculature as one of the main 
trans-organ systems affected by SARS-CoV-2 infection as 
well as a major trigger of sequelae following COVID-19 
[19]. In fact, viral tropism for vascular lesions has been 
identified in the most severe cases of COVID-19 [18]. 
While the endothelium basally favors an anti-thrombotic 
environment by preventing platelet activation and the 
onset of the coagulation cascade, both physiological and 
pathological stimuli may shift this balance towards pro-
thrombotic and hypercoagulative states [20]. Indeed, 
presence of SARS-CoV-2 particles undergoes EC activa-
tion. A large body of clinical and experimental evidence 
currently supports the crucial role for EC activation in 
the pathological changes induced by SARS-CoV-2 in dif-
ferent territories, particularly, in terms of inflammation 
and thrombotic alterations [21–23]. As the intensity and/
or the duration of the activation increases, the endothe-
lial dysfunction, as an early sign of vascular disease, takes 
place.

Endothelial dysfunction runs with vasoconstriction, 
hyperpermeability, loss of integrity of the endothelial 

layer, and over-production of chemokines and cytokines 
together with upregulation of adhesion molecules for leu-
kocytes [20, 24]. Activation of the endothelial monolayer 
also implies a phenotypic change from an anti-throm-
botic to a pro-thrombotic surface more prone to plate-
let adhesion, together with deregulated synthesis and 
release of hemostatic factors and the onset of fibrin clots 
[20, 24]. Enhanced levels of adhesion molecules as well as 
platelet hyperactivation were observed in COVID-19 in 
correlation with severity of disease [25]. Thus, COVID-
19-related vascular complications, including lung injury, 
stroke, myocardial dysfunction, or deep vein thrombo-
sis, among others, share the common basis of endothelial 
dysfunction [20].

Endothelial cell activators in COVID‑19
The pathophysiological activation of EC in the context 
of COVID-19 is triggered by a variety of stimuli, includ-
ing pro-inflammatory cytokines, vasoactive compounds, 
components of the immune system, or even by direct 
actions of SARS-CoV-2 and its isolated viral components 
(Fig. 2).

Pro-inflammatory cytokines and vasoactive compounds
Endothelial activation becomes particularly relevant in 
acute COVID-19, where the acute respiratory distress 
syndrome (ARDS) and other complications are triggered 
by a cytokine storm, i.e., a burst of pro-inflammatory 
cytokines such as interleukin (IL)-6, IL-1α, IL-1β, IL-17, 
and tumor necrosis factor-alpha (TNF-α), among oth-
ers [9, 26]. A large amount of clinical evidence shows a 
strong association between the inflammatory cell infiltra-
tion with increased thrombo-inflammatory biomarkers 
and COVID-19 severity [27, 28]. Enhanced levels of these 
cytokines, C-reactive protein, and ferritin were also asso-
ciated with hyper-coagulation [29]. Moreover, the failure 
to resolve this inflammatory response could generate a 
cycle of unregulated events that contribute to endothelial 
activation and coagulopathy in acute and perhaps long-
COVID [30]. In this regard, pro-inflammatory molecules 
such as platelet factor 4, α-2 antiplasmin, and the von 
Willebrand factor (WVF) were found increased in long-
COVID, which may contribute to the failed fibrinolysis 
response and explain why these individuals suffer from 
constant fatigue, cognitive impairment, depression/anxi-
ety, or dyspnea [31].

In addition, enhanced levels of vasoactive compounds, 
such as angiotensin II (Ang II) or thromboxane  A2 
 (TXA2), which are potent vasoconstrictors and effectors 
of endothelial dysfunction with pro-inflammatory, pro-
adhesive and pro-coagulant properties can play a role 
in the endotheliopathy associated to COVID-19 [32, 33] 
(Fig. 2). On the contrary, reduced levels or bioavailability 
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of their physiological counterparts, such as angioten-
sin-(1–7), which is formed by a main receptor for SARS-
CoV-2 (i.e., angiotensin converting enzyme 2; ACE2), 
prostacyclin, and nitric oxide (NO), can also contribute 
to the endothelial dysfunction and the hypercoagulation 
state [32, 34, 35].

NETosis
An abnormal interrelation with immune components can 
also promote endothelial dysfunction. Neutrophils, as the 
largest population of myeloid leukocytes, are abundantly 
recruited in COVID-19 [36]. These phagocytes can act 
as endothelial activators through the release of extracel-
lular neutrophil traps (NETs). NETs are generated by 
oxidative stress after stimulation of NADPH oxidase by 
NLRP3 inflammasome and pro-inflammatory cytokines 
(i.e., IL-1β and IL-18). Once released, NET components 
that include chromatin associated with bactericidal pro-
teins from granules and cytoplasm, further intensify the 
pro-inflammatory response [37–41]. Although NETs 
mainly exhibit an antibacterial function, in excess, they 

can cause cell inflammation and tissue damage, increas-
ing thrombogenicity of the endothelial layer [42, 43]. 
Indeed, NETs play an active role in the pathogenesis of 
coagulation and thrombosis of various origins by eliciting 
both extrinsic and intrinsic coagulation pathways [44]. In 
COVID-19, stimulated NET formation was associated 
with ARDS and hypercoagulability, as predictors of dis-
ease severity [42, 45] (Fig. 2).

The complement system
The complement system, as an integral part of the innate 
immune response, also participates in the activation 
of the endothelium and contributes to the formation 
of a positive feedback loop between inflammation and 
thrombosis. The main activity of this system is to build 
up a multiprotein membrane attack complex (MAC) 
that ends with the death of pathogens by osmotic lysis 
or macrophage-mediated phagocytosis [46] (Fig.  2). In 
particular, high amounts of circulating C5a and solu-
ble MAC (C5b-9), as well as processed fragments of C3, 
were seen in patients with severe COVID-19 [47–49]. 

Fig. 2 The EC activation and dysfunction, as a central pathophysiological mechanism of COVID-19 coagulopathy. SARS‑CoV‑2 infection 
and its concomitant local and systemic immunogenic stimuli (cytokine storm, vasoactive compounds, NETosis, and activated complement 
system) disrupt endothelial homeostasis leading to EC activation. This activation comprises over‑inflammation, loss of endothelial barrier 
integrity and altered hemostasis, favoring coagulation and thrombosis. In red, specific drugs against mediators of endothelial activation. ARDS 
(acute respiratory distress syndrome), IL (interleukin), TNF‑α (tumor necrosis factor alpha), Ang‑(1‑7) (angiotensin‑(1‑7)), NO (nitric oxide), Ang II 
(angiotensin II),  TXA2 (thromboxane A2), MAC (membrane attack complex), TLR‑4 (toll‑like receptor 4)
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The SARS-CoV-2 envelope proteins stimulate the lectin 
pathway of complement activation leading to C3 activa-
tion [50]. This activated C3a modulates the expression of 
endothelial adhesion molecules contributing to immune 
cell infiltration [51], and C5a directly stimulates secre-
tion of IL-6, IL-8 and vascular endothelial growth factor 
(VEGF) [52]. Interestingly, a correlation between the acti-
vation of the complement and that of the endothelium 
has been also observed in chronic heart failure, suggest-
ing the interrelated implication of both systems in vascu-
lar disease. In fact, complement and EC activation draw a 
bidirectional loop, since activated EC might also secrete 
complement components, mostly C7, and contribute to 
its plasmatic pool [53].

SARS-CoV-2 and isolated viral components
Not only the pathophysiological responses triggered 
by SARS-CoV-2 have been identified as potential direct 
endothelial activators capable of triggering hemostatic 
abnormalities [54, 55]. Viral components like the S pro-
tein, formed by two domains named S1 and S2, are able 
to exert direct effects on EC by binding to cell surface 
receptors [56] (Fig.  2). Previous reports have described 
particles of SARS-CoV-2 inside EC [55, 57], and S1 pres-
ence was linked to endothelial dysfunction [56, 58]. We 
have recently observed a direct activation of endothe-
lial pro-inflammatory pathways, including NF-κB and 
the NLRP3 inflammasome, and a disbalanced produc-
tion of endothelial hemostatic regulators by the S pro-
tein [59]. Moreover, a persistent endothelial injury and 
inflammation were proposed as potential mechanisms of 
long-COVID and post-COVID sequelae related to car-
diovascular events and dysregulated coagulation [60]. 
Indeed, in the arterial wall of severe COVID-19 patients, 
mRNA from SARS-CoV-2 was detected within endothe-
lium, vascular smooth muscle, and infiltrated mac-
rophages, representing a potential viral reservoir [18].

Disbalanced endothelial‑derived hemostatic 
regulators in COVID‑19
After COVID-19, dysfunctional EC can synthesize and 
release several factors that are crucial regulators of coag-
ulation and thrombosis [61]. The role of such regulators 
and how their delicate balance is disrupted in the context 
of COVID-19 is briefly reviewed over the next sections.

The tissue factor
The contact and intrinsic pathways may contribute to 
the pro-thrombotic state of COVID-19 [62]. The tis-
sue factor (TF) is a transmembrane receptor that initi-
ates the extrinsic coagulation cascade [63]. EC together 
with platelets, T lymphocytes, polymorphonuclear cells, 
monocytes, macrophages, dendritic cells, and fibroblasts 

are the main sources of TF [64–68]. Under physiological 
conditions TF is not typically expressed in active form 
by EC [69]. However, vessel injury and tissue trauma 
are major physiological activators of TF by promoting a 
change from an encrypted inactive to a decrypted active 
conformation. Then, TF acts as a high affinity receptor 
and cofactor for factor VII (FVII) and factor VIIa (FVIIa) 
at the site of tissue damage [70], and the TF:FVIIa com-
plex activates factor X (FX) and factor IX (FIX), pro-
ducing thrombin and fibrin, activation of platelet, and 
thrombosis [63]. To prevent excessive coagulation, EC 
also express tissue factor pathway inhibitor (TFPI) [71]. 
However, increased TF expression and fibrin enriched 
thrombi were reported in lung tissues from COVID-19 
autopsies [72, 73] (Fig. 3). In human lung epithelial cells 
and EC, SARS-CoV-2 infection also enhanced TF expres-
sion and triggered pro-coagulant and pro-inflammatory 
responses [74, 75]. These actions were linked to the acti-
vation of the complement system, which could amplify 
and perpetuate endothelial dysfunction [41]. Also, the 
S protein inhibited TFPI and induced thrombogenic 
factors in human EC and neutrophils [55]. As conse-
quence, higher circulating TF levels were associated with 
COVID-19 severity and associated mortality [76].

Factor VIII
By non-covalent interaction in the Weibel-Palade (WP) 
bodies, factor VIII (FVIII) is protected from degradation 
by VWF [77, 78]. Once FVIII is activated to FVIIIa, it is 
detached from VWF and proteolized [79]. FVIIIa acts as 
a cofactor in the tenase complex (FIXa/FVIIIa), favor-
ing conversion of FX to FXa [80]. Remarkedly, FVIII has 
been found disrupted in COVID-19 patients [81] (Fig. 3). 
Its plasma levels and activity were greatly elevated in 
parallel to disease severity [3, 81, 82]. In fact, FVIII was 
reported as an independent predictor of COVID-19 asso-
ciated mortality [83].

Interstingly, the elevation of FVIII has been also 
reported in long-COVID in association with thrombo-
inflammatory manifestations and vascular dysfunction 
[84, 85]. Also, very few cases of acquired hemophilia A, 
a bleeding condition caused by the development of auto-
antibodies against FVIII, has been observed after SARS-
CoV-2 S mRNA-based vaccination, perhaps as the result 
of a cross-reaction between antibodies against S protein 
and endogenous FVIII [86]. More commonly, antiphos-
pholipid antibodies (aPL) derived from B1-cells induced 
up-regulation of C-reactive protein and D-dimer, 
and  were related to fatal outcomes in COVID-19 
patients. This lipid-binding aPL isolated from COVID-19 
patients could target monocytes and EC to induce pro-
thrombotic and inflammatory responses [87].
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The kallikrein-kinin system
In COVID-19, the intrinsic pathway of coagulation not 
only induces fibrin generation but also links to inflam-
mation by release of kallikrein and bradykinin [88]. The 
kallikrein-kinin system (KKS) is a family of proteins that 
can effectively counteract blood pressure and eliminate 
pathogens by recruiting neutrophils to the site of injury. 
Kallikrein is mainly synthesized by the liver and endothe-
lium (requiring factor XIIa; FXIIa) and released as plasma 
kallikrein (PK), which can be activated on the EC surface 
[89, 90]. Once active, kallikreins cleave kininogens (i.e., 
high molecular weight kininogen; HMWK) to ultimately 
synthesize bradykinin (BK) to mediates the release of 
NO and pro-inflammatory cytokines [91]. However, in 
COVID-19, the higher concentrations of some com-
ponents of the KKS correlated with the severity of the 

disease [92] (Fig.  3). Thus, the hyperactivity of the KKS 
has become a prognostic marker of poorer outcomes in 
critically ill patients [93].

The VWF: ADAMST-13 ratio
The VWF is a large multimeric glycoprotein synthesized 
and stored in EC and megakaryocytes/platelets [94]. 
After activation of EC or platelet, plasma VWF facilitate 
platelet aggregation and adhesion to the sites of vascular 
injury reinforcing the pro-coagulation effect of primary 
and secondary hemostasis [95]. The VWF form pro-
coagulant multimers of different length interacting with 
angiopoietin-2 (Angpt-2) and osteoprotegerin at the WP 
bodies [96]. Remarkably, the VWF has been observed 
elevated in COVID-19 patients, acting as a marker of 

Fig. 3 Hypercoagulability and hypofibrinolysis in COVID-19 and DM. Disrupted hemostasis during COVID‑19 may be further intensified 
under diabetic milieu, resulting in a hypercoagulant phenotype of the activated EC. Elevated levels of pro‑coagulant factors (VWF, FVIII, TF/
TFPI, thrombin and fibrin) and diminished or insufficient anti‑coagulant mediators (ADAMST‑13, tPA‑plasminogen, KKS, aPC‑EPCR) may alter 
the thrombosis and thrombolysis equilibrium towards formation of blood clots. Arrows indicate over‑ or down‑regulation of factors in COVID‑19 
(blue) or in DM (green) pathology. Drugs against specific mediators are shown in red beside its target of action. VWF (von Willebrand factor), FVIII 
(factor VIII), TF (tissue factor), HMWK (high molecular weight kininogen), PK (plasma kallikrein), LMWH (low molecular weight heparin), FXa (activated 
factor X), aPC (activated protein C), EPCR (endothelial cell protein C receptor), tPA (tissue plasminogen activator), PAI‑1 (tissue plasminogen 
activator), TAFI (thrombin activatable fibrinolysis inhibitor)
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acute and sustained EC activation and predictor of poor 
outcomes [97, 98] (Fig. 3). Moreover, the VWF could be 
involved in local angiogenesis in severe COVID-19. Incu-
bation of plasma from acute COVID-19 patients with EC 
triggered VWF secretion and Angpt-2 expression, as well 
as EC tube formation and angiogenesis [99].

In addition, one of the main regulators of the VWF 
activity is the disintegrin and metalloproteinase 
ADAMST-13, which is generated by hepatic stellate 
cells, but also from EC and megakaryocytes/platelets. 
ADAMST-13 cleaves VWF multimers reducing their 
pro-adhesive and pro-coagulant activity [100]. However, 
a higher VWF:ADAMST-13 ratio together with endothe-
lial injury, coagulopathy, and poor prognosis has been 
found in acute and long-COVID syndrome [84, 101–103] 
(Fig.  3). In this line, COVID-19 vaccination could have 
originated pro-thrombotic complications in individu-
als with extremely low ADAMST-13 [104]. A deficiency 
in ADAMST-13 might be unable to counteract the VWF 
over-activity found after SARS-CoV-2 infection, long-
COVID syndrome and, very rarely, COVID-19 vaccina-
tion [105].

Fibrinolytic regulators
The fibrinolytic activity is essential to dissolve the fibrin 
clot in tertiary hemostasis and it is mainly determined by 
the balance between the endothelial tissue plasminogen 
activator (tPA) and its inhibitor, the plasminogen acti-
vator inhibitor type 1 (PAI-1) [106]. By producing tPA, 
the liver-derived plasminogen (PLG) converts into plas-
min that eventually breaks up fibrin (releasing D-dimer) 
to dissolve blood clots. However, under SARS-CoV-2 
infection endothelial dysfunction may also imbalance 
fibrinolysis [107] (Fig.  3). A time-dependent variation 
of the plasmin-dependent fibrinolytic system has been 
observed in COVID-19 progression, with initial acti-
vation followed by suppression in patients with more 
severe cases [108]. The plasma concentration of PAI-1 
and the tPA-PAI-1 complex were elevated in COVID-19 
subjects in comparison to healthy controls [109, 110], 
and the tPA levels at hospital admission were associated 
with lower survival rates [111]. Also, increased levels of 
the endothelial tPA receptor, annexin A2, correlated with 
inflammatory markers (i.e., IL-1β, IL-6, and TNF-α) and 
COVID-19 magnitude [112].

Furthermore, evidence suggests the existence of a cir-
culating anti-coagulant factor, activated protein C (aPC) 
, which is triggered by the thrombin-thrombomodu-
lin complex when bound to the EC protein C recep-
tor (EPCR). aPC can suppress thrombin formation by 
proteolytical degradation or inactivation of  coagula-
tion factor Va (FVa) and FVIIIa and increases fibrino-
lytic activity by neutralizing PAI-1. However, the 

thrombin-thrombomodulin-EPCR complex is dysfunc-
tional under COVID-19, affecting the aPC synthesis [113, 
114]. Also, an enhanced thrombin generation, decreased 
fibrinolytic activity, and elevated levels of PAI-1 were 
identified in patients with long-COVID [115]. Likely, 
a complex disruption of the balance between thrombo-
genesis and thrombolysis is not properly solved in some 
cases or is excessively perpetuated in other patients. 
In this sense, micro-clots composed by fibrin amyloid 
and hyperactivated platelets might block capillaries and 
inhibit  O2 transport to tissues, leading to some of the 
symptoms of the long-COVID and related post-acute 
sequelae [116].

In addition, elevated fibrinogen and D-dimer levels 
were correlated with hypercoagulable states, inflamma-
tion, and unfavorable outcomes after COVID-19 [117]. 
The increased D-dimer paradoxically coincided with 
decreased fibrinolytic capacity [117, 118]. Possibly, the 
presence of elevated D-dimer, especially during the early 
stages of pulmonary disease, could indicate the efforts of 
the local fibrinolytic system to eliminate fibrin and the 
necrotic tissue from the affected pulmonary parenchyma 
[118]. Thus, hyperfibrinolysis may be adequate at tissue 
level but systemically insufficient, delaying the resolution 
of fibrin deposition. In this context, the regulatory role of 
PAI-1 may further contribute to explain this effect since 
PAI-1, tPA, and the thrombin activatable fibrinolysis 
inhibitor (TAFI) augmented in parallel with COVID-19 
severity [110, 119]. Further investigation on the interac-
tion of pro-coagulant and anti-fibrinolytic factors may 
reveal novel issues in COVID-19 pathogenesis [120].

Diabetes mellitus, a comorbidity in COVID‑19
DM is a non-infectious epidemic disease whose preva-
lence in adults has risen from 108 million in 1980 to 
537 million in 2021, and may reach 783 million by 
2045 [121]. In fact, DM was responsible for 6.7 mil-
lion deaths in 2021, a similar number to the fatalities 
associated to COVID-19 so far [122]. In this sense, the 
presence of DM has been recognized as a significant 
risk factor for the rapid progression and poor prog-
nosis of COVID-19, ranging from 5.7% in non-severe 
cases up to 58% in critical individuals [123, 124]. 
More unfavorable outcomes have been observed in 
COVID-19-infected patients with DM than in those 
without DM. COVID-19 with DM leads to a twofold 
risk of ICU hospitalization and a two–threefold risk 
of mortality compared to COVID-19 alone [125, 126]. 
In a recent meta-analysis, which included 2,987,938 
subjects with COVID-19, 10.4% of non-hospitalized 
individuals were diagnosed with DM, while DM was 
present in 28.9% of subjects requiring hospitalization 
and experiencing severe infection. In the same study, 
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34.6% of deceased patients exhibited both pathologies 
[127], and in another meta-analysis, the risk of mor-
tality after infection was 54% higher in DM patients 
compared to non-DM patients [128]. Finally, a relative 
increased risk of 7–342% for the development of post-
acute sequelae of COVID-19 has been reported in DM 
subjects. Thus, a potential correlation between DM 
and the long-COVID syndrome may affect vulnerable 
patients [129].

Hyperglycemia and COVID-19
In the  diabetic milieu, hyperglycemia can elicit 
changes in the immune system, favoring produc-
tion and release of pro-inflammatory cytokines. After 
SARS-CoV-2 infection, serum levels of IL-6, C-reactive 
protein, ferritin, and D-dimer were significantly higher 
in DM patients compared to non-DM, enforcing the 
cytokine storm and contributing to the rapid dete-
rioration of patients [130, 131]. In fact, hyperglycemic 
individuals treated with insulin showed lower risk to 
develop severe COVID-19. A poor glycemic control 
promoted higher levels of inflammatory markers dur-
ing COVID-19 [130], and an adequate glycemic range 
(3.9–10  mmol/L) was associated with  a reduction  
of adverse COVID-19 outcomes, including death [132]. 
In this regard, anti-hyperglycemic drugs  decreased by 
41% the rate of incidence for long-COVID syndrome 
[133]. Also, the level of SARS-CoV-2 replication was 
higher in the presence of serum from patients with DM 
than that from non-diabetics [134]. Thus, individuals 
with DM and COVID-19, even without other comor-
bidities, exhibit an increased risk of severe complica-
tions, such as pneumonia, uncontrolled inflammatory 
responses, hypercoagulability, and elevated mortality 
associated to dysregulated glucose metabolism [131].

On the other hand, SARS-CoV-2 infection may 
induce a diabetogenic actions. 17% of severe COVID-
19 cases exhibited pancreatic lesions that could affect 
glycemic metabolism and inflammation [135, 136]. 
Administration of the S protein to type 2 DM-ACE2 
knockout mice intensified cerebrovascular complica-
tions and cognitive dysfunction through activation of 
the renin–angiotensin–aldosterone system (RAAS) 
and toll-like receptor (TLR) signaling [137]. Individuals 
recovering from COVID-19 faced an elevated risk and 
burden of DM, leading to an increased usage of anti-
hyperglycemic agents [135, 136]. Among fourteen stud-
ies that documented new-onset DM after COVID-19, 
twelve of them found a significant association between 
both pathologies, suggesting an increased risk of DM 
of 11–276% [129]. However, DM does not increase the 
risk of SARS-CoV-2 infection [138].

Endothelial cell activation, a link between COVID-19 
and diabetes
The coexistence of DM and COVID-19 could favor 
deleterious additive or synergistic effects related to 
endothelial dysfunction and coagulopathy (Fig.  3). In 
DM, endothelial activation and dysfunction underlies 
the associated cardiovascular complications. 80% of the 
cardiovascular deaths observed in DM are attributed to 
thrombotic events [139]. These responses are favored 
by factors also present in COVID-19. Pro-inflammatory 
cytokines may influence the disbalanced release of vaso-
active factors and provoke over-activation of the com-
plement system that amplifies endothelial dysfunction 
[140–143]. Moreover, COVID-19 associated NETosis 
can be also part of the pathogenesis of DM and its com-
plications [144, 145]. In the other way, several stimuli 
related to the metabolic dysregulation can exert delete-
rious actions on the COVID-19 affected endothelium. 
The excess of plasma glucose and free fatty acids reduce 
NO and activate the NLRP3 inflammasome and NF-κB 
pathways favoring endothelial permeability [146, 147]. 
Stimulation of coagulation factors in DM may accentuate 
the risk of thrombotic events. In this sense, the throm-
bin-thrombomodulin-EPCR complex has been often 
observed dysfunctional under both DM and COVID-19, 
affecting aPC synthesis [113, 114]. Therefore, COVID-
19 and DM, by sharing or accumulating mechanisms of 
endothelial activation and dysfunction, may stimulate 
more severe vascular-driven complications than these 
entities alone.

Hemostasis disruption in DM and COVID-19
Hypercoagulability and hypofibrinolysis can be common 
features of both DM and COVID-19 due to the overac-
tivation of the endothelium and variations of hemostatic 
factors [110, 148]. However, there is still limited evidence 
regarding how all hemostatic mediators vary in the com-
bined context of these pathologies (Table  1). Through 
intricate interplays between the pathophysiological 
mechanisms inherent to both conditions, concomi-
tancy of DM and COVID-19 could exacerbate inflam-
matory responses. As a result, subsequent alterations in 
hemostasis and coagulation worsen the disease progres-
sion and outcomes, leading to DM as a major risk factor 
for hemostasis disease in both acute and long-COVID 
patients [141, 149]. In fact, patients with both pathologies 
exhibited higher hypercoagulability and thrombotic com-
plications than those infected patients without DM [150].

Specifically, in primary hemostasis, alterations in 
platelet activation and aggregation, as well as in plate-
let interaction with endothelium were exacerbated in 
DM compared to control patients [151]. Hyperglycemia 
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induced overexpression of vascular cell adhesion mol-
ecule-1 (VCAM-1) and P-, E- and L-selectins [152, 153]. 
Also, increased FVIII and other factors of the coagula-
tion cascade, as well as the KKS activity were reported 
in patients with DM [154–157] (Table 1). Other authors 
demonstrated an elevation of TF in both type 1 and 
type 2 DM [158], or even after glucose variability [159]. 
Plasma VWF levels were also augmented in diabetics 
as compared to healthy controls, while ADAMST-13 
was diminished [160, 161]. On tertiary hemostasis,  up-
regulated D-dimer and reduction of plasmin activity 
were described in DM [162–164]. Also, these patients 
displayed higher FXIII-induced crosslinking of plasmin 
inhibitor into the fibrin networks, and up-regulation of 
PAI-1 and TAFI [165–168].

Importantly, when  both DM and COVID-19  over-
lapped, pro-coagulant factors and deficient fibrinolytic 
mechanisms were exacerbated. The combination of pre-
existing hypofibrinolysis in DM with alterations in severe 
COVID-19 resulted in significant reduction in the body’s 
capability to dissolve clots. In these patients, higher levels 

of C-reactive protein and D-dimer were associated with 
lethality, and the cutoff value for D-dimer as a predic-
tor of mortality was 2.8 ug/mL [169, 170]. Nevertheless, 
potential synergisms or additional mechanism of action 
for pro-coagulant and hypofibrinolytic profiles may be 
activated in diabetic COVID-19 subjects.

Novel opportunities for therapeutic interventions
For COVID-19, the non-replicating adenoviral vectors 
were promising carriers for viral antigenic material (i.e., 
S protein) to induce safe and effective immunity against 
the virus. However, in 2021 several countries suspended 
vaccinations due to occurrence of vaccine-induced 
immune thrombotic thrombocytopenia events [199]. 
Some vaccines favoured hypercoagulopathy in specific 
patients with anatomical variants of cerebral venous out-
flow by inducing a transient inflammatory response and 
endothelial activation [200]. Although this thromboem-
bolic complication was very rare, more preventive and 
therapeutic approaches could be suggested, particularly 

Table 1 Pro‑coagulation and fibrinolytic factors in DM and COVID‑19

Variations of coagulation factors [Tissue factor (factor III, thromboplastin), FVII, HMWK (High molecular weight kininogen, Fitzgerald factor), PK (plasma kallikrein), 
FXII, FXI, FIX, FVIII, VWF (von Willebrand factor), FX, FV, Calcium (factor IV), prothrombin (factor II), fibrinogen (factor I), FXIII, tPA (tissue plasminogen activator), TAFI 
(thrombin-activatable fibrinolysis inhibitor), and PAI-1 (plasminogen activator inhibitor)] of secondary (A) and tertiary (B) hemostasis are described in DM, severe 
COVID-19, and DM-severe COVID-19 conditions. Arrows indicate over- or down-regulation of factors. n.r., non-reported data

Pathway Coagulation Factors DM Severe COVID-19 DM + Severe COVID-19 References

A Secondary hemostasis

Extrinsic Tissue factor ↑ ↑ n.r [171, 172]

FVII ↑ ↔ ↑↓ n.r [154, 156, 173, 174 ]

Intrinsic HMWK ↑ ↓ n.r [93, 157]

PK ↑ ↓ n.r [93, 175]

FXII ↑↓ ↓ ↔ n.r [156, 173, 176, 177]

FXI ↑ ↔ ↓ ↔ n.r [156, 173, 177, 178]

FIX ↑ ↔  ↔ n.r [154, 156, 173]

FVIII ↑ ↑ ↔ n.r [3, 81, 154, 174, 179]

VWF ↑ ↑ ↔ n.r [97, 98, 160, 173]

Common FX ↑ ↑ ↔ n.r [154, 173, 174]

FV ↑ ↑↓ n.r [154, 173, 174]

Calcium ↑ ↑ n.r [180, 181]

Prothrombin ↑ ↑ n.r [182, 183]

Fibrinogen ↑ ↑ ↑↑ [141, 184, 185]

FXIII ↑ ↓ ↔ n.r [173, 186, 187]

Fibrinolytic Parameters DM Severe COVID-19 DM + Severe COVID-19 References

B Tertiary hemostasis

tPA ↑ ↑ n.r [111, 112, 188, 189]

Plasminogen  ↔ ↑↓ ↔ n.r [111, 173, 190, 191]

Plasmin ↓ ↑↓ n.r [111, 164, 192–194]

D-Dimer ↑ ↑ ↑↑ [4, 169, 195, 196]

TAFI ↑ ↑ n.r [110, 168]

PAI-1 ↑ ↑ n.r [109, 110, 197, 198]
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in patients with pro-coagulant comorbidities such as DM 
[201].

Therapeutic approaches for COVID-19 may depend 
on disease evolution and symptoms, as well as pres-
ence of complications and comorbidities. Asymptomatic 
infection includes patients with positive virologic test 
for SARS-CoV-2 but  who have no symptoms consist-
ent with COVID-19 [202]. Mild illness comprises indi-
viduals with several symptoms such as fever, cough, loss 
of taste and smell, muscle pain, and diarrhea, but not 
dyspnea. Herein, only patients aged ≥ 50  years  old or 
with underlying comorbidities are at higher risk of dis-
ease progression [203]. In this sense, moderate illness, 
which includes subjects with lower respiratory disease, 
requires anti-SARS-CoV-2 treatment (antiviral, immu-
nomodulator, anti-coagulant) [202]. In severe illness, 
patients show oxygen saturation < 94%, a respiratory 
rate > 30 breaths/min, a ratio of arterial partial pressure 
of oxygen to fraction of inspired oxygen < 300 mmHg, or 
lung infiltrates > 50%  [203]  . These patients can rapidly 
exhibit clinical deterioration and require additional oxy-
gen therapy [202]. In critical illness, individuals exhibit 
ARDS, virus-induced distributive (septic) shock, cardiac 
shock, an exaggerated inflammatory response, throm-
botic disease, and exacerbation of underlying comorbidi-
ties such as DM. They are admitted at the ICU to receive 
treatment for COVID-19 and comorbidities. In addi-
tion, reinfection with SARS-CoV-2 may occur as initial 
immune responses to the primary infection wane over 
time [204]. Data regarding the prevalence, risk factors, 
timing, and severity of reinfection likely vary depending 
on the SARS-CoV-2 variants. Nevertheless, no evidence 
suggests that the treatment should be different [205].

Novel approaches for diabetic COVID-19
By unveiling the mechanisms that underlie the hyper-
coagulation/hypofibrinolytic responses in acute or 
long-COVID, novel therapeutic interventions might be 
suggested particularly favorable in high-risk patients like 
diabetics.

Antidiabetics
Administration of insulin improved outcomes in patients 
with COVID-19 by achieving glycemic goals [130], but 
this hormone might increase mortality and complica-
tions in patients with both COVID-19 and DM [206]. 
However, metformin has exhibited therapeutic attributes 
beyond glycemic control. It ameliorated endothelial dys-
function by reduction of ROS production, the activation 
of  NLRP3 inflammasome  pathway, and  downregulation 
of pro-inflammatory and adhesion molecules [207–210]. 
Also, metformin showed anti-thrombotic actions by 

attenuation of TF and platelet activation [211, 212]. Thus, 
it emerges as a promising candidate for enhancing sur-
vival in diabetic COVID-19 subjects [213]. Indeed, a 
recent meta-analysis established a correlation between 
metformin usage and reduction of mortality among dia-
betic COVID-19 subjects [214]. Metformin can also limit 
the replication of SARS-CoV-2 and the inflammatory 
response mediated by its S1 protein [215, 216]. Inter-
estingly, although it did not reduce mortality nor ICU 
admission rates in non-diabetic patients with COVID-
19 [217], outpatient treatment demonstrated an absolute 
reduction of 4.1% in the incidence of long COVID-19 
[133]. Thus, positive effects of metformin may be also 
linked to modulatory effects on immune and hemostatic 
responses [218]. Other antidiabetics such as dipeptidyl 
peptisase-4 (DPP-4) and sodium-glucose cotransporter 
2  (SGLT2) inhibitors, glucagon-like peptide-1  (GLP-
1) agonists, thiazolidinediones, and sulfonylureas also 
reduced the risk of mortality in diabetic patients with 
COVID-19 [219, 220]. However, some contradictory 
results have been also reported since administration of 
DPP-4 inhibitors and sulfonylureas was  associated with 
adverse outcomes and mortality in COVID-19 patients 
[220, 221].

Immune-thrombotics
Multiple-target strategies may effectively dampen the 
immune-thrombotic response. The currently established 
anti-coagulant therapies include low-molecular-weight 
heparin (LMWH), warfarin, thrombin inhibitors (i.e. hir-
udin, bivalirudin, argatroban, dabigatran), or FXa inhibi-
tors (i.e. rivaroxaban, apixaban, edoxaban) [222, 223]. 
Apixaban, a direct oral anti-coagulant, not only blocked 
both the free and clot-bound FXa and the activity of pro-
thrombinase, it also inhibited the activity of SARS-CoV-2 
protease M implicated in viral replication [224].

Novel approaches may target the complement system. 
Monoclonal antibodies like eculizumab, ravulizumab or 
zilucoplan inhibited the C5 cleavage or block the result-
ing fragments reducing generation of the MAC [225], 
and PK   and FIXa [88]. Inhibitors of C1 esterase are cur-
rently being assayed [225], and inhibitors of KKS, such 
as lanadelumab attenuated both the cytokine storm 
and hypercoagulation by blocking the PK activity. Also, 
antagonists for the bradykinin B2 receptor (i.e., icatibant) 
might be use for acute COVID-19 and perhaps for long-
term manifestations of the disease [226]. In these cases, 
a major therapeutical challenge may consist in clearing 
viral particles from tissues or at least interfering with 
their potential receptors and signaling pathways. The 
viral S protein has been found in post-COVID tissues as 
a direct pro-inflammatory and pro-coagulant trigger of 
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EC by interacting with a number of cell surface receptors 
including TLR-4 [227], [228]. In this sense, several TLR-4 
inhibitors may be tested in this population [229–231]. 
Moreover, administration of aPC attenuated organ dys-
function and host death caused by ischemia–reperfusion 
in brain, heart, kidney, and lung in COVID-19 and other 
pathologies [232]. Inhibitors of the neutrophil elastase, 
which is released to the extracellular medium upon NETs 
formation, or agonists for the adenosine, which pro-
duce cyclic AMP, may mitigate NETosis [233–235]. The 
use of anti-cytokine drugs (i.e., against ILs, type-1 inter-
feron (IFN)-γ) reduced the cytokine storm in COVID-19 
[236, 237], and could indirectly attenuate NETosis and 
the complement system. In this sense, tocilizumab was 
approved by FDA as a candidate treatment of severe hos-
pitalized COVID-19 patients [238], and canakinumab 
lowered the use of antidiabetic drugs in patients with 
COVID-19 and DM inducing prolonged reduction of sys-
temic inflammation [239].

Limitations
Despite numerous efforts to understand the variabil-
ity in the severity of the disease, the specific relation-
ship between different variants of SARS-CoV-2 and 
their impact on diabetic patients is still not fully eluci-
dated. More comprehensive and coordinated research is 
needed, including genomic analysis, clinical studies, and 
epidemiological investigations, to better understand the 
connection between SARS-CoV-2 variants and the sever-
ity of infection in individuals with DM [240]. In addition, 
other limitation of this review is the selective use of liter-
ature, unavoidable because of the huge number of papers 
that emerged during and after this pandemic.

Conclusions
Thrombotic complications are leading causes of hospital-
ization and death among COVID-19 and post-COVID-
affected patients. Those DM patients infected with 
SARS-CoV-2 may exhibit exacerbated alterations in pri-
mary, secondary, and tertiary hemostasis by induction of 
endothelitis and endothelial dysfunction. As consequence 
of virus infection and the immune-defense response, 
increased activation of NF-κB/NLRP3 inflammasome 
pathways, vasoactive peptides, cytokines, NETosis, and 
the complement system, finally damage endothelial 
vasculature and stimulate coagulation mediators. This 
hypercoagulable state is favored by the lack of fibrinolytic 
factors, affecting blood irrigation in all tissues. However, 
several anti-coagulant therapies might be beneficial for 
these patients, however, therapeutic approaches reduc-
ing the initial triggers of pathological endothelial acti-
vation (i.e., by antidiabetics, immune-thrombotics) 

may improve vascular function and ameliorate risk of 
COVID-19 associated comorbidities.
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